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The Homology of Abelian Covers
of Knotted Graphs
R. A. Litherland

Abstract. Let M̃ be a regular branched cover of a homology 3-sphere M with deck group G ∼= Zd
2 and branch

set a trivalent graph Γ; such a cover is determined by a coloring of the edges of Γ with elements of G. For each
index-2 subgroup H of G, MH = M̃/H is a double branched cover of M. Sakuma has proved that H1(M̃) is
isomorphic, modulo 2-torsion, to

⊕
H H1(MH ), and has shown that H1(M̃) is determined up to isomorphism

by
⊕

H H1(MH ) in certain cases; specifically, when d = 2 and the coloring is such that the branch set of each
cover MH → M is connected, and when d = 3 and Γ is the complete graph K4. We prove this for a larger
class of coverings: when d = 2, for any coloring of a connected graph; when d = 3 or 4, for an infinite class of
colored graphs; and when d = 5, for a single coloring of the Petersen graph.

1 Introduction

In this paper we are concerned with invariants of graphs embedded in 3-space, which are
known as knotted or spatial graphs. Although knotted graphs have been studied for some
time, they have received more attention in the last ten years or so because of their poten-
tial applications to stereochemistry; a reader interested in these applications may consult
Simon [6] or Kinoshita [2].

For our purposes, a graph is a 1-dimensional polyhedron Γ. A vertex of Γ is a point at
which Γ is not a 1-manifold, and an edge is the closure of a component of the complement
of the set of vertices. A component of Γ that contains a vertex is naturally a graph in the
combinatorial sense (possibly with loops or multiple edges). A component without vertices
is a single edge homeomorphic to S1, which we call a circular edge (as opposed to a loop,
which is homeomorphic to S1, but contains a vertex).

Remark None of our theorems apply to graphs with circular edges, but they are needed
for some lemmas.

All the graphs we consider are trivalent; this does not exclude circular edges. If Γ is a
trivalent graph the number V of vertices and the Euler characteristic χ(Γ) are related by
V = −2χ(Γ), and the number of non-circular edges is −3χ(Γ). By a cycle in a trivalent
graph we mean a (possibly empty) subgraph homeomorphic to a disjoint union of circles;
these are in one-to-one correspondence with the elements of H1(Γ; Z2). A cycle with one
component is called a circuit. If Γ ′ is a subgraph of Γ, we use Γ\Γ ′ to denote the closure of
the set-theoretic complement Γ− Γ ′. We call a graph simple if it has no loops or multiple
or circular edges.

Let d be an integer greater than 1, and let G be a (multiplicative) group isomorphic to Zd
2.

Let M be a homology 3-sphere and let π : M̃ → M be a regular branched cover with deck
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group G and branch set a graph Γ ⊂ M. A point in the inverse image of a vertex of Γ of
valence n has a neighborhood that is a cone on a cover of S2 branched over n points, and by
the Riemann-Hurwitz formula any regular branched cover of S2 by itself has 2 or 3 branch
points. Thus M̃ is a manifold iff Γ is trivalent; we assume that this is the case. For each edge
e of Γ, the stabilizer Ge of a lift of e to M̃ is a subgroup of G of order 2 (and is independent
of the lift since G is abelian). We color e with the non-trivial element of Ge. The colors g1,
g2 and g3 of the edges at a vertex v are the non-trivial elements of the stabilizer of a lift of
v (a group isomorphic to Z2 ⊕ Z2), so they satisfy the relation g1g2g3 = 1. Conversely, any
coloring of the edges of Γ by non-trivial elements of G satisfying this relation at each vertex
defines a homomorphism H1(M − Γ; Z2) → G sending each meridian of an edge to the
corresponding color. The corresponding branched covering is connected iff the colors of
the edges generate G; we shall always assume this is so, and call Γ a G-colored graph. We
regard two G-colorings of Γ as identical if they differ only by automorphisms of G and Γ.
We sometimes write G(d) for G to indicate the value of d under consideration. When we
refer to a basis of G, or to independent elements of G, we are considering G as a Z2 vector
space.

Remark Any coloring of the edges by elements of G satisfying the above relations defines
a homomorphism from H1(Γ; Z2) to G, and vice-versa, so we can choose such a coloring
with the colors generating G iff the first Betti number b1(Γ) of Γ is at least d. However, this
may fail to be a G-coloring as just defined since some of the colors may be the identity. If
G has a bridge e, the color of e must be 1 since e represents zero in H1(Γ; Z2). If Γ does not
have a bridge, the existence of a G-coloring is not guaranteed; when d = 2, a G-coloring
is just a Tait coloring, and the question of which bridgeless trivalent graphs have a Tait
coloring has a long history.

Let C? = C?(G) be the set of all subgroups of G of index 2, and let C = C(G) = C?∪{G}.
If Γ is a G-colored graph, for H ∈ C we let ΓH be the union of the edges of Γ whose colors
are not in H; this is a cycle in Γ. If Γ is embedded in a homology 3-sphere M with branched
cover π : M̃ → M, let MH = M̃/H for H ∈ C. If H ∈ C?, there is a 2-fold branched
covering ρH : MH → M whose branch set is the link ΓH . There is also a branched covering
πH : M̃ → MH with group H, whose branch set ∆H is the inverse image of Γ \ ΓH . When
H = G, MG = M and we let πG = π and ρG = id. Sakuma showed that H1(M̃) and⊕

H∈C? H1(MH) are isomorphic modulo 2-torsion [5, Theorem 14.1], and determined the
2-torsion of H1(M̃) when d = 2 and each ΓH is connected, and when d = 3 and Γ = K4

[5, Theorem 14.2]. Our first theorem generalizes part (1) of [5, Theorem 14.2], because⊕
H∈C? H1(MH) has odd order when all the ΓH are connected, so the exact sequence of the

theorem is split.

Theorem 8.1 If d = 2 and Γ is connected, then there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zb1(Γ)−2

2 −→ 0,

and β
(⊕

H∈C? H1(MH)
)
= 2H1(M̃).

There are infinitely many G(2)-colorings of connected graphs for which the ΓH are not
all connected; see Example 1.2. In this case, the above sequence does not split; nevertheless,

https://doi.org/10.4153/CJM-1999-046-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-046-7


Homology of Abelian Covers 1037

H1(M̃) is determined up to isomorphism by
⊕

H∈C? H1(MH). This is a consequence of the
case p = 2 and e = 1 of the following proposition, whose proof is a simple application of
the structure theorem for finitely generated abelian groups, and is omitted.

Proposition 1.1 Let A and B be finitely generated abelian groups, p a prime, and e a positive
integer. If peA ∼= peB and A/peA ∼= B/peB, then A ∼= B.

Example 1.2 Let Γ be an n-rung Möbius ladder. Recall that this graph consists of a 2n-
circuit (the rim) together with its diameters (the rungs). (It is usual to require n ≥ 3, but
the cases n = 1 or 2 make sense; when n = 1 we have the theta-curve, and when n = 2
we have K4.) When n ≥ 2, Γ is simple, and we take the vertices to be v0, . . . , v2n−1 and the
edges to be σi = {vi , vi+1} and τi = {vi, vi+n}, the subscripts being taken modulo 2n. The
σi form the rim, and the τi are the rungs. Let Γ ′ be a non-empty cycle in Γ that contains k
rungs. If k = 0, Γ ′ is the rim; otherwise, Γ ′ is connected if k is odd, and has k

2 components
if k is even.

Now take d = 2, and let the non-trivial elements of G be g1, g2 and g3. Give all the rungs
the color g1, and give the edges of the rim the colors g2 and g3 alternately. If H = 〈g1〉 then
ΓH is the rim, while if H = 〈g2〉 or 〈g3〉 then ΓH contains all n rungs. Thus every ΓH is
connected iff n is odd or n = 2.

We say that a G-coloring of a graph Γ is unsplittable if, for any g ∈ G, deleting the edges
of Γ with color g leaves a connected graph. If Γ has an unsplittable coloring, then either Γ
is the theta-curve (in which case d = 2), or Γ is connected and simple. First, taking g = 1
shows that Γ is connected, and in particular has no circular edges. Since Γ has no bridges, it
has no loops. If Γ is not the theta-curve and has a pair of multiple edges, these are adjacent
to two distinct edges with the same color. Deleting these edges disconnects Γ, contrary to
the definition.

A circuit C in a G-colored graph Γ will be called special if there is some H ∈ C? such
that ΓH = C and Γ \ C is connected. Note that if this is so then Γ is unsplittable iff the
result of deleting from Γ \C all edges with color h is a forest whenever 1 6= h ∈ H.

Theorem 8.2 Let Γ be a trivalent graph with an unsplittable G(3)-coloring with a special
m-circuit. Then 3 ≤ m ≤ b1(Γ), there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zm−3

4 ⊕ Z2(b1(Γ)−m)
2 −→ 0,

and β
(⊕

H∈C? H1(MH)
)
= 4H1(M̃).

This implies part (2) of [5, Theorem 14.2], since K4 has a unique G(3)-coloring, which
is unsplittable and has a special 3-circuit. Once again, when Theorem 8.2 applies, Proposi-
tion 1.1 shows that H1(M̃) is determined up to isomorphism by

⊕
H∈C? H1(MH). We now

show that Theorem 8.2 applies to infinitely many colored graphs.

Proposition 1.3 Let m and b be integers with 3 ≤ m ≤ b. Then there is a graph Γ with
b1(Γ) = b and an unsplittable G(3)-coloring of Γ which has a special m-circuit.
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Figure 1: x, y, z ∈ G, xyz = 1

Proof First we show that for m ≥ 3 there is a graph Γ with b1(Γ) = m and an unsplittable
G(3)-coloring of Γ which has a special m-circuit. Let T be a tree with m vertices of valence
1 (its leaves) and m−2 vertices of valence 3 (its forks); such trees exist for any m ≥ 2. Form
Γ by adding an m-circuit C through the leaves of T. Pick H0 ∈ C? and g0 ∈ G − H0. It
is easy to color the edges of T with non-trivial elements of H0 so that the required relation
holds at each fork. Further pick an edge e0 and a vertex v0 of C . Give e0 the color g0. There
is then a unique way to color the other edges of C so that the required relation holds at
every vertex except perhaps v0. If we take the product over all vertices v of the product
of the edge-colors at v, the result is 1, since each edge-color appears twice. It follows that
the required relation holds at v0 as well. Since m ≥ 3, T has at least one fork, and so all
non-trivial elements of H0 are used to color T, and the edge-colors of Γ generate G. Also,
all the colors of C are in G − H0. It follows first that they are non-trivial, so we do have a
G-coloring, and second that ΓH0 = C , so that C is a special m-circuit. Since deleting edges
from a tree always leaves a forest, this coloring is unsplittable.

Now, ifΓ is any unsplittable G(3)-colored graph with a special m-circuit, performing the
operation of Figure 1 at any vertex not on that circuit yields a graphΓ ′ which is unsplittable,
has a special m-circuit, and has b1(Γ ′) = b1(Γ) + 1; the general case follows.

We give some specific examples of such colorings.

Example 1.4 Let Γ be an n-rung Möbius ladder (n ≥ 2). It is possible to determine all
unsplittable G(3)-colorings of Γ with a special circuit; we shall describe them but omit the
verification that there are no others. First, an (n +1)-circuit consisting of one rung together
with half the rim has complementary graph a tree. By the first part of the above proof, there
is an unsplittable coloring for which this circuit is special. Next, suppose that n ≥ 3 and let
{x1, x2, x3} be a basis of G. Color the rim edge σ0 with x1, the rung τ0 with x2, the rung τ1

with x2xn−1
3 , and all other rungs with x3. There is a unique way to complete the coloring,

and there is a special 4-circuit corresponding to the subgroup 〈x1x2, x3〉; unsplittability is
easily checked. Finally, there is an exceptional coloring when n = 4: color the rung τ0

with x1x2x3, τi with xi for 1 ≤ i ≤ 3, and the rim edge σ0 with x2. This determines an
unsplittable coloring with a special 4-circuit corresponding to 〈x1, x2〉.

Example 1.5 In [7], the generalized Petersen graph P(n, k) was defined for 1 ≤ k ≤ n− 1
and n 6= 2k as follows. It has 2n vertices u0, . . . , un−1, v0, . . . , vn−1, and edges of three
kinds, namely σi = {ui , ui+1}, τi = {vi, vi+k} and ρi = {ui , vi}, where the subscripts are
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taken modulo n. The edges σi form an n-circuit (the outer rim); if k is coprime to n (as
we shall assume), so do the edges τi (the inner rim). The edges ρi are called rungs. Pick
H0 ∈ C? and g0 ∈ G − H0. Color the edges of the inner rim with non-trivial elements of
H0 so that adjacent edges receive distinct colors and all three elements appear. This forces
colors on the rungs. If one edge of the outer rim is given the color g0, there is a unique
way to complete the G-coloring. Then ΓH0 is the outer rim, whose complementary graph
is connected; it is easy to see that this coloring is unsplittable. This example does not arise
from the construction of Proposition 1.3.

If n = 2m + 1 and k = 2 there is also an unsplittable coloring with a special (n + 1)-
circuit; the complementary graph to the circuit u1u2 · · · u2mv2mv1u1 is a tree, so there is an
unsplittable coloring for which this circuit is special.

We have one other theorem in the case d = 3.

Theorem 8.3 Let Γ be an n-rung Möbius ladder (n ≥ 2) with a G(3)-coloring, and let g0 be
the product of the colors on the rungs. Suppose that g0 6= 1, and let k be the number of rungs
with color g0. If k = 0, there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zn−2

4 −→ 0,

while if k > 0 there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zn−k−1

4 ⊕ Z2(k−1)
2 −→ 0.

In either case, β
(⊕

H∈C? H1(MH)
)
= 4H1(M̃).

There is considerable overlap between Theorems 8.2 and 8.3; all the colorings of Exam-
ple 1.4 apart from the exceptional coloring for n = 4 satisfy the hypothesis of Theorem 8.3.
However, it is easy to see that there are infinitely many colorings satisfying that hypothesis
that do not have a special circuit.

Next we consider some G(4)-colorings of Möbius ladders.

Example 1.6 Let d = 4, and let {x1, x2, x3, x4} be a basis of G. Let Γ be an n–rung Möbius
ladder with n ≥ 3. Give the colors x1, x2 and x1x2xn

3 to one rung each, and give all other
rungs the color x3. If we give any rim edge the color x4, there is then a unique way to color
the remaining edges with elements of G so that the required relation holds at each vertex,
and this does give a G-coloring. Here every ΓH is connected; this can be seen by listing all
the ΓH , but it is easier to make use of the following lemma.

Lemma 1.7 Let e1, . . . , en be distinct edges of a G-colored graph Γ with colors g1, . . . , gn. For
H ∈ C?, the number of these edges contained in ΓH is even iff g1 · · · gn ∈ H.

Proof Let δH be the homomorphism from G to Z2 with kernel H, and let k of the edges
e1, . . . , en be contained in ΓH . Since ei is contained in ΓH iff δH(gi) = 1, δH(g1 · · · gn) =
k mod 2, and the result follows.
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For the colorings of Example 1.6, the product of the colors on the rungs is x3. Let
H ∈ C?. If x3 /∈ H then ΓH contains an odd number of rungs by the lemma, while if
x3 ∈ H then ΓH contains at most three rungs; in either case, ΓH is connected.

Theorem 8.7 Let d = 4 and let Γ be an n-rung Möbius ladder with n ≥ 3. Give Γ the
G(4)-coloring of Example 1.6. Then

H1(M̃) ∼=

{⊕
H∈C? H1(MH)⊕ Z2, if n = 3;⊕
H∈C? H1(MH)⊕ Z8 ⊕ Z4n−14

2 , if n ≥ 4.

Our final theorem deals with a particular coloring of the Petersen graph.

Example 1.8 We use the notation of Example 1.5, and letΓ be the Petersen graph P(5, 2).
Let d = 5, and let G have a basis {x0, . . . , x4}. Color the edge σi with xi , the edge τi with
xi−1xi+2, and the edge ρi with xi−1xi , all subscripts being taken modulo 5. We leave it to the
reader to check that this is indeed a G-coloring. This graph has six disconnected cycles, all
of which contain an odd number of the edges τi . Since the product of the colors on the τi

is 1, it follows from Lemma 1.7 that every ΓH is connected.

Theorem 8.8 Let d = 5, and let Γ be the Petersen graph with the G(5)-coloring of Exam-
ple 1.8. Then

H1(M̃) ∼=
⊕

H∈C?

H1(MH)⊕ Z16 ⊕ Z4
4 ⊕ Z2

2.

The rest of this section sets out some notation. In the next section we give the plan of
the proof and explain the organization of the rest of the paper.

We deal often with direct sums
⊕

H∈C ′ ΛH , where the ΛH are abelian groups indexed
by a subset C ′ of C. It is convenient to regard an element of

⊕
H∈C ′ ΛH as a formal linear

combination
∑

H∈C ′ λHH with λH ∈ ΛH . When all the ΛH are equal, we use the notation

ΛC ′ for
⊕

H∈C ′ Λ. As in the proof of Lemma 1.7, for H ∈ C, we let δH be the homomor-
phism G→ Z2 with kernel H; we also let εH the homomorphism with kernel H from G to
the group {±1} of units of Z (a character of G).

If X is a polyhedron, C(X;Λ) will denote the simplicial chain complex of some fixed but
anonymous triangulation of X, with coefficients in the abelian group Λ. When the coeffi-
cient group is omitted, it is understood to be Z, except in Section 7, where it is understood
to be Z2. We assume that the simplices of the triangulation have been oriented, and by a
simplex of X we shall mean a simplex of the triangulation with the chosen orientation; thus
the simplices of X form a basis for C(X). We let S(X) be the set of all simplices of X, and
Si(X) the subset of i-simplices. If f : X → Y is a simplicial map, the induced maps on chain
complexes and homology will also be denoted by f without further decoration. If f is a
regular branched covering and the triangulation of X is obtained by lifting that of Y , we
have the transfer map C(Y )→ C(X); recall that this sends a simplex σ to

∑
k∈K kσ̃, where

K is the deck group and σ̃ is one lift of σ. This map and the induced map on homology will
both be denoted by f !. We let bi(X) be the i-th Betti number of X.
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2 Outline of the Proof

Consider a regular branched covering π : M̃ → M of a homology 3-sphere M, with deck
group G and branch set a G-colored graph Γ. Triangulate M so that Γ is triangulated by a
subcomplex, and lift this triangulation to triangulations of the MH and M̃. We have various
transfer maps ρ !

H : C(M)→ C(MH) and π !
H : C(MH)→ C(M̃). We define chain maps

α : C(M)C?

−→
⊕
H∈C

C(MH)

by α
(∑

H∈C?

cHH
)
=
∑

H∈C?

(
ρ !

H(cH)H − cHG
)

for cH ∈ C(M),H ∈ C?,

and

β :
⊕
H∈C

C(MH) −→ C(M̃)

by β
(∑

H∈C

dHH
)
=
∑
H∈C

π !
H(dH) for dH ∈ C(MH),H ∈ C.

We also let γ : C(M̃)→ C(M; Z2d−1 ) be the composite of π : C(M̃)→ C(M) and reduction
of the coefficients modulo 2d−1.

Consider the sequence

0 −→ C(M)C? α
−→
⊕
H∈C

C(MH)
β
−→ C(M̃)

γ
−→ C(M; Z2d−1 ) −→ 0.(2.1)

This is not exact, but we do have the following result.

Lemma 2.2 The chain map α is injective, βα = 0, γβ = 0, and γ is surjective.

Proof Define α ′ :
⊕

H∈C C(MH)→ C(M)C?

by

α ′
(∑

H∈C

dHH
)
=
∑

H∈C?

ρH(dH)H.

Then
α ′α
(∑

H∈C?

cHH
)
=
∑

H∈C?

ρHρ
!
H(cH)H = 2

∑
H∈C?

cHH,

so α is injective. Next,

βα
(∑

H∈C?

cHH
)
=
∑

H∈C?

(
π !

Hρ
!
H(cH)− π !(cH)

)
= 0,

so βα = 0. Further,

πβ
(∑

H∈C

dHH
)
=
∑
H∈C

ρHπHπ
!

H(dH) =
∑
H∈C

|H|ρH(dH),
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so γβ = 0. Finally, π : C(M̃)→ C(M) is clearly onto, and hence so is γ.

The sequence (2.1) thus decomposes into four short exact sequences:

0 −→ C(M)C? α
−→ Ker β −→ Ker β/ Imα −→ 0;(2.3)

0 −→ Ker β
ι
↪→
⊕
H∈C

C(MH)
β
−→ Imβ −→ 0;(2.4)

0 −→ Im β ↪→ Ker γ −→ Ker γ/ Imβ −→ 0; and(2.5)

0 −→ Ker γ ↪→ C(M̃)
γ
−→ C(M; Z2d−1 ) −→ 0.(2.6)

The last of these relates the homology groups of M̃ and the complex Ker γ; the first homol-
ogy is all we need.

Lemma 2.7 We have H1(Ker γ) ∼= H1(M̃).

Proof Since M is an integral homology sphere, it is also a Z2d−1 homology sphere, so part
of the long exact sequence of (2.6) is 0→ H1(Ker γ)→ H1(M̃)→ 0.

To extract information from the exact sequences (2.3)–(2.5), we need to study the com-
plexes Ker β/ Imα and Ker γ/ Im β. This leads us to consider certain chain complexes
associated to a G-colored graph Γ. These chain complexes are defined and studied in Sec-
tion 4, after some preliminary results on the graded ring of G in Section 3. In Section 5,
we determine the complex Ker β/ Imα, and in Section 6, we determine the quotients of a
filtration of Ker γ/ Im β. In Section 7 we prove some results on the Z2 homology of 2- and
4-fold branched covers, and in Section 8 we prove our theorems.

3 The Graded Ring of G

As always, G is a group isomorphic to Zd
2, but in this section we do not assume that d ≥ 2.

For H ∈ C, the character εH extends to a ring homomorphism εH : Z[G]→ Z on the group
ring of G. The fundamental ideal I = I[G] of G is the kernel of εG; we also let J = J(G)
be the ideal of those λ ∈ Z[G] for which εG(λ) ≡ 0 (mod 2). Note that J = I ⊕ 2Z. We
consider the associated graded rings A = A(G) = GI(Z[G]) and B = B(G) = G J(Z[G]).
(See [8, p. 248].) Consider first the ring B. The group of homogeneous elements of degree
k is Bk = Jk/ Jk+1, and B is an algebra over B0 = Z[G]/ J, which we identify with Z2. We
denote the image in Bk of λ ∈ Jk by [λ]k; the product is given by [λ]k[µ]l = [λµ]k+l.
Turning to A, we have (1− g)2 = 2(1− g) for g ∈ G, so 2I ≤ I2. Let k ≥ 1. It follows that
2Ik ≤ Ik+1, and hence Jk = Ik⊕2kZ. Therefore we may identify Ak with its image in Bk, and
Bk is the direct sum of Ak and a copy of Z2 generated by [2k]k. Note also that AkBl = Ak+l.
Of course A0

∼= Z; below, when we refer to Ak, it is to be understood that k ≥ 1.
We shall determine the structure of the algebra B, and hence that of A. (The structure of

GI(Z[G]) when G is free abelian was determined by Massey in [4].) We define a function
ω : G→ A1 by ω(g) = [1− g]1.

https://doi.org/10.4153/CJM-1999-046-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-046-7


Homology of Abelian Covers 1043

Lemma 3.1 The function ω is an isomorphism, and for any λ =
∑

g∈G λgg ∈ I we have

ω
(∏

g∈G gλg
)
= [λ]1.

Proof We compute

(1− g) + (1− h)− (1− gh) = 1− g − h + gh = (1− g)(1− h) ∈ I2,

so [1 − g]1 + [1 − h]1 = [1 − gh]1, and ω is a homomorphism. The function [λ]1 7→∏
g∈G gλg is a well-defined homomorphism A1 → G sending ω(g) to g. For λ ∈ I we have

λ = −
∑

g∈G λg(1 − g), so [λ]1 =
∑

g∈G λgω(g) = ω
(∏

g∈G gλg
)
, and the result follows.

For 0 ≤ l ≤ d, we let Il be the set of l-tuples~ı = (i1, i2, . . . , il) of integers with 1 ≤ i1 <
i2 < · · · < il ≤ d.

Lemma 3.2 Let {x1, . . . , xd} be a basis of G, and (for k ≥ 0) let Bk be the set consisting
of the elements (1 − xi1 ) · · · (1 − xil ) for k ≤ l ≤ d and~ı ∈ Il, together with the elements
2k−l(1 − xi1 ) · · · (1 − xil ) for 0 ≤ l < k, l ≤ d and~ı ∈ Il. (When l = 0, the empty product
(1 − xi1 ) · · · (1 − xil ) is taken to be 1.) Then Bk is a basis of Jk (as a Z-module). Further, an
element λ of Z[G] is in Jk iff εH(λ) ≡ 0 (mod 2k) for all H ∈ C.

Proof Every element g of G can be written uniquely in the form g = xi1 · · · xil for 0 ≤ l ≤ d
and~ı ∈ Il; call l the length of g. Then g is the unique element of maximal length appearing
in (1−xi1 ) · · · (1−xil ), and it follows that the (1−xi1 ) · · · (1−xil ) are linearly independent;
therefore so are the elements of Bk. Let Vk be the additive subgroup of Z[G] spanned by
Bk, and let Wk be the subgroup of those λ ∈ Z[G] such that εH(λ) ≡ 0 (mod 2k) for all
H ∈ C. Clearly Vk ≤ Jk. Since εH(λ) ≡ εG(λ) (mod 2), we have J = W1, and it follows
that Jk ≤Wk for all k ≥ 0.

It remains to prove that Wk ≤ Vk. Let λ =
∑

g∈G λgg be a non-zero element of Z[G].
Let l be the maximum length of those g with λg 6= 0, and let n be the number of those g of
length l with λg 6= 0. Call the pair (l, n) the weight ofλ, and order weights lexicographically.
Suppose that Wk 6≤ Vk, and let λ be an element of Wk −Vk of minimum weight (l, n). Let
h = x j1 · · · x jl (~j ∈ Il) have λh 6= 0. If l ≥ k, then λ − (−1)lλh(1 − x j1 ) · · · (1 − x jl ) is
an element of Wk − Vk of smaller weight than λ, a contradiction. Suppose that l < k. Let
G ′ be the subgroup of G generated by x j1 , . . . , x jl , and G ′ ′ the subgroup generated by the
other xi , so G = G ′ ⊕ G ′ ′. Since λ ∈Wk,

∑
H ′∈C(G ′)

εH ′(h)εH ′⊕G ′ ′(λ) ≡ 0 (mod 2k).

Now ∑
H ′∈C(G ′)

εH ′(h)εH ′⊕G ′ ′(λ) =
∑
g∈G

( ∑
H ′∈C(G ′)

εH ′(h)εH ′⊕G ′ ′(g)
)
λg .

Let g = g ′g ′ ′, with g ′ ∈ G ′ and g ′′ ∈ G ′ ′. Then εH ′(h)εH ′⊕G ′ ′(g) = εH ′(hg ′), and∑
H ′∈C(G ′) εH ′(hg ′) is 0 if g ′ 6= h, and 2l if g ′ = h. If g ′ = h and g ′′ 6= 1, then λg = 0
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by our choice of h. It follows that 2lλh ≡ 0 (mod 2k), or λh ≡ 0 (mod 2k−l). Now
λ − (−1)l

(
λh/2k−l

)
2k−l(1 − x j1 ) · · · (1 − x jl ) is an element of Wk −Vk of smaller weight

than λ, and this contradiction proves that Wk ≤ Vk.

As an immediate consequence of this lemma, we have bases for Ak and Bk.

Lemma 3.3 Let {x1, . . . , xd} be a basis of G. The elements

[2k−l(1− xi1 ) · · · (1− xil )]k = [2]k−l
1 ω(xi1 ) · · ·ω(xil )

for 0 ≤ l ≤ min{k, d} and~ı ∈ Il form a basis of Bk (as a Z2 vector space), and those for
1 ≤ l ≤ min{k, d} form a basis for Ak.

Note that this implies that multiplication by [2]1 defines injections Bk → Bk+1 for k ≥ 0
and Ak → Ak+1 for k ≥ 1, and that these are onto for k ≥ d.

Lemma 3.4 The graded algebra B is the quotient of the symmetric algebra of B1 by the
relations a2 = [2]1a for a ∈ A1.

Proof The given relations do hold in B: by Lemma 3.1, any element of A1 equals ω(g) for
some g ∈ G, and ω(g)2 = [(1 − g)2]2 = [2(1 − g)]2 = [2]1ω(g). Therefore, if B̂ is the
quotient of the symmetric algebra of B1 by these relations, there is an epimorphism B̂→ B.
But if {x1, . . . , xd} is a basis of G, then B̂k is generated by the elements [2]k−l

1 ω(xi1 ) · · ·ω(xil )
for 0 ≤ l ≤ min{k, d} and~ı ∈ Il, and these map to independent elements in Bk by
Lemma 3.3.

The Z2 vector space ZC?

2 is a commutative algebra under componentwise multiplication.
Its identity element

∑
H∈C? H will be denoted by 1C?

. We may define a linear mapΩ : B1 →

ZC?

2 by Ω
(
ω(g)
)
=
∑

H∈C? δH(g)H for g ∈ G, and Ω([2]1) = 1C?

. Since x2 = x for all x ∈

ZC?

2 , it follows from Lemma 3.4 that Ω extends (uniquely) to an algebra homomorphism
Ω : B→ ZC?

2 .

Lemma 3.5 The mapΩ restricts to an injection on Ak for 1 ≤ k, and on Bk for 0 ≤ k ≤ d−1.
Further, Ωmaps each of Ad and Bd−1 onto ZC?

2 .

Proof We show first that Ω maps Ad isomorphically onto ZC?

2 . For any g1, . . . , gd ∈ G,
we have Ω

(
ω(g1) · · ·ω(gd)

)
=
∑

H∈C? δH(g1) · · · δH(gd)H. Given H0 ∈ C? we may find a
basis {x1, . . . , xd} of G with xi /∈ H0 for 1 ≤ i ≤ d. Then δH0 (x1) · · · δH0 (xd) = 1 and
δH(x1) · · · δH(xd) = 0 for any H 6= H0, so Ω

(
ω(x1) · · ·ω(xd)

)
= H0. Thus Ωmaps Ad onto

ZC?

2 . Since dim Ad = 2d − 1 = dim ZC?

2 , Ω is also injective on Ad.
Next, let {x1, . . . , xd} be any basis of G, and consider the basis elements b~ı =

[2]d−l
1 ω(xi1 ) · · ·ω(xil ) (0 ≤ l ≤ d,~ı ∈ Il) of Bd. Let s be the sum of all Ω(b~ı). For each

H ∈ C?, the coefficient of H in Ω(b~ı) is 1 if xi1 , . . . , xil /∈ H, and 0 otherwise. Therefore the
coefficient of H in s is the number of subsets of {x1, . . . , xd} ∩ (G − H), taken modulo 2.
Since {x1, . . . , xd} ∩ (G − H) is non-empty, this number is even, so s = 0. It follows that
Ω maps the subspace of Bd spanned by the b~ı for l < d isomorphically onto ZC?

2 . Since
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multiplication by [2]1 maps Bd−1 isomorphically onto this space and Ω([2]1b) = Ω(b) for
all b ∈ B, Ω also maps Bd−1 isomorphically onto ZC?

2 . Since multiplication by [2]1 maps Bk

injectively into Bk+1, it follows that Ω is injective on Bk for 0 ≤ k ≤ d− 1, and therefore on
Ak for 1 ≤ k ≤ d− 1. Finally, multiplication by [2]1 maps Ak isomorphically onto Ak+1 for
k ≥ d, and hence Ω is injective on Ak for k ≥ d.

There is an inner product on ZC?

2 given by

(∑
H∈C?

aHH
)
·
(∑

H∈C?

bHH
)
=
∑

H∈C?

aHbH .

Note that for any x and y in ZC?

2 , x · y = 1C?

· (xy).

Lemma 3.6 For 1 ≤ k ≤ d − 1, we have Ω(Ak) = Ω(Bd−k−1)⊥, where ⊥ denotes the
orthogonal complement with respect to the above inner product.

Proof Since dim Ak =
∑k

i=1

(d
i

)
and dim Bd−k−1 =

∑d−k−1
i=0

(d
i

)
=
∑d

i=k+1

(d
i

)
, we have

dim Ak+dim Bd−k−1 = 2d−1 = dim ZC?

2 . Therefore it suffices to prove thatΩ(a)·Ω(b) = 0
for a ∈ Ak and b ∈ Bd−k−1. Since Ω(a) · Ω(b) = 1C?

· Ω(ab) and ab ∈ Ad−1, it is enough
to show that 1C?

· Ω(Ad−1) = 0. For g1, . . . , gd−1 ∈ G, 1C?

· Ω
(
ω(g1) · · ·ω(gd−1)

)
is the

number of H ∈ C? that contain none of g1, . . . , gd−1, taken modulo 2. Since g1, . . . , gd−1

do not generate G, this number is even, and we are done.

Now let G ′ be a subgroup of G, and set G ′ ′ = G/G ′. We have an epimorphism Z[G]→
Z[G ′′] inducing epimorphisms I[G]k → I[G ′ ′]k and Ak(G) → Ak(G ′ ′) for all k ≥ 1.
We denote the kernels of these maps by Z[G,G ′], Ik[G,G ′], and Ak(G,G ′). For k = 1,
A1(G,G ′) is just the image of G ′ under the isomorphism ω : G→ A1(G).

Lemma 3.7 Let G ′ ≤ G and a ∈ Ak(G) (1 ≤ k ≤ d). Let Ω(a) =
∑

H∈C?(G) aHH. Then
a ∈ Ak(G,G ′) iff aH = 0 whenever H ≥ G ′.

Proof Let G ′ ′ = G/G ′. There is a linear map ZC?(G)
2 → ZC?(G ′ ′)

2 sending H ∈ C?(G) to
H/G ′ if H ≥ G ′, and to zero otherwise; its kernel consists of all

∑
H∈C?(G) aHH such that

aH = 0 whenever H ≥ G ′. We also have the algebra homomorphism Ω ′′ : B(G ′ ′) →

ZC?(G ′ ′)
2 . Restricting to Ak(G), we have a commutative diagram

Ak(G)
Ω

−−−−→ ZC?(G)
2y y

Ak(G ′ ′)
Ω ′ ′
−−−−→ ZC?(G ′ ′)

2 .

By Lemma 3.5, Ω ′′ is injective, and the result follows.
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4 Homology Groups of Colored Graphs

Let Γ be a G(d)-colored graph (d ≥ 2), and fix a triangulation of Γ. In this section we
study chain complexes C(Γ | k) (for k = 1, 2, . . . , d) of Z2 vector spaces associated to this
triangulation. (Why we should want to do this will emerge in later sections.) Let σ be a
simplex of Γ. If σ is a vertex of Γ, we let Gσ be the subgroup of G generated by the colors
of the edges of Γ incident to σ, which is isomorphic to Z2 ⊕ Z2. If σ is any other simplex
of Γ, then σ is contained in a unique edge of Γ, and we let gσ be the color of this edge, and
Gσ the subgroup of G generated by gσ . We also set Aσ

k = Ak(G,Gσ). We let C(Γ | k) be
the subcomplex of C(Γ; Ak) generated by all chains of the form aσ where σ is a simplex
of Γ and a ∈ Aσ

k . (This is a subcomplex because if τ is a face of σ then Aσ
k ≤ Aτ

k .) We let
bi(Γ | k) be the dimension of the i-th homology group Hi(Γ | k) of C(Γ | k). Of course, the
homology groups are zero except in dimensions 0 and 1, and H1(Γ | k) is equal to the space
Z1(Γ | k) of 1-cycles. We let χ(Γ | k) = b0(Γ | k)− b1(Γ | k) be the Z2 Euler characteristic
of C(Γ | k). It is clear that the homology of C(Γ | k) is unchanged by subdivision, and
therefore independent of the triangulation.

Lemma 4.1 We have χ(Γ | k) = −
(d−2

k−1

)
χ(Γ). (In the case k = d we are using the

convention that
(n

r

)
= 0 for r > n.)

Proof By Lemma 3.3, the dimension of Aσ
k is a =

∑k
i=1

((d
i

)
−
(d−2

i

))
if σ is a vertex of

Γ, and b =
∑k

i=1

((d
i

)
−
(d−1

i

))
otherwise. Therefore χ(Γ | k) = bχ(Γ) + (a − b)V ,

where V is the number of vertices of Γ. Since Γ is trivalent, V = −2χ(Γ), so χ(Γ | k) =
−(2a− 3b)χ(Γ), and it is easy to compute that 2a− 3b =

(d−2
k−1

)
.

Lemma 4.2 We have b0(Γ | 1) = b1(Γ) and b1(Γ | 1) = b0(Γ).

Proof Let a =
∑

σ∈S1(Γ) aσσ (aσ ∈ Aσ
1 ) be a 1-chain of C(Γ | 1). For each 1-simplex σ of

Γ, Aσ
1
∼= Gσ

∼= Z2, with non-trivial element ω(gσ). If g1, g2, and g3 are the colors of three
edges meeting at a vertex, ω(g1) + ω(g2) + ω(g3) = ω(g1g2g3) = 0. It follows that a is a
cycle iff, for each component Γ ′ of Γ, the aσ for 1-simplices σ of Γ ′ are either all zero or all
non-zero. This proves that H1(Γ | 1) ∼= Zb0(Γ)

2 , or b1(Γ | 1) = b0(Γ), and it then follows
from Lemma 4.1 that b0(Γ | 1) = b1(Γ).

Lemma 4.3 For 1 ≤ k ≤ d, there is an injection ιk : Bk−1 → Z1(Γ | k) defined by ιk(b) =∑
σ∈S1(Γ) ω(gσ)bσ.

Proof It is clear that the given formula defines a linear map from Bk−1 to C1(Γ | k). Let
b ∈ Bk−1, and let τ be a 0-simplex of Γ. If τ is not a vertex of Γ, it is clear that the
coefficient of τ in ∂ιk(b) is zero. If τ is a vertex and the adjacent edge-colors are g1, g2 and
g3, this coefficient is

∑3
i=1 ω(gi)b = ω(g1g2g3)b = 0. Thus ιk(b) is a cycle. It remains to

show that ιk is injective; suppose that ιk(b) = 0. Then ω(gσ)b = 0 for every 1-simplex σ
of Γ. Since the gσ generate G, this implies that ab = 0 for every a ∈ A1, and therefore for
every a ∈ Ad. Now Ω(a) · Ω(b) = 1C?

· Ω(ab) = 0. Since Ω maps Ad onto ZC?

2 , it follows
that Ω(b) = 0; since Ω is injective on Bk−1, we have b = 0.
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We call Γ k–taut if ιk is an isomorphism; by Lemma 3.3, this occurs iff b1(Γ | k) =∑k−1
i=0

(d
i

)
. By Lemma 4.2, Γ is 1-taut iff it is connected. To give examples of k-taut graphs

for k > 1, we use a different description of the chain complex C(Γ | k). For 1 ≤ k ≤ d, the
injection Ω : Ak → ZC?

2 induces an injection Ω : C(Γ; Ak) → C(Γ; ZC?

2 ), which is onto for
k = d. We identify C(Γ; ZC?

2 ) with C(Γ; Z2)C?

. Since Ω([2]1a) = Ω(a) and [2]1Ak ≤ Ak+1,
we have a chain of subcomplexes

ΩC(Γ; A1) ≤ ΩC(Γ; A2) ≤ · · · ≤ ΩC(Γ; Ad) = C(Γ; Z2)C?

.

A chain of C(Γ; Z2)C?

is of the form
∑

σ∈S(Γ),H∈C? aσ,HσH with coefficients aσ,H in Z2. It
belongs to ΩC(Γ; Ak) iff, for each simplex σ,

∑
H∈C? aσ,HH ∈ Ω(Ak). We let C ′(Γ | k) be

the subcomplex ΩC(Γ | k) of ΩC(Γ; Ak). For 1 ≤ k ≤ d − 1 and a ∈ Ak, we have a ∈ Aσ
k

iff [2]1a ∈ Aσ
k+1; it follows that C ′(Γ | k) = ΩC(Γ; Ak) ∩ C ′(Γ | k + 1). By Lemma 3.7,

a chain
∑

σ∈S(Γ),H∈C? aσ,HσH ∈ C(Γ; Z2)C?

belongs to C ′(Γ | d) iff aσ,H = 0 whenever
H ≥ Gσ . Now H ≥ Gσ iff σ is not a simplex of ΓH , so we may identify C ′(Γ | d) with⊕

H∈C? C(ΓH ; Z2). It follows that a 1-chain
∑

σ,H aσ,HσH of C ′(Γ | k) is a cycle iff, for each
H ∈ C?, aσ,H is constant on each component of ΓH . We let W (Γ | k) be the subspace of
Z ′1(Γ | k) consisting of all 1-chains of C ′(Γ | k) such that, for each H ∈ C?, aσ,H is constant
on all of ΓH .

Lemma 4.4 For 1 ≤ k ≤ d, W (Γ | k) = Ωιk(Bk−1).

Proof We first prove the case k = d. Ω maps Bd−1 isomorphically onto ZC?

2 , and there is
an isomorphism ZC?

2 → W (Γ | d) sending
∑

H∈C? bHH to
∑

H∈C?

∑
σ∈S1(ΓH ) bHσH. We

show that the composite is equal to Ωιd. If b ∈ Bd−1 and Ω(b) =
∑

H∈C? bHH then

Ωιd(b) =
∑

σ∈S1(Γ)

Ω
(
ω(gσ)b

)
σ =

∑
σ∈S1(Γ),H∈C?

δH(gσ)bHσH =
∑

H∈C?

∑
σ∈S1(ΓH )

bHσH,

and this case is proved.
Now let k < d. Since W (Γ | k) = W (Γ | d) ∩ C ′(Γ | k), it is enough to prove that

Ωιk(Bk−1) = Ωιd(Bd−1) ∩C ′(Γ | k). Suppose that bk ∈ Bk−1 and bd ∈ Bd−1 are such that
Ω(bk) = Ω(bd). Then

Ωιk(bk) =
∑

σ∈S1(Γ)

Ω
(
ω(gσ)

)
Ω(bk)σ =

∑
σ∈S1(Γ)

Ω
(
ω(gσ)

)
Ω(bd)σ = Ωιd(bd).

Since, for any b ∈ Bk−1, [2]d−k
1 b ∈ Bd−1 and Ω([2]d−k

1 b) = Ω(b), it follows that Ωιk(Bk−1)
is contained inΩιd(Bd−1)∩C ′(Γ | k). Conversely, for b ∈ Bd−1, we haveΩιd(b) ∈ C ′(Γ | k)
iff, for each σ ∈ S1(Γ), Ω

(
ω(gσ)b

)
∈ Ω(Ak) = Ω(Bd−k−1)⊥ (using Lemma 3.6). For

b ′ ∈ Bd−k−1,Ω
(
ω(gσ)b

)
·Ω(b ′) = Ω(b)·Ω

(
ω(gσ)b ′

)
. Since the gσ generate G, the elements

ω(gσ)b ′ generate A1Bd−k−1 = Ad−k. ThereforeΩιd(b) ∈ C ′(Γ | k) iff Ω(b) ∈ Ω(Ad−k)⊥ =
Ω(Bk−1), and the proof is complete.

Thus Γ is k-taut iff W (Γ | k) = Z ′1(Γ | k). Since W (Γ | k) =W (Γ | k + 1) ∩C ′(Γ | k)
for k < d, we have:
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Lemma 4.5 For 1 ≤ k < d, if Γ is (k + 1)-taut then it is k-taut.

Since C ′(Γ | d) =
⊕

H∈C? C(ΓH ; Z2), we have:

Lemma 4.6 A G(d)-colored graph Γ is d-taut iff ΓH is connected for all H ∈ C?.

Thus the G(d)-colored graphs of Theorems 8.7 and 8.8 are d-taut. Those of Theo-
rems 8.1, 8.2 and 8.3 are not, in general, but they are (d − 1)-taut. For Theorem 8.1 this is
clear; for the remaining cases we need the following description of C ′(Γ | d− 1).

Lemma 4.7 Let a =
∑

σ∈S(Γ),H∈C? aσ,HσH be an element of C ′(Γ | d). Then a ∈ C ′(Γ |
d − 1) iff

∑
H∈C? aσ,H = 0 for all σ ∈ S(Γ).

Proof We know that a ∈ C ′(Γ | d − 1) iff
∑

H∈C? aσ,HH ∈ Ω(Ad−1) for all σ ∈ S(Γ). By
Lemma 3.6, Ω(Ad−1) = Ω(B0)⊥. Now B0 is generated by [1]0 and

Ω([1]0) ·
∑

H∈C?

aσ,HH =
∑

H∈C?

aσ,H .

The result follows.

If a G(d)-colored graph Γ is (d − 1)-taut, we shall say simply that Γ is taut.

Lemma 4.8 If d = 3 and Γ has an unsplittable G-coloring with a special circuit, then Γ is
taut.

Proof Since Γ is simple, we may use the natural triangulation in which the 0-simplices
are the vertices and the 1-simplices are the edges. Let H0 ∈ C? be such that Γ0 = ΓH0 is
a special circuit, and let the non-trivial elements of H0 be h1, h2 and h3. The remaining
elements of C? fall into three pairs depending on their intersections with H0; we let Hi and
H ′i be those for which Hi ∩ H0 = 〈hi〉 = H ′i ∩ H0. We also let Γi = ΓHi and Γ ′i = ΓH ′i

.
Let
∑

σ,H a(σ,H)σH be any 1-cycle of C ′(Γ | 2), the sum being over edges σ and H ∈ C?.
Since Γ0 is connected, a(σ,H0) is constant on Γ0. For notational simplicity, we show only
that a(σ,H1) is constant on Γ1.

Let S be the set of all edges colored h3. If σ ∈ S, we have a(σ,H0) = a(σ,H3) =
a(σ,H ′3) = 0 and

a(σ,H1) + a(σ,H ′1) + a(σ,H2) + a(σ,H ′2) = 0.(4.9)

Define an equivalence relation∼ on S by setting σ1 ∼ σ2 if

a(σ1,H1) + a(σ1,H
′
1) = a(σ2,H1) + a(σ2,H

′
1).

Suppose that σ1 and σ2 are in S and each have a vertex in common with an edge τ of
Γ \ Γ0. If the color of τ is h2 then σ1 and σ2 lie in the same component of Γ1, and in the
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same component of Γ ′1. Therefore a(σ1,H1) = a(σ2,H1) and a(σ1,H ′1) = a(σ2,H ′1), so
σ1 ∼ σ2. Now, by (4.9), σ1 ∼ σ2 iff

a(σ1,H2) + a(σ1,H
′
2) = a(σ2,H2) + a(σ2,H

′
2),

and it follows similarly that σ1 ∼ σ2 if τ has color h1. Since Γ \ Γ0 is connected, it follows
that σ1 ∼ σ2 for any σ1 and σ2 in S.

Now define an equivalence relation ≈ on S by setting σ1 ≈ σ2 if a(σ1,H1) = a(σ2,H1).
If σ1 and σ2 belong to the same component of Γ1 then σ1 ≈ σ2. Since σ1 ∼ σ2, we
have σ1 ≈ σ2 iff a(σ1,H ′1) = a(σ2,H ′1), and so σ1 ≈ σ2 if σ1 and σ2 belong to the same
component of Γ ′1. Now Γ1 ∪ Γ ′1 is the result of deleting all edges colored h1 from Γ, which
is connected since Γ is unsplittable. It follows that σ1 ≈ σ2 for all σ1 and σ2 in S; i.e., that
a(σ,H1) is constant on S. Now any component of Γ1 contains an edge of S, so a(σ,H1) is
constant on Γ1.

Lemma 4.10 Let d = 3, and let Γ be a Möbius ladder with a G-coloring in which the
product of the colors on the rungs is non-trivial. Then Γ is taut.

Proof We make C into an (additive) abelian group by setting H + K = Ker(δH + δK). For
H ∈ C, we let wH =

∑
σ∈S1(ΓH ) σ =

∑
σ∈S1(Γ) δH(gσ)σ ∈ Z1(Γ; Z2). Then wH+K = wH+wK ,

and the wH form a subgroup of Z1(Γ; Z2) isomorphic to C. A 1-cycle of C ′(Γ | d) may be
written in the form z =

∑
H∈C? zHH, with zH ∈ Z1(ΓH ; Z2). Then (by Lemma 4.7) z is in

C ′(Γ | d − 1) iff
∑

H∈C? zH = 0 (the sum being taken in Z1(Γ; Z2)), while z is in W (Γ | d)
iff each zH is a multiple of wH . Therefore Γ is taut iff, given zH ∈ Z1(ΓH) for H ∈ C? with∑

H∈C? zH = 0, each zH is a multiple of wH ; since ΓG is empty, we may replace C? by C in
this statement.

Now let g0 be the product of the colors on the rungs. If the color of a rim edge σi is
g, then the color of the edge σi+n (where n is the number of rungs) is gg0, so g 6= g0.
Since G is generated by the colors on the rungs and a single edge of the rim, at least two
distinct elements appear as rung colors. Thus the edges colored g0 form a proper subset
of the rungs, and deleting them leaves a Möbius ladder Γ ′. The G-coloring of Γ induces
a G ′-coloring of Γ ′, where G ′ = G/〈g0〉 ∼= Z2

2. Since Γ ′ is connected, it is taut. Let
C ′ be the set of H ∈ C such that g0 ∈ H. There is a bijection C ′ → C(G ′) given by
H 7→ H ′ = H/〈g0〉, and Γ ′H ′ = ΓH . By Lemma 1.7, ΓH contains an even number of
rungs iff H ∈ C ′. Suppose now that zH ∈ Z1(ΓH ; Z2) for H ∈ C and

∑
H∈C zH = 0, and

set z =
∑

H∈C ′ zH =
∑

H∈C−C ′ zH . If H /∈ C ′, ΓH is connected, so zH is automatically
a multiple of wH . It follows that z is equal to wK for some K ∈ C. For H ∈ C ′, each
component of ΓH contains zero or two rungs, and so the sum of the coefficients of the
rungs in zH is zero. Therefore the same is true of wK , which implies that K ∈ C ′. Now
(zK + wK) +

∑
H∈C ′−{K} zH = 0, and it follows from the tautness of Γ ′ that zH is a multiple

of wH for H ∈ C ′ as well. Therefore Γ is taut.

Much of the approach outlined in Section 2 goes through for any taut G-colored graph,
but not for non-taut graphs. This raises the question of how extensive the class of taut
graphs is. For Möbius ladders, one can determine all the taut colorings. If d = 3 then any
taut coloring satisfies the hypothesis of Theorem 8.3, apart from the exceptional coloring
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of the 4-rung ladder in Example 1.4. (Actually, there is a coloring of the 3-rung ladder
for which the product of the colors on the rungs is 1, but an automorphism of the graph
takes it to one for which the product is non-trivial.) For d = 4, apart from the colorings
of Example 1.6, all taut colorings are obtained as follows. Suppose that n ≥ 4, and let
{x1, x2, x3, x4} be a basis of G. Give the colors x1, x2, x3, and x1x2x3xn−1

4 to one rung each,
and give all other rungs the color x4. It is possible to complete the coloring, and the result
is taut (but not 4-taut). For d ≥ 5, there is no taut coloring of any Möbius ladder.

Also, the operation of Figure 1 takes taut graphs to taut graphs, and so generates in-
finitely many further examples for d ≤ 5; I know of no taut graphs for d ≥ 6. Even for
taut graphs, one encounters some difficulties which will be discussed after Lemma 6.6, and
which I have been unable to overcome for the added examples just mentioned.

5 The Chain Complex Ker β/ Imα

We now return to the consideration of a regular branched covering π : M̃ → M of a ho-
mology 3-sphere, with deck group G and branch set a G-colored graph Γ, and of the chain
maps α, β and γ defined in Section 2. For each simplex σ of M, choose a lift σ̃ of σ to M̃,
and for H ∈ C let σH = πH(σ̃). (In particular, σG = σ.) Let Gσ be the stabilizer of σ̃, and
let Aσ

k = Ak(G,Gσ). If σ is a simplex of Γ, these definitions agree with those of the previous
section; otherwise, Gσ = 1 and Aσ

k = 0. Also let Cσ be the set of H ∈ C such that H ≥ Gσ ,
and C?σ = Cσ − {G}.

Lemma 5.1
(⊕

H∈C C(MH)
)/

Imα is generated by the σHH for σ ∈ S(M) and H ∈ C,
and Im β is generated by the π !

H(σH).

Proof If H = G or H /∈ Cσ , then σH is the unique lift of σ to MH , while if H ∈ C?σ there is
one other lift σ ′H of σ to MH . In the last case, α(σH) = (σH + σ ′H)H − σGG. This gives the
first statement, and the second follows since Imα ≤ Ker β.

For σ ∈ S(M) and g ∈ G, the simplex gσ̃ of M̃ depends only on the image of g in G/Gσ .
We fix once and for all a right inverse for the projection G → G/Gσ , and thereby identify
G/Gσ with a complement of Gσ in G. A basis for C(M̃) is given by all gσ̃ for σ ∈ S(M) and
g ∈ G/Gσ . Note that there is a bijection Cσ → C(G/Gσ), namely H 7→ H/Gσ .

Lemma 5.2 For each σ ∈ S(M), the elements π !
H(σH) ∈ C(M̃) for H ∈ Cσ are linearly

independent. For H ∈ C− Cσ, 2π !
H(σH) = π !

G(σG).

Proof For H ∈ Cσ , we have

π !
H(σH) =

∑
h∈H

hσ̃ = |Gσ|
∑

h∈H/Gσ

hσ̃ = |Gσ|
∑

g∈G/Gσ

1
2

(
εH(g) + 1

)
gσ̃.

Let T be the matrix with rows indexed by H ∈ Cσ , columns indexed by g ∈ G/Gσ , and
entries εH(g), and let J be the matrix with all entries 1. To prove the first statement, we must
show that det(T + J) 6= 0. Now T is just the character table of G/Gσ , and the orthogonality
relations show that det T 6= 0 (in fact, that det T = ±nn/2 where n = |G/Gσ|). Expand
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det(T + J) by multilinearity in the rows. Since the row of T corresponding to G ∈ Cσ
consists entirely of ones, all but two of the terms are zero, and the remaining two are equal
to det T, so det(T + J) = 2 det T 6= 0.

Now let H ∈ C− Cσ . Then ρ !
H(σG) = 2σH , so π !

G(σG) = π !
Hρ

!
H(σG) = 2π !

H(σH).

Lemma 5.3 The chain complex Ker β/ Imα is isomorphic to C ′(Γ | d− 1).

Proof The complex C ′(Γ | d − 1) was defined as a subcomplex of C(Γ; Z2)C?

, which is in
turn a subcomplex of C(M; Z2)C?

. As a subcomplex of C(M; Z2)C?

, C ′(Γ | d − 1) consists
of those chains

∑
σ∈S(M),H∈C? aσ,HσH such that, for each σ,

∑
H∈C? aσ,H = 0 and aσ,H = 0

if H ∈ C?σ (because these equations imply that aσ,H = 0 whenever σ is not in Γ).
Let ρ̄H : C(MH) → C(M; Z2) be the composite of ρH : C(MH) → C(M) and reduction

of the coefficients modulo 2. Define ζ :
⊕

H∈C C(MH)→ C(M; Z2)C?

by

ζ
(∑

H∈C

dHH
)
=
∑

H∈C?

ρ̄H(dH)H for dH ∈ C(MH),H ∈ C.

Then
ζα
(∑

H∈C?

cHH
)
=
∑

H∈C?

ρ̄Hρ
!
H(cH)H = 0 for cH ∈ C(M),H ∈ C?.

Thus ζ induces a map from
(⊕

H∈C C(MH)
)/

Imα to C(M; Z2)C?

; we shall show that
Ker β/ Imα is mapped isomorphically to C ′(Γ | d − 1). By Lemmas 5.1 and 5.2, any
element of Ker β/ Imα has a representative of the form

c =
∑

σ∈S(M)

(
aσσG +

∑
H /∈Cσ

bσ,HσHH
)

for aσ, bσ,H ∈ Z,

and such an element is in Ker β iff 2aσ+
∑

H /∈Cσ
bσ,H = 0 for each σ. It follows immediately

that the image of Ker β/ Imα in C(M; Z2)C?

is C ′(Γ | d−1). Further, the chain c is in Ker ζ
iff each bσ,H is even, and then

α
( ∑
σ∈S(M),H /∈Cσ

1
2 bσ,HσH

)
=

∑
σ∈S(M),H /∈Cσ

(
bσ,HσHH − 1

2 bσ,HσG
)

=
∑

σ∈S(M)

(
aσσG +

∑
H /∈Cσ

bσ,HσHH
)
= c

provided c ∈ Ker β. This completes the proof.

Lemma 5.4 There is a short exact sequence

0 −→ ZC?

−→ H0(Ker β) −→ H0(Γ | d − 1) −→ 0,

and H1(Ker β) ∼= H1(Γ | d − 1).
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Proof By Lemma 5.3, the sequence (2.3) becomes

0 −→ C(M)C? α
−→ Ker β −→ C ′(Γ | d − 1) −→ 0.

In the long exact homology sequence, the map H1(Γ | d − 1) → H0(M)C?

is zero since
H1(Γ | d − 1) is torsion and H0(M) ∼= Z. Therefore the long exact sequence gives exact
sequences

0 −→ H1(Ker β) −→ H1(Γ | d− 1) −→ 0 and

0 −→ ZC?

−→ H0(Ker β) −→ H0(Γ | d − 1) −→ 0.

We now turn to the sequence (2.4). Note that the map induced on first homology by
the map β :

⊕
H∈C C(MH) → Im β from that sequence may be regarded as a map from⊕

H∈C? H1(MH) to H1(Im β) since H1(MG) = H1(M) = 0.

Lemma 5.5 If Γ is taut, the map β from
⊕

H∈C? H1(MH) to H1(Im β) is injective.

Proof By Lemma 5.4, part of the long exact sequence of (2.4) becomes

H1(Γ | d− 1)
ι
−→

⊕
H∈C?

H1(MH)
β
−→ H1(Im β).

We must show that the map ι in this sequence is trivial. Any element of H1(Γ | d − 1) =
Z ′1(Γ | d − 1) has the form z =

∑
H∈C? zHH, where zH ∈ Z1(ΓH ; Z2) and

∑
H∈C? zH = 0

in Z1(Γ; Z2). Let ρ̄H : C(MH) → C(M; Z2) be as in the proof of Lemma 5.3. The in-
verse image of ΓH in MH is a link LH , and we may take wH ∈ Z1(LH) ≤ Z1(MH) with
ρ̄H(wH) = zH . Then

∑
H∈C? ρ̄H(wH) = 0, so there is an element wG of Z1(M) with

2wG +
∑

H∈C? ρH(wH) = 0. Let w =
∑

H∈C wHH ∈
⊕

H∈C Z1(MH). For H ∈ C?,
ρ !

HρH(wH) = 2wH since wH is in Z1(LH). Therefore

0 = π !
(

2wG +
∑

H∈C?

ρH(wH)
)
= 2π !(wG) +

∑
H∈C?

π !
Hρ

!
HρH(wH) = 2

∑
H∈C

π !
H(wH) = 2β(w),

so w ∈ Ker β. It follows from the proof of Lemma 5.3 that the element of H1(Ker β)
represented by w corresponds to z under the isomorphism H1(Ker β) ∼= H1(Γ | d − 1) of
Lemma 5.4, and so ι(z) is the element of

⊕
H∈C? H1(MH) represented by w.

Since Γ is taut, for each H ∈ C?, zH is a multiple of the mod 2 fundamental class of ΓH ,
and we may take wH to be a multiple of the fundamental class of LH for some orientation
of LH . Since LH bounds a lift of a Seifert surface for ΓH , wH represents zero in H1(MH), and
so ι(z) = 0 as required.

Lemma 5.6 We have H0(Im β) ∼= Z.
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Proof The end of the long exact sequence of (2.4) shows that

β :
⊕
H∈C

H0(MH)→ H0(Im β)

is surjective. In fact the restriction of β to
⊕

H∈C? H0(MH) is surjective since π !
G factors

through π !
H for any H ∈ C?. Let H ∈ C?. For σ ∈ S0(M), the 0-simplices σH all repre-

sent the same generator of H0(MH) ∼= Z. The image xH of this generator in H0(Im β) is
represented by π !

H(σH) for any σ ∈ S0(M). Define an equivalence relation on C? by setting
H ∼ K if xH = xK . Suppose that there is some σ ∈ S0(M) such that neither H nor K is in
Cσ. Then, by Lemma 5.2, π !

H(σH) = 1
2π

!
G(σG) = π !

K(σK ), and so H ∼ K. Now suppose
H1 and H2 are any two elements of C?. For i = 1 or 2, there is some color gi /∈ Hi (since
the colors generate G), and a 0-simplex σi of Γ with gi ∈ Gσi . Thus Hi /∈ Cσi . We may find
K ∈ C? containing neither g1 nor g2. Then K /∈ Cσi , so Hi ∼ K for i = 1 or 2. Therefore
H1 ∼ H2, and there is only one equivalence class. This shows that H0(Im β) is cyclic.

On the other hand, the image of xH under the map H0(Im β) → H0(M̃) ∼= Z induced
by inclusion is 2d−1 times a generator, and therefore H0(Im β) ∼= Z.

Lemma 5.7 If Γ is taut, there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(Im β) −→ Zb1(Γ)−d

2 −→ 0.

Proof By the previous lemma, part of the long exact sequence of (2.4) is

⊕
H∈C?

H1(MH)
β
−→ H1(Im β) −→ H0(Ker β)

ι
−→ ZC −→ Z −→ 0,(5.8)

and the first map is injective by Lemma 5.5. It remains to prove that Ker ι ∼= Zb1(Γ)−d
2 . We

show that there is a commutative diagram

0 −−−−→ ZC? φ
−−−−→ H0(Ker β)

ψ
−−−−→ Zb0(Γ|d−1)

2 −−−−→ 0

id

y ι

y θ

y
0 −−−−→ ZC? ιφ

−−−−→ ZC −−−−→ Z⊕ Z|C|−2
2 −−−−→ 0y y

Z
id

−−−−→ Zy y
0 0

in which the rows and the central column are exact. The central column is part of (5.8),
and the top row is the short exact sequence of Lemma 5.4. The composite ιφ : ZC?

→ ZC

is the map H0(M)C?

→
⊕

H∈C H0(MH) induced by α, so it is given by ιφ(
∑

H∈C? aHH) =
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∑
H∈C? 2aHH−(

∑
H∈C? aH)G. This is injective and has cokernel isomorphic to Z⊕Z|C|−2

2 ,
so we obtain the exact second row. The maps in the right-hand column may now be defined
to make the diagram commute. Diagram-chasing shows that the right-hand column is

exact, so that Im θ ∼= Z|C|−2
2 and Ker θ ∼= Zb0(Γ|d−1)−|C|+2

2 . More diagram-chasing shows
that ψ maps Ker ι isomorphically onto Ker θ. Since Γ is taut, b1(Γ | d − 1) = dim Bd−2 =
2d − d− 1 and Γ is connected. By Lemma 4.1, χ(Γ | d− 1) = −χ(Γ) = b1(Γ)− 1. Hence

b0(Γ | d − 1)− |C| + 2 = 2d − d − 1 + b1(Γ)− 1− 2d + 2 = b1(Γ)− d,

and we are done.

6 The Chain Complex Ker γ/ Im β

We may regard C(M̃) as a Z[G]-module. As such, it is generated (though not freely) by the
σ̃ for σ ∈ S(M). For 1 ≤ k ≤ d − 1, we let D(k) be the subcomplex of C(M̃) consisting of
chains c =

∑
σ∈S(M) λσσ̃ (λσ ∈ Z[G]) satisfying, for all σ,

εG(λσ) ≡ 0 (mod 2d−1) and

εH(λσ) ≡ 0 (mod 2k) for H ∈ C?σ.

This is well-defined because, for λ ∈ Z[G] and σ ∈ S(M), the chain λσ̃ determines the
image λ̄ of λ in Z[G/Gσ], and hence determines εH(λ) = εH/Gσ

(λ̄) for H ∈ Cσ . By
Lemma 3.2, IkC(M̃) ≤ D(k). Recall that we have identified G/Gσ with a subgroup of G,
and hence Z[G/Gσ] with a subring of Z[G].

Lemma 6.1 We have Ker γ = D(1) and Imβ = D(d − 1).

Proof From the definition of γ,
∑

σ∈S(M) λσσ̃ ∈ Ker γ iff εG(λσ) ≡ 0 (mod 2d−1) for each
σ. Since εH(λ) ≡ εG(λ) (mod 2) for all H ∈ C and λ ∈ Z[G], it follows that Ker γ = D(1).
For σ ∈ S(M), let (Im β)σ = Im β ∩ Z[G]σ̃. To show that Imβ = D(d − 1), it is enough
to show that λσ̃ ∈ (Im β)σ iff εH(λ) ≡ 0 (mod 2d−1) for all H ∈ Cσ . We may assume that
λ =
∑

g∈G/Gσ
λgg ∈ Z[G/Gσ], and so εH(λ) = εH/Gσ

(λ) for H ∈ Cσ . Consider the chain∑
H∈Cσ

εH(λ)π !
H(σH) ∈ C(M̃). We have

∑
H∈Cσ

εH(λ)π !
H(σH) =

∑
H∈Cσ

εH/Gσ
(λ)|Gσ|

∑
h∈H/Gσ

hσ̃

= |Gσ|
∑

g∈G/Gσ,H∈Cσ

εH/Gσ
(λ) 1

2

(
εH/Gσ

(g) + 1
)
gσ̃

= 1
2 |Gσ|

∑
g∈G/Gσ

(∑
H∈Cσ

(
εH/Gσ

(λg) + εH/Gσ
(λ)
))

gσ̃

= 1
2 |Gσ|

∑
g∈G/Gσ

|G/Gσ|(λg + λ1)gσ̃.
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That is,

∑
H∈Cσ

εH(λ)π !
H(σH) = 2d−1λσ̃ + 1

2 |G/Gσ|λ1π
!

G(σG).(6.2)

Suppose first that Gσ = 1. Then Cσ = C, and by Lemmas 5.1 and 5.2, a basis for (Im β)σ
consists of the π !

H(σH) for H ∈ C. In this case, (6.2) gives

∑
H∈C

εH(λ)π !
H(σH) = 2d−1

(
λσ̃ + λ1π

!
G(σG)

)
,

and it follows that λσ̃ ∈ (Im β)σ iff εH(λ) ≡ 0 (mod 2d−1) for all H ∈ C. Now suppose
that Gσ 6= 1. Then a basis for (Imβ)σ consists of the π !

H(σH) for H ∈ C?σ and π !
H0

(σH0 ) for
any one H0 ∈ C− Cσ , and (6.2) gives

2εG(λ)π !
H0

(σH0 ) +
∑

H∈C?
σ

εH(λ)π !
H(σH) = 2d−1λσ̃ + |G/Gσ|λ1π

!
H0

(σH0 ).

In this case, λσ̃ ∈ (Im β)σ iff εH(λ) ≡ 0 (mod 2d−1) for all H ∈ C?σ and 2εG(λ) ≡
|G/Gσ|λ1 (mod 2d−1). But |G/Gσ|λ1 =

∑
H∈Cσ

εH(λ), so this is true iff εH(λ) ≡ 0

(mod 2d−1) for all H ∈ Cσ , as required.

Thus we have a filtration Imβ = D(d − 1) ≤ · · · ≤ D(1) = Ker γ, and instead of
dealing directly with the complex Ker γ/ Imβ, we consider the quotients of this filtration.

The following notation will be used in the proofs of the next lemma and Lemma 6.5. Let
σ ∈ S(M), and let ∂σ =

∑
τ∈S(M) iσ,τ τ . Thus iσ,τ = ±1 if τ is a face of σ, and iσ,τ = 0

otherwise. If τ is a face of σ, there is a unique element gσ,τ of G/Gτ ≤ G such that gσ,τ τ̃ is
a face of σ̃; we set gσ,τ = 1 otherwise. Then ∂σ̃ =

∑
τ∈S(M) iσ,τ gσ,τ τ̃ .

Recall that C(Γ | k) was defined as a subcomplex of C(Γ; Ak), which is in turn a sub-
complex of C(M; Ak). C(Γ | k) is the subcomplex of C(M; Ak) generated by all chains aσ
where σ is a simplex of M and a ∈ Aσ

k , because Aσ
k = 0 if σ is not a simplex of Γ.

Lemma 6.3 For 1 ≤ k ≤ d− 2, we have D(k)/D(k + 1) ∼= C(M; Ak)/C(Γ | k).

Proof Since C(M; Z[G]) is the free Z[G]-module on the simplices of M, there is a unique
Z[G]-module homomorphism η from C(M; Z[G]) to C(M̃) sending σ ∈ S(M) to σ̃; of
course, η is not a chain map. Nevertheless, its kernel is a subcomplex; it is generated by λσ
for σ ∈ S(M) and λ ∈ Z[G,Gσ]. The subcomplex C(M; Ik) is sent by η to IkC(M̃) ≤ D(k);
the kernel of η | C(M; Ik) is the subcomplex E(k) generated by λσ for σ ∈ S(M) and
λ ∈ Ik[G,Gσ]. For 1 ≤ k ≤ d − 2, we may identify C(M; Ik)/C(M; Ik+1) with C(M; Ak),
and E(k)/E(k + 1) with C(Γ | k). Then we have an induced map η̄k from C(M; Ak) to
D(k)/D(k + 1), whose kernel contains C(Γ | k). For λ ∈ Ik and σ ∈ S(M), we have

(η∂ − ∂η)(λσ) =
∑

τ∈S(M)

iσ,τ λ(1− gσ,τ )τ̃ ∈ Ik+1C(M̃) ≤ D(k + 1),
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which shows that η̄k is a chain map.
Suppose that λσ̃ ∈ D(k). We may assume that λ ∈ Z[G/Gσ]. For any H ∈ C, there is

some H ′ ∈ Cσ with H ∩ G/Gσ = H ′ ∩ G/Gσ , and so εH(λ) = εH ′(λ) ≡ 0 (mod 2k).

By Lemma 3.2, λ − εG(λ) ∈ Ik; also η
((
λ − εG(λ)

)
σ
)
= λσ̃ − εG(λ)σ̃. But εG(λ) ≡ 0

(mod 2d−1), and so εG(λ)σ̃ ∈ D(k + 1). Therefore η̄k maps C(M; Ak) onto D(k)/D(k + 1).
Next, suppose λ ∈ Ik and σ ∈ S(M) are such that [λ]kσ is in the kernel of η̄k; that is,

λσ̃ ∈ D(k + 1). Take µ ∈ Z[G/Gσ] so that µσ̃ = λσ̃. As before, for H ∈ C, there is
some H ′ ∈ Cσ with H ∩ G/Gσ = H ′ ∩ G/Gσ , and so εH(µ) = εH ′(µ) = εH ′(λ) ≡ 0
(mod 2k+1). Also εG(µ) = εG(λ) = 0, so it follows from Lemma 3.2 that µ ∈ Ik+1. Since
λσ̃ = µσ̃, λ − µ ∈ Ik[G,Gσ], so [λ]k = [λ − µ]k is in Aσ

k . It follows that the kernel of η̄k

is equal to C(Γ | k), and so η̄k induces the desired isomorphism of chain complexes from
C(M; Ak)/C(Γ | k) to D(k)/D(k + 1).

Lemma 6.4 For 1 ≤ k ≤ d − 2, we have H0

(
D(k)/D(k + 1)

)
= 0, H1

(
D(k)/D(k + 1)

)
∼=

Zb0(Γ|k)−dim Ak

2 , and H2

(
D(k)/D(k + 1)

)
∼= H1(Γ | k).

Proof Lemma 6.3 gives a short exact sequence

0 −→ C(Γ | k) −→ C(M; Ak) −→ D(k)/D(k + 1) −→ 0.

The long homology sequence gives exact sequences

0 −→ H2

(
D(k)/D(k + 1)

)
−→ H1(Γ | k) −→ 0 and

0 −→ H1

(
D(k)/D(k + 1)

)
−→ H0(Γ | k) −→ Ak −→ H0

(
D(k)/D(k + 1)

)
−→ 0.

The map H0(Γ | k) → Ak in the second of these has image containing ω(g)b for any
b ∈ Bk−1 and any g ∈ G that appears as an edge color. Since the colors generate G, this
map is onto, and the result follows.

Lemma 6.5 If 1 ≤ k ≤ d− 2 and Γ is k-taut, there is a short exact sequence

0 −→ H1

(
D(k + 1)

)
−→ H1

(
D(k)
)
−→ Z

(d−2
k−1)(b1(Γ)−1)−(d

k)+1

2 −→ 0.

Proof By Lemma 6.4, part of the long exact sequence of

0 −→ D(k + 1) −→ D(k) −→ D(k)/D(k + 1) −→ 0

is

H2

(
D(k)
) φk−→ H1(Γ | k) −→ H1

(
D(k + 1)

)
−→ H1

(
D(k)
) ψk−→ Zb0(Γ|k)−dim Ak

2

−→ H0

(
D(k + 1)

)
−→ H0

(
D(k)
)
−→ 0,

whether or not Γ is k-taut. Suppose that H0

(
D(k + 1)

)
∼= Z. It follows that ψk is onto,

and that H0

(
D(k)
)
∼= Z. Since H0

(
D(d − 1)

)
∼= Z by Lemmas 6.1 and 5.6, a downward
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induction on k shows that ψk is onto for 1 ≤ k ≤ d− 2. Now, since Γ is k-taut, b1(Γ | k) =
dim Bk−1 and

χ(Γ | k) = −
(d−2

k−1

)
χ(Γ) =

(d−2
k−1

)(
b1(Γ)− 1

)
,

and so

b0(Γ | k)− dim Ak =
(d−2

k−1

)(
b1(Γ)− 1

)
+ dim Bk−1 − dim Ak

=
(d−2

k−1

)(
b1(Γ)− 1

)
−
(d

k

)
+ 1.

It only remains to prove that φk is onto.
In the rest of the proof, σ always denotes a 3-simplex of M, τ a 2-simplex, and υ a 1-

simplex, so that, for example,
∑

σ,τ indicates a sum over σ ∈ S3(M) and τ ∈ S2(M). We
assume that the orientations of the 3-simplices of M are induced by an orientation of M, so
that c =

∑
σ σ represents a generator of H3(M). Consider the chain c̃ =

∑
σ σ̃ ∈ C3(M̃).

We have ∂c̃ ∈ Ker
(
C2(M̃) → C2(M)

)
= IC2(M̃). Let λ ∈ Jk−1. Then λI ≤ Ik, so

λ∂ c̃ ∈ IkC2(M) ≤ D2(k), and the cycle λ∂c̃ represents an element x of H2

(
D(k)
)

. Now

λ∂c̃ = λ
∑
σ,τ

iσ,τ gσ,τ τ̃ = η
(
λ
∑
σ,τ

iσ,τ gσ,τ τ
)
,

where η is the map C(M; Z[G]) → C(M̃) from the proof of Lemma 6.3. It follows that
φk(x) is the image in C1(M; Ak) of c ′ = ∂(λ

∑
σ,τ iσ,τ gσ,τ τ ). Now

c ′ = λ
∑
σ,τ ,υ

iσ,τ iτ ,υgσ,τ υ = λ
∑
υ

µυυ where µυ =
∑
σ,τ

iσ,τ iτ ,υgσ,τ ∈ Z[G].

Fix a 1-simplex υ of M. Let the 2-simplices of M having υ as a face be τ1, . . . , τn, and
the 3-simplices σ1, . . . , σn. Let σ0 = σn, and choose the numbering so that τ j is a face
of σ j−1 and σ j for 1 ≤ j ≤ n. Let i j = iσ j−1,τ j iτ j ,υ = ±1. Then iσ j ,τ j iτ j ,υ = −i j ,
so µυ =

∑n
j=1 i j(gσ j−1,τ j − gσ j ,τ j ) ∈ I. By Lemma 3.1, [µυ]1 = ω(

∏n
j=1 gσ j−1,τ j gσ j ,τ j ).

Considering a lift to M̃ of a meridian of υ, we see that
∏n

j=1 gσ j−1,τ j gσ j ,τ j is the color gυ if υ
is a 1-simplex of Γ, and 1 otherwise. Therefore

φk(x) =
∑

υ∈S1(Γ)

[λ]k−1ω(gυ)υ = ιk([λ]k−1).

Since Γ is k-taut, this shows that φk is onto.

Lemma 6.6 If Γ is taut, there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Λ −→ 0,

where Λ satisfies 2d−1Λ = 0 and |Λ| = 2m for m = 2d−2(b1(Γ)− 5) + d + 1.
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Proof Since D(d−1) = Im β, D(1) = Ker γ and H1(Ker γ) ∼= H1(M̃), Lemmas 5.7 and 6.5
give an exact sequence as claimed with 2d−1Λ = 0 and |Λ| = 2m where m is the sum of
b1(Γ)−d and

(d−2
k−1

)(
b1(Γ)−1

)
−
(d

k

)
+1 for 1 ≤ k ≤ d−2. Since

(d−2
k−1

)(
b1(Γ)−1

)
−
(d

k

)
+1

is equal to b1(Γ)− d when k = d− 1,

m =
d−1∑
k=1

((d−2
k−1

)(
b1(Γ)− 1

)
−
(d

k

)
+ 1
)

= 2d−2
(

b1(Γ)− 1
)
− 2d + d + 1 = 2d−2

(
b1(Γ)− 5

)
+ d + 1.

Even accepting the limitation to taut graphs, Lemma 6.6 is unsatisfactory in two re-
spects. First, it gives incomplete information about the groupΛ. (Theorem 8.2 and Propo-
sition 1.3 show that, at least for d = 3, Λmay be any group satisfying the conditions of the
lemma.) Second, it gives no information at all about the extension of

⊕
H∈C? H1(MH) by

Λ. All the examples I know are consistent with the conjecture that β
(⊕

H∈C? H1(MH)
)
=

2d−1H1(M̃) whenever Γ is taut, but I have been unable to prove this. The following lemma
suffices in some cases.

Lemma 6.7 Let Γ be taut and suppose that, for every H ∈ C? such that ΓH is discon-
nected, the cover πH : M̃ → MH can be factored through 2-fold covers M̃ = Md → · · · →
M2 → M1 = MH so that each transfer map H1(Mi ; Z2) → H1(Mi+1; Z2) is trivial. Then
β
(⊕

H∈C? H1(MH)
)
= 2d−1H1(M̃).

Proof Lemma 6.6 implies that 2d−1H1(M̃) ≤ β
(⊕

H∈C? H1(MH)
)
, so it is enough to show

that π !
H

(
H1(MH)

)
≤ 2d−1H1(M̃) for all H ∈ C?. If ΓH is connected, H1(MH) has odd order

and there is nothing to prove. If ΓH is disconnected and πH is factored as above then the
image of the transfer H1(Mi) → H1(Mi+1) (1 ≤ i < d) on integer homology is contained
in 2H1(Mi+1), and the result follows.

7 The Mod 2 Homology of 2- and 4-Fold Branched Covers

In this section, the coefficients for homology will always be Z2, and will be omitted from
the notation. Let L be a link in a closed, connected, orientable 3-manifold N . There is
a double cover of N with branch set L iff L represents zero in H1(N); suppose this is so.
Let θ : H1(N − L) → Z2 be a homomorphism sending each meridian of L to 1, and let
p : Ñ → N be the corresponding branched cover. We wish to allow the possibility that L is
empty (i.e., p is unbranched); in this case we insist that θ be onto, so that Ñ is connected.
There is an intersection pairing H1(N − L) × H2(N, L) → Z2 inducing an isomorphism
H2(N, L)→ hom

(
H1(N − L),Z2

)
; we let θ ′ ∈ H2(N, L) correspond to θ. There is also an

intersection pairing H2(N) × H2(N, L) → H1(N, L), and we let θ ′ ′ : H2(N) → H1(N, L)
be given by intersection with θ ′.

The transfer map with Z2 coefficients, p ! : C(N) → C(Ñ), kills C(L), so there is an
induced map p ! : C(N, L) → C(Ñ). More generally, if X is any subcomplex of N and
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X̃ = p−1(X), there is a map p ! : C(N, L ∪ X) → C(Ñ, X̃). It was observed by Lee and
Weintraub [3, Theorem 1] that the sequence

0 −→ C(N, L ∪ X)
p !

−→ C(Ñ, X̃)
p
−→ C(N,X) −→ 0(7.1)

is exact. When N is a Z2 homology sphere, it follows (taking X = ∅) that p ! : H1(N, L)→
H1(Ñ) is an isomorphism, which gives a different proof of Sublemma 15.4 of [5], that
dim H1(Ñ) = b0(L)− 1. The following lemma generalizes this to other manifolds.

Lemma 7.2 In the above situation, let n = dim H1(N), let r be the rank of the map
H1(L) → H1(N) induced by inclusion, and let s be the rank of θ ′ ′. Then r ≤ s ≤ n,
dim H1(Ñ) = b0(L) − 1 + 2n − r − s, and the rank of the map p ! : H1(N) → H1(Ñ)
equals n− s.

Note a special case of this lemma: if H1(L)→ H1(N) is onto then dim H1(Ñ) = b0(L)−1
and p ! : H1(N)→ H1(Ñ) is the zero map.

Proof Certainly s ≤ dim H2(N) = n. To see that r ≤ s, consider the composite of θ ′ ′

and the connecting homomorphism H1(N, L)→ H0(L). This is the map H2(N)→ H0(L)
given by intersection with L, which is dual to H1(L)→ H1(N); therefore it has rank r.

From (7.1) with X = ∅ we get an exact sequence

H2(Ñ)
p
−→ H2(N)

∂
−→ H1(N, L)→ H1(Ñ) −→ H1(N) −→ H0(N, L) −→ 0.

We claim that the connecting homomorphism labelled ∂ in this sequence is equal to θ ′ ′.
We may take a (possibly non-orientable) surface F in N with boundary L representing θ ′ ∈
H2(N, L). Then Ñ may be constructed by gluing together two copies of N cut open along F.
Let x ∈ H2(N), and represent x by a surface F ′ transverse to F. Then p−1(F ′) is the union
of two copies of F ′ cut open along F ∩ F ′. Either one of these carries a 2-chain mapping to
F ′ under p, and their common boundary is the image under p ! of the element of C1(N, L)
carried by F ∩ F ′. Therefore ∂(x) is represented by F ∩ F ′, which represents θ ′ ′(x) by the
definition of θ ′ ′, and the claim is proved. It follows that dim H1(Ñ) = dim H1(N, L) + n−
s − dim H0(N, L), and that the map p : H2(Ñ) → H2(N) has rank n − s. Now the exact
sequence

H1(L) −→ H1(N) −→ H1(N, L) −→ H0(L) −→ Z2 −→ H0(N, L) −→ 0

shows that dim H1(N, L) = b0(L)− 1 + n− r + dim H0(N, L), so dim H1(Ñ) is as claimed.
Also, the map p ! : H1(N)→ H1(Ñ) is dual to p : H2(Ñ)→ H2(N), and so has rank n− s.

Now let Γ be a G(2)-colored graph embedded in a Z2 homology sphere M. Just as
when M is an integral homology sphere, this determines a branched covering π : M̃ → M.
We let the non-trivial elements of G be g1, g2 and g3, and set Hi = 〈gi〉 ∈ C?. Where
Hi would appear as a subscript, we just use i; thus we have 2-fold covers ρi : Mi → M
branched over Γi and πi : M̃ → Mi branched over ∆i for 1 ≤ i ≤ 3. If Γ̃ = π−1(Γ),
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the map π : H1(M̃ − Γ̃) → H1(M − Γ) kills each meridian of Γ̃, so it induces a map
π̄ : H1(M̃)→ H1(M − Γ).

We wish to determine dim H1(M̃). We deal first with the case where Γ is connected,
since here we need some additional information.

Lemma 7.3 When Γ is connected, dim H1(M̃) = b1(Γ)− 2 and π !
i : H1(Mi)→ H1(M̃) is

the zero map for 1 ≤ i ≤ 3. Further, the map π̄ : H1(M̃)→ H1(M − Γ) is injective.

Proof Let 1 ≤ i ≤ 3. Since M is a Z2 homology sphere, ρ !
i : H1(M,Γi) → H1(Mi) is

an isomorphism. Since Γ is connected, every element of H1(M,Γi) is represented by a
chain of Γ \ Γi ; since ∆i is the inverse image of Γ \ Γi in Mi , the map H1(∆i) → H1(Mi)
induced by inclusion is onto. Since ∆i is a link of b1(Γ) − 1 components, the first two
claims follow from the special case of Lemma 7.2 noted above. The image of π̄ is the kernel
of the homomorphism H1(M−Γ)→ G corresponding to π; since this kernel has the same
dimension as H1(M̃), it follows that π̄ is injective.

Now let the components of Γ be Γk for 1 ≤ k ≤ b0(Γ). We let A = {1, . . . , b0(Γ)} be
the index set for these components. For 1 ≤ i ≤ 3, we partition A into two sets Ai and A ′i ,
with k ∈ Ai iff Γk is a circular edge colored gi . We also set Γk

i = Γ
k ∩ Γi . (If Γk is a circular

edge, then Γk
i is empty if Γk has color gi , and equal to Γk otherwise.) If γ is a 1-cycle of

M − Γk, we have
∑3

i=1 Lk(γ,Γk
i ) = 0, where Lk denotes mod 2 linking number. Hence,

for k 6= l,

Lk(Γk
1,Γ

l
2) + Lk(Γk

2,Γ
l
1) =

(
Lk(Γk

2,Γ
l
2) + Lk(Γk

3,Γ
l
2)
)

+
(
Lk(Γk

2,Γ
l
2) + Lk(Γk

2,Γ
l
3)
)

= Lk(Γk
2,Γ

l
3) + Lk(Γk

3,Γ
l
2),

and similarly Lk(Γk
2,Γ

l
3) + Lk(Γk

3,Γ
l
2) = Lk(Γk

3,Γ
l
1) + Lk(Γk

1,Γ
l
3); we let λkl ∈ Z2 be this

common value. Note that if k ∈ Ai then λkl = Lk(Γk,Γl
i), and if also l ∈ A j then λkl

equals Lk(Γk,Γl) if i 6= j and 0 if i = j. We also set λkk =
∑

l∈A,l 6=k λkl, and let Λ be the
symmetric matrix [λkl]k,l∈A.

Lemma 7.4 We have dim H1(M̃) = b0(Γ) + b1(Γ)− 3− rank Λ.

Proof We shall prove this by applying Lemma 7.2 to the covering π1 : M̃ → M1. First we
establish some notation.

(a) If A ′ and A ′′ are subsets of A, we let Λ(A ′,A ′′) be the submatrix [λkl]k∈A ′,l∈A ′ ′ of Λ.
Note that Λ(A1,A1) is a diagonal matrix with diagonal entries λkk = Lk(Γk,Γ1) for
k ∈ A1.

(b) We let F be a surface in M with ∂F = Γ1. Then M1 can be constructed by gluing
together two copies of M cut open along F.

(c) We denote the connecting homomorphisms in the exact sequences of the pairs (M,Γ),
(M,Γ1) and (M,Γ \ Γ1) by ∂i : Hi+1(M,Γ)→ H̃i(Γ), ∂ ′i : Hi+1(M,Γ1)→ H̃i(Γ1) and
∂ ′′i : Hi+1(M,Γ \ Γ1) → H̃i(Γ \ Γ1). (Here H̃ denotes reduced homology.) We need
these maps only for i = 0 or 1, where they are isomorphisms.
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(d) The case of (7.1) for the cover M1 → M with X = ∅ is

0 −→ C(M,Γ1)
ρ !

1−→ C(M1)
ρ1−→ C(M) −→ 0.

The long exact sequence shows that

αi = ρ
!
1(∂ ′i )−1 : H̃i(Γ1)→ Hi+1(M1)

is an isomorphism for i = 0 and an epimorphism for i = 1.
(e) The case of (7.1) for M1 → M with X = Γ \ Γ1 is

0 −→ C(M,Γ)
ρ !

1−→ C(M1,∆1)
ρ1−→ C(M,Γ \ Γ1) −→ 0.

Denote the connecting homomorphisms in the long exact sequence by

∂ ′ ′ ′i : Hi+1(M,Γ \ Γ1)→ Hi(M,Γ).

We get an exact sequence

H1(Γ)
γ1−→ H2(M1,∆1)

δ1−→ H1(Γ \ Γ1)
β
−→ H̃0(Γ)

γ0−→ H1(M1,∆1)
δ0−→ H̃0(Γ \ Γ1) −→ 0,

where β = ∂0∂
′ ′ ′
1 (∂ ′ ′1 )−1, γi = ρ

!
1∂
−1
i and δi = ∂

′′
i ρ1.

The isomorphism α0 : H̃0(Γ1)→ H1(M1) gives

dim H1(M1) = b0(Γ1)− 1.(7.5)

Next we determine b0(∆1) and the rank of the map H1(∆1) → H1(M1). Consider a non-
circular edge e of Γ with color g1; the number of such edges is b1(Γ) − b0(Γ), and the
inverse image ρ−1

1 (e) is a single component of∆1. The image under α−1
0 of the homology

class of ρ−1
1 (e) is represented by ∂e, and the subspace of H̃0(Γ1) spanned by such elements is

Ĥ0(Γ1) =
⊕

k∈A ′1
H̃0(Γk

1), which has dimension b0(Γ1)−|A ′1|. The remaining components

of Γ \ Γ1 are the Γk for k ∈ A1, and such a Γk is covered by a single component of ∆1 if
λkk = 1, and by two components if λkk = 0. The number of k ∈ A1 with λkk = 1 is the
rank of the diagonal matrix Λ(A1,A1), and so

b0(∆1) = b1(Γ)− b0(Γ) + 2|A1| − rank Λ(A1,A1).(7.6)

For k ∈ A1 with λkk = 1, the component of ∆1 covering Γk is null-homologous. Let B be
the set of k ∈ A1 with λkk = 0, and k ∈ B. The two components of∆1 coveringΓk represent
the same element of H1(M1), which we call x1

k . We may assume that the surface F is disjoint
from Γk, and take a surface F ′ with boundary Γk which is transverse to F. Then ρ−1

1 (F ′)
is the union of two copies of F ′ cut open along F ∩ F ′, either one of which shows that x1

k
is the image under ρ !

1 of the element of H1(M,Γ1) represented by F ∩ F ′. Thus α−1
0 (x1

k) is
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represented by ∂(F ∩ F ′). Now H0(Γ1)/Ĥ0(Γ1) has a basis with one element x0
l for each

l ∈ A ′1, and the image of α−1
0 (x1

k) in this quotient is
∑

l∈A ′1
λklx0

l . Therefore the rank of

H1(∆1) → H1(M1) is dim Ĥ0(Γ1) + rank Λ(B,A ′1). But rank Λ(B,A ′1) = rank Λ(A1,A)−
rank Λ(A1,A1), so

rank
(
H1(∆1) −→ H1(M1)

)
= b0(Γ1)− |A ′1| + rank Λ(A1,A)− rank Λ(A1,A1).(7.7)

The 2-fold covering π1 : M̃ → M1 corresponds to a homomorphism θ : H1(M1−∆1)→
Z2, to which are associated θ ′ ∈ H2(M1,∆1) and θ ′ ′ : H2(M1) → H1(M1,∆1); we must
determine the rank of θ ′ ′. We first identify θ ′. For x ∈ H1(M−Γ), Lk(x,Γi) is well-defined
for 1 ≤ i ≤ 3, and

∑3
i=1 Lk(x,Γi) = 0. Define a homomorphism φ : H1(M − Γ) → G

by φ(x) =
∏3

i=1 gLk(x,Γi )
i . Then φ sends the meridian of an edge of Γ to the color of that

edge, so it is the homomorphism corresponding to the cover M̃ → M. Let Γ̂ = ρ−1
1 (Γ),

and let ι : H1(M1 − Γ̂) → H1(M1 − ∆1) be the surjection induced by inclusion. For

y ∈ H1(M1 − Γ̂), we have ρ1(y) ∈ H1(M − Γ) and φρ1(y) = gθι(y)
1 . It follows that

Lk
(
ρ1(y),Γ2

)
= Lk

(
ρ1(y),Γ3

)
, Lk
(
ρ1(y),Γ1

)
= 0, and θι(y) = Lk

(
ρ1(y),Γ2

)
. There are

intersection pairings H1(M1−∆1)×H2(M1,∆1)→ Z2 and H1(M−Γ)×H2(M,Γ)→ Z2

and a linking pairing H1(M − Γ)×H1(Γ)→ Z2, and they are related by

ι(y) · γ1(z) = ι(y) · ρ !
1∂
−1
1 (z) = ρ1(y) · ∂−1

1 (z) = Lk
(
ρ1(y), z

)
for y ∈ H1(M1 − Γ̂) and z ∈ H1(Γ). For k ∈ A, let zk ∈ H1(Γ) be represented by Γk

2.
Then

∑
k∈A zk is represented by Γ2, and so ι(y) ·γ1(

∑
k∈A zk) = θι(y) for y ∈ H1(M1− Γ̂).

Therefore θ ′ = γ1(
∑

k∈A zk).
We have an epimorphism α1 : H1(Γ1) → H2(M1). For k ∈ A ′1, let y1

k ∈ H1(Γ1) be
represented by Γk

1, and let Ĥ1(Γ1) be the subspace of H1(Γ1) generated by these elements.
Also let α̂1 be the restriction of α1 to Ĥ1(Γ1). We shall show that Ker(θ ′ ′α1) ≤ Ĥ1(Γ1),
from which it will follow that

rank θ ′ ′ = rank(θ ′ ′α1) = rank(θ ′ ′α̂1) + dim H1(Γ1)− dim Ĥ1(Γ1),

or

rank θ ′ ′ = rank(θ ′ ′α̂1) + b0(Γ1)− |A ′1|.(7.8)

Consider the composite δ0θ
′ ′α1 : H1(Γ1) → H̃0(Γ \ Γ1). This may be described geomet-

rically as follows. If x ∈ H1(Γ1) is represented by a circuit C , take surfaces F ′ and F ′ ′

with ∂F ′ = C and ∂F ′ ′ = Γ2 that meet transversely except along the common part of
their boundaries, C ∩ Γ2. Then the closure of (F ′ ∩ F ′ ′) − (C ∩ Γ2) represents an el-
ement y of H1(M,Γ). Now θ ′ ′α1(x) ∈ H1(M1,∆1) is represented by ρ−1

1 (F ′ ∩ F ′ ′),
and is therefore the sum of ρ !

1(y) and the element represented by ρ−1
1 (C ∩ Γ2). Since

ρ1ρ
!
1(y) = 0, ρ1θ

′ ′α1(x) ∈ H1(M,Γ \ Γ1) is represented by C ∩ Γ2. Hence δ0θ
′ ′α1(x) is

represented by ∂(C ∩ Γ2), which is just the sum of the vertices of Γ lying on C . It follows
that δ0θ

′ ′α1(x) = 0 iff x ∈ Ĥ1(Γ1), so Ker(θ ′ ′α1) ≤ Ĥ1(Γ1), as claimed.
We let the elements of the natural basis for H0(Γ) be y0

k for k ∈ A, and define β̂ :

Ĥ1(Γ1) → H̃0(Γ) by β̂(y1
k) =

∑
l∈A λkl y0

l for k ∈ A ′1. We claim that γ0β̂ = θ ′ ′α̂1 :
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Ĥ1(Γ1) → H1(M1,∆1). Let k ∈ A ′1 and l ∈ A. We have α̂1(y1
k) ∈ H2(M1) and γ1(zl) ∈

H2(M1,∆1), with intersection α̂1(y1
k) · γ1(zl) ∈ H1(M1,∆1). Suppose k 6= l. Then

(∂ ′1)−1(y1
k) ∈ H2(M,Γ1) and ∂−1

1 (zl) ∈ H2(M,Γ) may be represented by transverse sur-
faces F ′ and F ′ ′ with boundaries Γk

1 and Γl
2, respectively, and α̂1(y1

k) · γ1(zl) is the image
under ρ !

1 : H1(M,Γ)→ H1(M1,∆1) of the class represented by F ′ ∩ F ′ ′. Since the image of
this class under ∂0 : H1(M,Γ)→ H̃0(Γ) is Lk(Γk

1,Γ
l
2)(y0

k + y0
l ), we have

α̂1(y1
k) · γ1(zl) = γ0

(
Lk(Γk

1,Γ
l
2)(y0

k + y0
l )
)

for k ∈ A ′1, l ∈ A, k 6= l.

Now
∑

k∈A ′1
(∂ ′1)−1(y1

k) is represented by F, whose inverse image in M1 is null homologous,

so
∑

k∈A ′1
α̂1(y1

k) = 0. Therefore, for k ∈ A ′1,

α̂1(y1
k) · γ1(zk) =

∑
l∈A ′1 ,l 6=k

α̂1(y1
l ) · γ1(zk) =

∑
l∈A,l 6=k

γ0

(
Lk(Γl

1,Γ
k
2)(y0

k + y0
l )
)
,

where in the last term we may sum over A since Γl
1 is empty for l /∈ A ′1. Hence, again for

k ∈ A ′1,

θ ′ ′α̂1(y1
k) = α̂1(y1

k) · θ ′ =
∑
l∈A

α̂1(y1
k) · γ1(zl)

=
∑

l∈A,l 6=k

γ0

(
λkl(y0

k + y0
l )
)
=
∑
l∈A

γ0(λkl y
0
l ) = γ0β̂(y1

k),

and so indeed γ0β̂ = θ
′ ′α̂1. Thus we have a commutative diagram

Ĥ1(Γ1)
α̂1−−−−→ H2(M1)

β̂

y θ ′′

y
H1(Γ \ Γ1)

β
−−−−→ H̃0(Γ)

γ0−−−−→ H1(M1,∆1)

in which the bottom row is exact. Therefore

rank(θ ′ ′α̂1) = rank(γ0β̂) = dim(Imβ + Im β̂)− rank β.

For k ∈ A1, Γk represents an element y1
k of H1(Γ \ Γ1), and these form a basis. We claim

that β(y1
k) =

∑
l∈A λkl y0

l for k ∈ A1, from which it will follow that

rank(θ ′ ′α̂1) = rank Λ− rank Λ(A1,A).(7.9)

For k ∈ A1, (∂ ′ ′1 )−1(y1
k) is represented by a surface F ′ with boundaryΓk, which we may take

to be transverse to F. Then ρ−1
1 (F ′) is the union of two copies of F ′ cut open along F ∩ F ′.

The boundary of either one is the union of ρ−1
1 (F ∩ F ′) and part of ρ−1

1 (Γk) ⊆ ∆1, so it
represents the same element of C1(M1,∆1) as ρ−1

1 (F ∩ F ′). It follows that ∂ ′ ′ ′1 (∂ ′ ′1 )−1(y1
k)

is represented by F ∩ F ′, and hence that

β(y1
k) = ∂0∂

′ ′ ′
1 (∂ ′ ′1 )−1(y1

k) =
∑
l∈A ′1

Lk(Γk,Γl
1)(y0

l + y0
k) =

∑
l∈A

λkl y
0
l ,
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as claimed.
The proof of the lemma is completed by applying Lemma 7.2 to the covering M̃ → M1

and using the equations (7.5)–(7.9).

In applying Lemma 7.4, we compute the matrix Λ using the following result, which is
implicit in the proof of Lemma 1 of Flapan [1].

Lemma 7.10 Let K be a knot in a Z2 homology 3-sphere N, and let A and B be disjoint arcs
in N meeting K in their endpoints. Let Ñ be the 2-fold cover of N branched over K, and let Ã
and B̃ be the inverse images of A and B in the Z2 homology sphere Ñ. Then Lk(Ã, B̃) = 1 iff
the endpoints of A separate those of B on K.

8 Proofs of Theorems

Recall that in the statement of each theorem, Γ is a G(d)-colored graph embedded in a
homology 3-sphere M, with corresponding branched cover M̃.

Theorem 8.1 If d = 2 and Γ is connected, then there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zb1(Γ)−2

2 −→ 0,

and β
(⊕

H∈C? H1(MH)
)
= 2H1(M̃).

Proof Lemma 6.6 gives the exact sequence, while Lemma 7.3 shows that the mod 2 transfer
π !

H : H1(MH ; Z2) → H1(M̃; Z2) is zero for H ∈ C?, which implies the second assertion by
Lemma 6.7.

Theorem 8.2 Let Γ be a trivalent graph with an unsplittable G(3)-coloring with a special
m-circuit. Then 3 ≤ m ≤ b1(Γ), there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zm−3

4 ⊕ Z2(b1(Γ)−m)
2 −→ 0,

and β
(⊕

H∈C? H1(MH)
)
= 4H1(M̃).

Proof Let H0 ∈ C? be such that Γ0 = ΓH0 is a special m-circuit, and let M0 = MH0 and
∆0 = ∆H0 . Since the coloring is unsplittable, Γ is simple, so any circuit has length at least
3. Further, Γ is connected, so χ(Γ \ Γ0) = 1 − b1(Γ) + m; since Γ \ Γ0 is connected, this
gives m ≤ b1(Γ). By Lemma 4.8, Γ is taut, so Lemma 6.6 gives an exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Za

4 ⊕ Zb
2 −→ 0

for some a and b with 2a + b = 2b1(Γ)− 6.
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Suppose 1 6= h ∈ H ∈ C?. There is a cover M̃/〈h〉 → M with group H/〈h〉 ∼= Z2
2; its

branch set is obtained from Γ by deleting all edges with color h. Since Γ is unsplittable, we
may apply Lemma 7.3 to this cover to show that the transfer H1(MH ; Z2)→ H1(M̃/〈h〉; Z2)
is zero. By Lemma 6.7, to show that β

(⊕
H∈C? H1(MH)

)
= 4H1(M̃) it is then enough to

show that, for each H ∈ C?, there is some non-trivial h in H such that H1(M̃/〈h〉; Z2) →
H1(M̃; Z2) is zero. Now consider the cover M̃ → M0, with group H0

∼= Z2
2 and branch

set ∆0. Since Γ0 is a circuit, M0 is a Z2 homology sphere. Since Γ \ Γ0 is connected, so
is ∆0, and Lemma 7.3 applies to this cover, showing that H1(M̃/〈h〉; Z2) → H1(M̃; Z2) is
zero whenever 1 6= h ∈ H0. Since H ∩ H0 contains a non-trivial element for all H ∈ C?,
the proof that β

(⊕
H∈C? H1(MH)

)
= 4H1(M̃) is complete. It follows that H1(M̃; Z2) ∼=

H1(M̃)/2H1(M̃) ∼= Za+b
2 . On the other hand, Lemma 7.3 applied to M̃ → M0 also shows

that dim H1(M̃; Z2) = b1(∆0) − 2. Since b1(∆0) = 2b1(Γ) − m − 1, we have a + b =
2b1(Γ)−m− 3. It follows that a = m− 3 and b = 2(b1(Γ)−m), and we are done.

Theorem 8.3 Let Γ be an n-rung Möbius ladder (n ≥ 2) with a G(3)-coloring, and let g0 be
the product of the colors on the rungs. Suppose that g0 6= 1, and let k be the number of rungs
with color g0. If k = 0, there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zn−2

4 −→ 0,

while if k > 0 there is a short exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Zn−k−1

4 ⊕ Z2(k−1)
2 −→ 0.

In either case, β
(⊕

H∈C? H1(MH)
)
= 4H1(M̃).

Proof By Lemma 4.10, Γ is taut, so Lemma 6.6 gives an exact sequence

0 −→
⊕

H∈C?

H1(MH)
β
−→ H1(M̃) −→ Za

4 ⊕ Zb
2 −→ 0

for some a and b with 2a + b = 2n − 4. Consider the cover π ′ : M̃/〈g0〉 → M with group
G ′ = G/〈g0〉 ∼= Z2

2. Its branch set is the (n − k)-rung Möbius ladder Γ ′ obtained by
deleting the rungs colored g0, so Lemma 7.3 shows that H1(MH ; Z2) → H1(M̃/〈g0〉; Z2) is
zero whenever g0 ∈ H ∈ C?. By Lemma 1.7, ΓH is connected if g0 /∈ H, so Lemma 6.7 will
imply that β

(⊕
H∈C? H1(MH)

)
= 4H1(M̃) provided that H1(M̃/〈g0〉; Z2) → H1(M̃; Z2)

is also zero. Lemma 7.3 also gives dim H1(M̃/〈g0〉; Z2) = n − k − 1. The 2-fold cover
M̃ → M̃/〈g0〉 has as branch set a link L, which is the inverse image of the rungs of Γ
labelled g0. Let r be the rank of H1(L; Z2)→ H1(M̃/〈g0〉; Z2). If k = 0 then L is empty and
r = 0. Suppose k > 0, and consider a rung e labelled g0. The endpoints of e lie on two
edges of Γ ′ with the same color in the G ′-labelling determining π ′. Hence, if D ⊂ M is a
2-disk containing e in its interior and meetingΓ ′ only in the endpoints of e, then (π ′)−1(D)
consists of two annuli. This shows first that (π ′)−1(e) has two components, so b0(L) = 2k.
It also shows that under the map π̄ ′ : H1(M̃/〈g0〉; Z2)→ H1(M−Γ ′; Z2), each component
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of (π ′)−1(e) is sent to the element of H1(M − Γ ′; Z2) represented by ∂D. This element
is non-trivial and independent of the choice of e. By Lemma 7.3, π̄ ′ is injective, and it
follows that r = 1. Using the Kronecker delta, we may say that in all cases b0(L) = 2k and
r = 1− δk0. It now follows from Lemma 7.2 applied to the cover M̃ → M̃/〈g0〉 that

dim H1(M̃; Z2)− rank
(
H1(M̃/〈g0〉; Z2) −→ H1(M̃; Z2)

)
= n + k− 3 + δk0.(8.4)

Now choose H ∈ C? with g0 /∈ H. Then MH is a Z2 homology sphere, and we may
compute dim H1(M̃; Z2) by applying Lemma 7.4 to the cover πH : M̃ → MH . We must
compute the matrix Λ of that lemma. Suppose that ΓH contains the m rungs τi j for 0 ≤
j < m, where 0 ≤ i0 < · · · < im−1 < n, and let the color of τi j be h j ∈ G−H. Then Γ\ΓH

has m components C0, . . . ,Cm−1, and the components of∆H are ρ−1
H (C0), . . . , ρ−1

H (Cm−1).
We may choose the numbering of the C j so that τi j has one vertex on C j and the other on
C j+1. (The subscripts on the C j are to be taken modulo m.) By Lemma 7.10, all the off-
diagonal elements of Λ except λ j, j±1 are zero. Also, if the edges of C j and C j+1 that meet τ j

have colors h ′j and h ′′j , then λ j, j+1 = 1 iff h ′j 6= h ′ ′j . However, h ′jh
′′
j = g0h j , so λ j, j+1 = 1

iff h j 6= g0. Since exactly k of the h j are equal to g0, it follows that rank Λ = m− k− δk0.
The trivalent graph∆H has 2(n−m) vertices, soχ(∆H) = m−n, and since b0(∆H) = m

we have b1(∆H) = n. Now Lemma 7.4 gives dim H1(M̃; Z2) = n + k − 3 + δk0. Com-
paring this to (8.4), we see that H1(M̃/〈g0〉; Z2) → H1(M̃; Z2) is the zero map, and hence
β
(⊕

H∈C? H1(MH)
)
= 4H1(M̃). It then follows that a+b = dim H1(M̃; Z2) = n+k−3+δk0,

giving a = n− k− 1− δk0 and b = 2(k− 1 + δk0), completing the proof.

Suppose that Γ is taut. By Lemmas 5.7 and 6.5, we may identify
⊕

H∈C? H1(MH) and
H1(Im β) with their images in H1(M̃); thus

⊕
H∈C? H1(MH) ≤ H1(Im β) ≤ H1(M̃). For

any x ∈ H1(M̃), 2d−1x ∈
⊕

H∈C? H1(MH). In the proofs of the remaining theorems, we
need to show that we may choose x so that 2d−2x /∈

⊕
H∈C? H1(MH). Now 2d−2x is in

H1(Im β), and so it is in
⊕

H∈C? H1(MH) iff it is in the kernel of the map H1(Im β) →

Zb1(Γ)−d
2 from Lemma 5.7. From the proof of that lemma, the kernel of this map is equal

to the kernel of the composite of the maps H1(Im β) → H0(Ker β) from the long exact
sequence of (2.4), and H0(Ker β)→ H0(Γ | d− 1) from Lemma 5.4.

Lemma 8.5 Suppose thatΓ is taut, and let e1, . . . , en be edges ofΓwith colors g1, . . . , gn such
that g1 · · · gn = 1. For 1 ≤ i ≤ n, pick a vertex vi of ei . Then there is an element x of H1(M̃)
such that the image of 2d−2x in H0(Γ | d − 1) is represented by

∑n
i=1

∑
H∈C? δH(gi)viH ∈

C ′0(Γ | d− 1).

Proof Consider an element x of H1(M̃) represented by a cycle of the form z =∑
σ∈S1(M)(1 − hσ)σ̃ for some hσ ∈ G. Let S ′ be the set of those σ for which hσ 6= 1,

and for each σ ∈ S ′, define an element cσ of
∑

H∈C C1(MH) by

cσ = −2d−2σG +
∑
H∈C

1
2

(
1− εH(hσ)

)
σHH.
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Then

β(cσ) = −2d−2
∑
g∈G

gσ̃ +
∑
H∈C

1
2

(
1− εH(hσ)

)∑
h∈H

hσ̃

=
∑
g∈G

(
−2d−2 +

∑
H∈C

1
2

(
1− εH(hσ)

)
1
2

(
1 + εH(g)

))
gσ̃

=
∑
g∈G

∑
H∈C

1
4

(
εH(g)− εH(hσ)− εH(ghσ)

)
gσ̃

= 2d−2(1− hσ)σ̃.

Therefore β(
∑

σ∈S ′ cσ) = 2d−2z, and so the image of 2d−2x in H0(Ker β) is represented by∑
σ∈S ′ ∂cσ . From the proofs of Lemmas 5.4 and 5.3, the image of 2d−2x in H0(Γ | d− 1) is

represented by

z ′ =
∑

σ∈S ′,H∈C?

δH(hσ)(∂σ)H =
∑

σ∈S1(M),H∈C?

δH(hσ)(∂σ)H

(since 1
2

(
1− εH(g)

)
mod 2 = δH(g)).

We now construct a specific 1-cycle. Take a disc D in M meeting Γ transversely in n
points p1, . . . , pn, where pi lies on the edge ei . Take disjoint arcs A1, . . .An on D, where
Ai joins pi to a point qi of ∂D and qi is adjacent to qi+1 on ∂D. (Here and in the rest of
the proof, subscripts are to be taken modulo n.) We may assume that D and each Ai are
triangulated by subcomplexes of M (and hence the pi and qi are 0-simplices of M). Let
ci ∈ C1(M) be a 1-chain carried by Ai with ∂ci = qi − pi . Also let di ∈ C1(M) be carried
by one of the arcs into which the qi divide ∂D, with ∂di = qi+1 − qi . Let c̃i and d̃i be the
images of ci and di under the Z-module homomorphism C(M) → C(M̃) taking σ to σ̃
(σ ∈ S(M)). Now π−1(D) is the union of 2d copies of D cut open along the Ai ; let D̃ be
one copy. If σ is either pi or a 1-simplex of ∂D, there is just one lift of σ lying in ∂D̃; we
take this to be σ̃. If σ is either qi or a 1-simplex of Ai , there are two lifts of σ lying in ∂D̃,
and gi takes one to the other. We may choose σ̃ to be one of these lifts in such a way that
∂d̃i = gi+1q̃i+1 − q̃i and ∂c̃i = q̃i − p̃i . With these choices, z1 =

∑n
i=1(c̃i − gi c̃i + d̃i)

is a 1-cycle of M̃ carried by ∂D̃. Set g ′i =
∏i

j=1 g j ; g ′i depends only on i mod n since

g1 · · · gn = 1, and so z2 =
∑n

i=1 g ′i d̃i is another 1-cycle of M̃. (It is carried by a single lift of
∂D.) Let x ∈ H1(M̃) be represented by z = z1− z2 =

∑n
i=1

(
(1− gi)c̃i + (1− g ′i )d̃i

)
. By the

previous paragraph, the image of 2d−2x in H0(Γ | d − 1) is represented by

z ′ =
n∑

i=1

∑
H∈C?

(
δH(gi)(qi + pi) + δH(g ′i )(qi+1 + qi)

)
H

=

n∑
i=1

∑
H∈C?

(
δH(gi)pi +

(
δH(gi) + δH(g ′i ) + δH(g ′i−1)

)
qi

)
H

=
n∑

i=1

∑
H∈C?

δH(gi)piH (because gig
′
i g ′i−1 = 1).
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Now
∑n

i=1

∑
H∈C? δH(gi)piH is homologous to

∑n
i=1

∑
H∈C? δH(gi)viH, and the proof is

complete.

The next lemma will be used in the proof of Theorem 8.7 to show that the 0-chain of the
previous one is not a boundary.

Lemma 8.6 Let Γ be an m-rung Möbius ladder, and let 0 ≤ i1 < i2 < · · · < ik < m,
where either m is odd and k is even, or m = k = 2. Let the two circuits of Γ that contain all

the rungs be Γ1 and Γ2, and for α = 1 or 2, let cα ∈ C1(Γα; Z2) be such that ∂cα =
∑k

j=1 vi j .
Let a ∈ Z2 be the sum of the coefficients of the rungs τi j in cα for 1 ≤ j ≤ k and α = 1 or 2.
Then a = 1 iff m = 2.

Proof Since each Γα contains all the rungs τi j , a is independent of the choice of c1 and c2.
Suppose first that m = k = 2, and so i1 = 0 and i2 = 1. If Γ1 is taken to be the circuit
containing σ0, we may take c1 = σ0 and c2 = τ0 + σ1, and so a = 1.

Now suppose that m is odd. We show that for 1 ≤ j ≤ 1
2 k, there are chains cα j ∈

C1(Γα; Z2) with ∂cα j = vi2 j−1 + vi2 j such that

c1 j + c2 j = τi2 j−1 + τi2 j +

i2 j−1∑
i=i2 j−1

(σi + σi+n),

the sum being taken in C1(Γ; Z2). Then we may set cα =
∑k/2

j=1 cα j and conclude that a = 0.
Given j, let Γα be that one of Γ1 and Γ2 that contains σi2 j−1 , and Γβ the other. If i2 j − i2 j−1

is odd, we may set

cα j = σi2 j−1 + τi2 j−1+1 + σi2 j−1+1+n + τi2 j−1+2 + · · · + τi2 j−1 + σi2 j−1 and

cβ j = τi2 j−1 + σi2 j−1+n + τi2 j−1+1 + σi2 j−1+1 · · · + σi2 j−1+n + τi2 j ,

while if i2 j − i2 j−1 is even, we may set

cα j = σi2 j−1 + τi2 j−1+1 + σi2 j−1+1+n + τi2 j−1+2 + · · · + σi2 j−1+n + τi2 j and

cβ j = τi2 j−1 + σi2 j−1+n + τi2 j−1+1 + σi2 j−1+1 · · · + τi2 j−1 + σi2 j−1.

Theorem 8.7 Let d = 4 and let Γ be an n-rung Möbius ladder with n ≥ 3. Give Γ the
G(4)-coloring of Example 1.6. Then

H1(M̃) ∼=

{⊕
H∈C? H1(MH)⊕ Z2, if n = 3;⊕
H∈C? H1(MH)⊕ Z8 ⊕ Z4n−14

2 , if n ≥ 4.
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Proof This coloring is 4-taut, so Lemma 6.6 applies and
⊕

H∈C? H1(MH) has odd order.
Therefore

H1(M̃) ∼=
⊕

H∈C?

H1(MH)⊕ Za
8 ⊕ Zb

4 ⊕ Zc
2

for some a, b and c with 3a + 2b + c = 4n− 11, and a + b + c = dim H1(M̃; Z2). If n = 3,
we must have a = b = 0 and c = 1, which proves this case of the theorem. From now on
we assume that n ≥ 4.

Let H0 = 〈x1, x2, x3〉 ∈ C?, and set Γ0 = ΓH0 , M0 = MH0 , and∆0 = ∆H0 ; note that Γ0

is the rim. The chain of subgroups 1 ≤ 〈x3〉 ≤ H0 ≤ G determines a chain of coverings
M̃ → M1 → M0 → M, of which the middle one has group H0/〈x3〉 ∼= Z2

2 and the others
are 2-fold. The branch set∆0 of M̃ → M0 is a link of n components, any two of which have
linking number 1 by Lemma 7.10. The branch set of M1 → M0 is a 3-component sublink
L0 of ∆0, lying over the three rungs whose color is not x3, and it follows from Lemma 7.4
that H1(M1; Z2) ∼= Z2. Also, each component of ∆0 − L0 is covered by four simple closed
curves in M1, so M̃ → M1 is branched over a link ∆1 of 4n − 12 components. Each
element of H1(M1; Z2) represented by a component of∆1 has non-trivial image under the
map H1(M1; Z2) → H1(M0 − L0) defined just before Lemma 7.3, and is therefore non-
trivial. Hence H1(∆1; Z2) → H1(M1; Z2) is onto, and the special case of Lemma 7.2 shows
that dim H1(M̃; Z2) = 4n − 13. It follows that 2a + b = 2. If we show that a > 0, it will
follow that a = 1, b = 0 and c = 4n− 14, completing the proof.

Let gi ∈ G be the color of the rung τi . Since n ≥ 4, there is at least one rung with color
x3, which we may take to be τ0. Then g1 · · · gn−1 = 1, and applying Lemma 8.5 to the rungs
τ1, . . . , τn−1 we see that it is enough to show that

z =
n−1∑
i=1

∑
H∈C?

δH(gi)viH ∈ C ′0(Γ | 3)

represents a non-zero element of H0(Γ | 3). Recall that C ′(Γ | 3) is a subcomplex of
C ′(Γ | 4) =

⊕
H∈C? C(ΓH ; Z2). Since, for each H ∈ C?, ΓH is a circuit and there are an even

number of i (1 ≤ i ≤ n−1) with δH(gi) = 1, z is a boundary in C ′(Γ | 4). Let c ∈ C ′(Γ | 4),
with c =

∑
σ∈S1(Γ),H∈C? c(σ,H)σH, and set φ(c) =

∑n−1
i=1

∑
H∈C? c(τi,H) ∈ Z2. If c is a

cycle, then φ(c) = 0, so if c1 and c2 both have boundary z, then φ(c1) = φ(c2). On the other
hand, if c lies in C ′(Γ | 3), then φ(c) = 0. Thus if we can find c ∈ C ′(Γ | 4) with ∂c = z
and φ(c) = 1, it will follow that z represents a non-zero element of H0(Γ | 3).

For H ∈ C?, let zH =
∑n−1

i=1 δH(gi)vi ∈ C0(ΓH ; Z2), so z =
∑

H∈C? zHH. A chain
c ∈ C ′(Γ | 4) with ∂c = z has the form c =

∑
H∈C? cHH with cH ∈ C1(ΓH ; Z2) and

∂cH = zH for H ∈ C?. Now zH0 = 0 and we may take cH0 = 0. The remaining elements
of C?(G) are in 2–1 correspondence with the elements of C?(H0). For H ∈ C?(H0) let H1

and H2 be the two elements of C?(G) with H1 ∩ H0 = H = H2 ∩ H0. Then ΓH1 and
ΓH2 contain the same rungs; let mH be the number of these rungs, and kH the number
of them distinct from τ0. The union of ΓH1 and ΓH2 is an mH-rung Möbius ladder. If
cH1 ∈ C1(ΓH1 ; Z2) and cH2 ∈ C1(ΓH2 ; Z2) both have boundary zH1 = zH2 , we may compute
the sum aH of the coefficients of the τi for 1 ≤ i ≤ n − 1 in cH1 and cH2 using Lemma 8.6
(provided that mH and kH satisfy the hypotheses of that lemma, as we shall see they do),
and then c =

∑
H∈C?(H0)(cH1 H1 + cH2 H2) is an element of C ′1(Γ | 4) with ∂c = z and
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xi xi+1 xi+2 xi+3 xi+4

H1i : 1 0 0 0 0
H2i : 0 1 1 1 1
H3i : 1 1 0 0 0
H4i : 0 0 1 1 1
H5i : 1 0 1 0 0
H6i : 0 1 0 1 1

Table 1

φ(c) =
∑

H∈C?(H0) aH . Now, for any n and H = 〈x1, x3〉, 〈x2, x3〉 or 〈x1x2, x3〉 we have
mH = kH = 2, and so aH = 1. For n even we have mH = n − 1 and kH = n − 2
for H = 〈x1, x2x3〉, 〈x2, x1x3〉 or 〈x1x2, x1x3〉, and mH = n − 3 and kH = n − 4 for
H = 〈x1, x2〉; while for n odd we have mH = n − 2 and kH = n − 3 for H = 〈x1, x2〉,
〈x1, x2x3〉 or 〈x2, x1x3〉, and mH = n and kH = n−1 for H = 〈x1x3, x2x3〉; in all these cases,
aH = 0. This gives φ(c) = 1, completing the proof.

Theorem 8.8 Let d = 5, and let Γ be the Petersen graph with the G(5)-coloring of Exam-
ple 1.8. Then

H1(M̃) ∼=
⊕

H∈C?

H1(MH)⊕ Z16 ⊕ Z4
4 ⊕ Z2

2.

Proof Let S =
⊕

H∈C? H1(MH). This coloring is 5-taut, and therefore taut. By Lemmas
5.7 and 6.5, we may identify S and H1

(
D(k)
)

(1 ≤ k ≤ 4) with their images in H1(M̃), so
we have a filtration

S ≤ H1(Im β) = H1

(
D(4)
)
≤ H1

(
D(3)
)
≤ H1

(
D(2)
)
≤ H1

(
D(1)
)
= H1(M̃).

Moreover, H1

(
D(4)
)
/S ∼= Z2, and there are exact sequences

0 −→ H1

(
D(4)
)
/S −→ H1

(
D(3)
)
/S −→ Z6

2 −→ 0,(8.9)

0 −→ H1

(
D(3)
)
/S −→ H1

(
D(2)
)
/S −→ Z6

2 −→ 0, and(8.10)

0 −→ H1

(
D(2)
)
/S −→ H1(M̃)/S −→ Z2 −→ 0.(8.11)

We show first that H1(M̃)/S has an element of order 16. Applying Lemma 8.5 to the edges
τ0, . . . , τ4, we see that it is enough to show that

z =
4∑

i=0

∑
H∈C?

δH(xi−1xi+2)viH ∈ C ′0(Γ | 4)

represents a non-zero element of H0(Γ | 4). Now C ′(Γ | 4) is a subcomplex of
C ′(Γ | 5) =

⊕
H∈C? C(ΓH ; Z2). For each H ∈ C?, δH(xi−1xi+2) is non-zero for an even

number of i (0 ≤ i ≤ 4), and so z is a boundary in C ′(Γ | 5). Let c ∈ C ′(Γ | 5), with
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τi τi+1 τi+2 τi+3 τi+4 ρi ρi+1 ρi+2 ρi+3 ρi+4

H1i ,H2i : 0 1 0 1 0 1 1 0 0 0
H3i ,H4i : 0 1 1 1 1 1 0 1 0 0
H5i ,H6i : 1 1 0 0 0 1 1 1 1 0

Table 2

c =
∑

σ∈S1(Γ),H∈C? c(σ,H)σH, and set φ(c) =
∑4

i=0

∑
H∈C? c(τi,H) ∈ Z2. If c is a cycle,

or if c ∈ C ′(Γ | 4), then φ(c) = 0. Thus if we can find c ∈ C ′(Γ | 5) with ∂c = z and
φ(c) = 1, it will follow that z represents a non-zero element of H0(Γ | 4).

For H ∈ C?, let zH =
∑4

i=0 δH(xi−1xi+2)vi ∈ C0(ΓH ; Z2). If cH ∈ C1(ΓH ; Z2) has
∂cH = zH , then c =

∑
H∈C? cHH ∈ C ′(Γ | 5) has ∂c = z. Let H0 ∈ C? have δH0 (xi) = 1

for all i. Then ΓH0 is the outer rim and zH0 = 0, so we may take cH0 = 0. The remaining
elements of C? may be numbered as H ji , 1 ≤ j ≤ 6 and 0 ≤ i ≤ 4. In Table 1, we list for
H = H ji the values of δH on the basis x0, . . . , x4; it will be apparent from the table that we
have listed every H 6= H0. The xi are the colors on the σi ; in Table 2 we list the values of the
δH on the colors of the other edges. We can read off the 0-chains zH from these tables; we
list these below, together with cH ∈ C1(Γ; Z2) with ∂cH = zH ; reference to the tables will
show that in fact cH ∈ C1(ΓH ; Z2).

H = H1i : zH = vi+1 + vi+3, cH = τi+1;

H = H2i : zH = vi+1 + vi+3, cH = τi+1;

H = H3i : zH = vi+1 + vi+2 + vi+3 + vi+4, cH = τi+1 + τi+2;

H = H4i : zH = vi+1 + vi+2 + vi+3 + vi+4, cH = τi+1 + τi+2;

H = H5i : zH = vi + vi+1, cH = ρi + σi + ρi+1;

H = H6i : zH = vi + vi+1, cH = τi + ρi+2 + σi+1 + ρi+1.

Now φ(
∑

H∈C? cHH) = 1, and the proof that H1(M̃)/S has an element of order 16 is
complete. It follows that H1

(
D(3)
)
/S has an element of order 4. Since H1

(
D(4)
)
/S ∼= Z2,

the sequence (8.9) gives H1

(
D(3)
)
/S ∼= Z4 ⊕ Z5

2. Also, H1

(
D(2)
)
/S has an element of

order 8, so the sequence (8.10) gives H1

(
D(2)
)
/S ∼= Z8 ⊕ Za

4 ⊕ Zb
2 for some a and b with

2a + b = 10, and then (8.11) gives H1(M̃)/S ∼= Z16 ⊕ Za
4 ⊕ Zb

2. Since S has odd order, we
have H1(M̃) ∼= S⊕ Z16 ⊕ Za

4 ⊕ Zb
2.

Consider the tower of coverings M̃ → M2 → M1 → M0 → M corresponding to
the chain of subgroups 1 ≤ 〈x0x1, x4x0〉 ≤ 〈x0x1, x2x3, x4x0〉 ≤ H0 ≤ G. Here M̃ →
M2 has group 〈x0x1, x4x0〉 ∼= Z2

2 and the others are 2-fold. Now M0 is a Z2 homology
sphere, and the branch set ∆H0 of M̃ → M0 depends on the mod 2 linking number of
the inner and outer rims of Γ in M. If this number is 0 then ∆H0 is a graph with ver-
tices w0, . . . ,w4,w ′0, . . . ,w

′
4 and edges {wi,wi+2} colored xi−1xi+2, {w ′i ,w

′
i+2} also colored

xi−1xi+2, and {wi,w ′i } colored xi−1xi . If the linking number is 1 then∆H0 is obtained from
that graph by replacing, say, the edges {w0,w2} and {w ′0,w

′
2} by {w0,w ′2} and {w ′0,w2}. In

either case, the branch set of M1 → M0 is a Hamiltonian circuit in∆H0 , and the edges not
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on this circuit are {w3,w ′3}, {w1,w ′1}, {w0,w ′0}, {w2,w4} and {w ′2,w
′
4}. Therefore M1 is a

Z2 homology sphere and the branch set of M̃ → M1 is a link L1 of 5 components. We num-
ber the components as L1

0, L1
1, L1

2, L1
31 and L1

32, where L1
0 has color x2x3, L1

1 has color x0x1, L1
2

has color x4x0, and L1
31 and L1

32 have color x1x4. By Lemma 7.10, we have Lk(L1
i , L

1
3 j) = 1 for

0 ≤ i ≤ 2 and j = 1 or 2, and the linking number of any other pair of components except
for {L1

31, L
1
32} is 0. Now the branch set of M2 → M1 is L1

0, so M2 is a Z2 homology sphere.
For i = 1 or 2, L1

i is covered by two simple closed curves L2
i1 and L2

i2 in M2, while L1
3i is cov-

ered by a single curve L2
3i . The branch set of M̃ → M2 is the link with these six components.

There is a surface F in M1 with ∂F = L1
1 and disjoint from L1

2. Its inverse image in M2 shows
that Lk(L2

11, L
2
21) = Lk(L2

12, L
2
21) and Lk(L2

11, L
2
22) = Lk(L2

12, L
2
22). Switching the roles of L1

1

and L1
2 shows that all four of these linking numbers are equal. Now, for i, j = 1 or 2, there

is a surface F ′ in M1 with ∂F ′ = L1
3 j that meets L1

i in a single point. Its inverse image shows

that Lk(L2
i1, L

2
3 j) = Lk(L2

i2, L
2
3 j) = 1. These linking numbers determine the matrix Λ of

Lemma 7.4 for the covering M̃ → M2; it has rank 2, and it follows that H1(M̃; Z2) ∼= Z7
2.

Hence a + b = 6, so a = 4 and b = 2, and we are done.
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