Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise

Narelle M. Berry¹*, Kade Davison¹,², Alison M. Coates¹, Jonathan D. Buckley¹ and Peter R. C. Howe¹

¹School of Health Sciences, Nutritional Physiology Research Centre and ATN Centre for Metabolic Fitness, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
²School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

(Received 14 August 2009 – Revised 27 October 2009 – Accepted 11 November 2009 – First published online 19 January 2010)

Impaired endothelial vasodilatation may contribute to the exaggerated blood pressure (BP) responses to exercise in individuals who are overweight/obese. The present study investigated whether consumption of cocoa flavanols, which improve endothelium-dependent flow-mediated dilatation (FMD), can modify BP responsiveness to exercise. Twenty-one volunteers (eight females and thirteen males, 54.9 (SE 2.2) years, BMI 31.6 (SE 0.8) kg/m², systolic BP 134 (SE 2) mmHg, diastolic BP (DBP) 87 (SE 2) mmHg) were randomised to consume single servings of either a high-flavanol (HF, 701 mg) or a low-flavanol (LF, 22 mg) cocoa beverage in a double-blind, cross-over design with 3–7-d washout between treatments. Two hours after cocoa consumption, FMD was measured, followed by continuous beat-to-beat assessment (Finapres™) of BP before and during 10 min of cycling at 75% of age-predicted maximum heart rate. Averaged data from two assessments on each type of beverage were compared by analysis of covariance using pre-exercise BP as the covariate. Pre-exercise BP was similar after taking LF and HF (153 (SE 3)/88 (SE 3) mmHg, respectively, P>0.05). By facilitating vasodilatation and attenuating exercise-induced increases in BP, cocoa flavanols may decrease cardiovascular risk and enhance the cardiovascular benefits of moderate intensity exercise in at-risk individuals.

Impaired endothelial vasodilator function is an important contributor to the development of CVD⁵, but it is not yet clear how it impacts on other biomarkers of cardiovascular health.

It has been well established that obesity and hypertension are associated with impaired NO-dependent vasodilatation⁵,⁶. Reduced availability of NO significantly impairs the degree of blood vessel dilatation in response to cardiovascular stressors such as exercise⁶.

The typical cardiovascular response to aerobic exercise is an increase in heart rate (HR) and cardiac output, which elicits an increase in systolic blood pressure (SBP). Diastolic BP (DBP) either remains unchanged or decreases slightly due to vasodilatation in the exercising muscles, resulting in increased pulse pressure. Impaired endothelial function (as measured by flow-mediated dilatation (FMD)) has been associated with exaggerated BP responses to exercise⁵, which have been linked to an increased risk of developing future hypertension⁶–⁸. This therefore suggests that individuals with impaired vasodilatation, such as those who are obese or have elevated BP, may have exaggerated BP responses to exercise, thus making them predisposed to acute risk during exercise⁹.

Previous attempts to evaluate this emerging risk factor have been limited by the techniques available to measure BP responsiveness to exercise. Most studies have used graded exercise tests with single BP measurements taken at the end of each workload. The introduction of non-invasive techniques for continuous beat-to-beat monitoring of BP enables cardiovascular responses to be measured during rather than after exercise, thus offering a more physiological representation of the effects of impaired dilatation on cardiovascular function, compared with the commonly used but somewhat artificial FMD response to passive hyperaemia.

Recent studies have shown that the short-term intake of cocoa polyphenols can lower BP and improve endothelium-dependent vasodilatation¹⁰–¹³. The mechanism by which cocoa exerts its antihypertensive effect is yet to be determined but the effect may be mediated through enhanced endothelial function¹⁴, with the cocoa polyphenols increasing the activity of NO synthase in endothelial cells¹⁵,¹⁶, which can lead to enhanced endothelium-dependent vasodilatation¹⁷,¹⁸ and improved BP. Thus, there may also be potential for cocoa flavanols to attenuate the BP increases in response to physiological stressors such as exercise.

Abbreviations: BP, blood pressure; FMD, flow-mediated dilatation; HF, high flavanol; HR, heart rate; LF, low flavanol; SBP, systolic blood pressure.

* Corresponding author: Dr Narelle M. Berry, fax +61 8 8302 2178, email narelle.berry@unisa.edu.au
The aim of the present study was to see whether improvements in FMD seen in overweight individuals following consumption of flavanol-rich cocoa (11) can also improve their exaggerated BP responses to aerobic exercise (measured by decreased area under the curve for SBP, DBP and mean arterial pressure during submaximal exercise).

Methods

A randomised, double-blind, cross-over trial was conducted to test the acute effects of cocoa flavanols on BP responsiveness to exercise. The present study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures involving human subjects/patients were approved by the University of South Australia Human Research Ethics Committee and were conducted at the Nutritional Physiology Research Centre. Written informed consent was obtained from all subjects.

Men and post-menopausal women who were overweight or obese (BMI > 25 kg/m²) but otherwise healthy were recruited. Volunteers had no history of CVD, diabetes or renal disease, were not taking diabetic or BP-lowering medication and had seated clinic SBP ≤ 160 mmHg and DBP ≤ 100 mmHg. Participants were not intolerant to alkaloids (caffeine and theobromine) or dairy, currently smoking or using nicotine replacement therapy.

Volunteers visited the Centre at the same time of day on five occasions. At the first (screening) visit, they undertook an exercise test on a cycle ergometer (Monark, Model 828; Vansbro, Sweden) to determine the required workload for subsequent exercise tests. They were required to ride the cycle ergometer for 10 min at a workload eliciting a HR equivalent to 75% of their age-predicted maximum (208–(0.7 × age (years)) × 0.75) (19), and their electrocardiogram was monitored by a medical practitioner to confirm their suitability to continue exercising.

Volunteers were then provided with a dairy-based cocoa beverage powder which was either high (HF) or low (LF) in cocoa flavanols (refers herein to epicatechin and catechin as well as to their procyanidin oligomers up to and including decamers). Reconstituted in 200 ml water, the cocoa beverages provided a total of either 701 mg cocoa flavanols (HF: 139 mg epicatechin, 39 mg catechin and 523 mg procyanidins) or 22 mg cocoa flavanols (LF: 0 mg epicatechin, 9 mg catechin and 13 mg procyanidins). The LF and HF cocoa drinks were provided a total of either 701 mg cocoa flavanols (HF: 139 mg epicatechin, 39 mg catechin and 523 mg procyanidins) or 22 mg cocoa flavanols (LF: 0 mg epicatechin, 9 mg catechin and 13 mg procyanidins) or dairy, currently smoking or using nicotine replacement therapy.

Volunteers were asked to consume a LF diet during the study period, specifically participants were asked to limit their intake of fruit or fruit-containing juices, apples, tea (green, black, herbal, chai, brewed or bottled), coffee or caffeinated beverages, cocoa/chocolate or cocoa/chocolate-containing products, honey, soybeans and soya-containing products, nuts/nut products containing nut skins and red wine. Participants were provided with written and verbal reminders to ensure compliance with this request.

Diet and lifestyle requirements during the study

Table 1. Nutritional profile for each cocoa dose (two sachets) of cocoa product

Flavanols (mg)	22	701
Weight (g)	38	39
Energy (kJ)	605	610
Total fat (g)	1·7	1·7
Sat fat (g)	0·9	0·9
Total CHO (g)	20·6	20·6
Sugars (g)	11·5	11·8
Protein (g)	11·4	11·4
Caffeine (mg)	31·1	27·2
Theobromine (mg)	268·1	307·0

CHO, carbohydrate.

The assessment of FMD in the brachial artery was performed using two-dimensional B-mode ultrasound (LOGIQ 5; GE Medical Systems, Waukesha, WI, USA). Optimal imaging of the artery was achieved using the method of Raitakari & Celemajer (22). A sphygmomanometer cuff was placed about the upper forearm in line with the cubital fossa (i.e. distal to the scanned part of the artery) and inflated to suprasystolic pressure (200 mmHg) for 5 min. Images of the artery were taken before cuff inflation, 10 s before cuff release, 10 s after cuff release and then every 30 s for an additional 3 min to assess the endothelial vasodilator function response to reactive hyperaemia.

(4) Clinic BP was measured by oscillometry (SpaceLabs Model 90217; SpaceLabs Medical, Tampa, FL, USA) while subjects were seated on the cycle ergometer before the commencement of exercise.

During the subsequent exercise test, BP and HR were measured continuously using a Finapres™ BP monitor (Ohmeda, Inc., Englewood, CO, USA) with the hand steadied in a support, which was maintained at a constant height for all occasions. The test commenced with a 5-min pre-exercise period of sitting on the cycle ergometer before a 10-min bout of exercise at a workload eliciting 75% of the subject’s age-predicted maximum HR (19).

This protocol was repeated twice with each cocoa drink (LF or HF) in random order with a 3–7-day washout between visits, and the repeat measures for each supplement were averaged.

Data analysis

Using the Finapres™ BP monitor, data were obtained for every heartbeat during the 15-min protocol, and were then averaged...
in 30-s blocks. The final 30-s of the seated BP and HR assessment were taken to be the pre-exercise HR and BP.

The changes in BP and HR during exercise were calculated by subtracting the average of each 30-s block during exercise from this pre-exercise average. These 30-s averages were used to calculate the area under the curve for the change in BP from pre-exercise values to give an integrated BP response to exercise.

Brachial artery diameter was assessed manually at each time point using the integrated digital callipers by a single observer who was blinded to the treatment group. FMD was reported as the maximum percentage change from baseline in blood vessel diameter following the cuff occlusion, as described previously.(11)

Two-way analysis of covariance was used to compare the effects of cocoa supplementation on both FMD and the BP response to exercise, with baseline arterial diameter and pre-exercise BP used as covariates using STATISTICA version 5.1 (StatSoft, Inc., Tulsa, OK, USA). Relationships between FMD and the BP responses to exercise were determined by linear regression analysis. P<0.05 was taken to indicate statistical significance. All data are presented as means and standard errors unless otherwise stated.

Results

A total of twenty-one volunteers (thirteen men and eight women, age 55 (SE 2·2) years, height 1·7 (SE 0·02) m, weight 94·1 (SE 3·5) kg, BMI 31·6 (SE 0·8) kg/m², SBP 134 (SE 2) mmHg, DBP 87 (SE 2) mmHg) completed the trial. Using an existing database of potential volunteers, individuals identified as having a BMI > 25 kg/m² were invited to return to perform this trial. Of the twenty-five people who were contacted, twenty-one volunteers agreed to participate. There were no withdrawals from the present study.

Flow-mediated dilatation

Fig. 1 demonstrates the FMD response to HF and LF cocoa. Two hours after consumption, the HF cocoa beverage resulted in a significantly greater FMD response than the LF cocoa beverage, P<0.001.

Pre-exercise blood pressure

Pre-exercise BP and HR were measured by Finapres finger plethysmography while on cycle ergometer. Data were averaged from the final 30-s of the pre-exercise period before the commencement of exercise. These readings are likely to differ from the clinic BP readings due to hydrostatic differences between the relative heights of the finger cuff and the brachial artery. There were no significant differences between HF and LF cocoa beverage consumption on the pre-exercise BP (HF: SBP/DBP 153 (SE 3)/88 (SE 3) mmHg, HR 79 (SE 2) beats per min; LF: SBP/DBP 153 (SE 4)/88 (SE 2) mmHg, HR 79 (SE 2) beats per min).

Responses to exercise

Both HR and BP increased in response to the cycling exercise. However, there were no significant differences in the HR response following consumption of the HF or LF cocoa beverages. On the other hand, the increases in BP were attenuated by HF cocoa consumption compared with LF cocoa consumption. Fig. 2 demonstrates the changes from pre-exercise values for the BP responses to exercise for each 30-s block over the entire 10-min exercise bout. Table 2 shows the integrated responses for BP increases during exercise. After adjusting for pre-exercise BP, the area under the curve was reduced 68 % for DBP (P=0·03) and 14 % for mean arterial pressure (P=0·05) following HF cocoa consumption compared with LF cocoa consumption.

Relationship between changes in flow-mediated dilatation and changes in blood pressure response to exercise

Comparison of differences between HF and LF in the FMD and BP responses to exercise revealed no significant relationships between the differences in FMD and the differences in
SBP ($r=0.06, P=0.78$), DBP ($r=0.42, P=0.06$) or mean arterial pressure ($r=0.28, P=0.22$), although the relationship between FMD and DBP approached statistical significance.

Discussion

Results of the present study confirm that consuming a single dose of HF cocoa results in a significant improvement in FMD after 2 h. Moreover, they demonstrate that acute ingestion of HF cocoa can also attenuate the BP response to exercise.

Conditions such as obesity, diabetes and hypertension are known to impair vasodilatation (2,3), and may potentially cause an increase in DBP during exercise. In the present study, there was indeed an exercise-induced increase in DBP (Fig. 2), but the increase was attenuated by supplementation with HF cocoa.

This reduction in DBP response tended to correlate with the increase in FMD following HF consumption ($P=0.06$), suggesting that this benefit may be due to improved endothelium-dependent dilatation. While some published studies have also found a relationship between exercise BP and FMD (5,23), others have not (24). Green et al. (25) found no relationship between improvements in conduit vessel function (as measured by FMD) or resistance vessel function (strain gauge plethysmography of total forearm blood flow) and improvements in exercise-induced vasodilation following exercise training. The role of NO as a mediator of exercise-induced vasodilatation is controversial. A recent review by Tzemos et al. (4) has concluded that there may be a role for NO in mediating exercise-induced vasodilatation, but of the studies that have examined the role of NO in exercise-induced vasodilatation (5,23,24), most have reported that while NO does contribute (5,23), there are also many other factors which mediate the vasodilatory response to exercise. Although the relationship between improvement in FMD and attenuation of the BP response to exercise was not significant, it is likely that the present study was not sufficiently powered to confirm this relationship.

The finding of an improvement in FMD following consumption of HF in the present study is consistent with a growing body of evidence indicating beneficial effects of cocoa flavanols for endothelial function (10,11,13,17,18,21). The mechanism by which cocoa flavanols influence vasodilatation is yet to be clearly identified, although it appears to be via an increase in the bioavailability of NO due to increased NO production (13,26,27). Previous research has shown that after consumption of a similar cocoa product, plasma levels of flavanols peak at approximately 2 h post-consumption. In addition, pure epicatechin consumption closely mimicked the effect of the cocoa beverage, suggesting that epicatechin may be the flavanol responsible for the improvements in vascular function (28); however, the present study was a proof of concept study with $n=3$. Therefore, further research is required to fully elucidate which flavanols in cocoa can provide the observed benefits in vascular function.

It is important to note that the consumption of flavanol-rich cocoa beverages used in the present study may not deliver the same benefits as dark chocolate consumption. In a study by Hammerstone et al., it was demonstrated that dark chocolate contains approximately 4-3 mg flavanols per g. To achieve the amount of flavanols seen in the present study (701 mg), the consumption of 163 g dark chocolate or approximately double that amount of milk chocolate would be required (29). Given that 163 g dark chocolate provides approximately 3526 kJ and 28 g saturated fat (30), it would be preferable to deliver cocoa flavanols for health benefits in a beverage form such as that used in the present study, in which 610 kJ and 0.9 g saturated fat was delivered.

In conclusion, the results of the present study provide further support for acute consumption of cocoa flavanols to improve FMD, and they provide new evidence that cocoa flavanols can also attenuate the BP responses to exercise.

These findings suggest that the consumption of cocoa flavanols may be able to enhance muscle blood flow to allow for improved nutrient delivery and removal to exercising muscles and attenuate the BP responses to exercise, which could allow for safer and more efficient exercise performance in an at-risk population such as that included in the present study, thus placing less stress on the cardiovascular system during exercise. Furthermore, these improvements in FMD and BP response to exercise add to growing evidence that HF cocoa consumption may benefit individuals with cardiovascular risk factors.

Acknowledgements

We are grateful to Associate Professor Garry Scroop for medical supervision of volunteers and to our volunteers for giving so freely of their time. Mars, Inc. provided the cocoa drinks and financial support for the present study. All authors contributed to study design, interpretation of outcomes and
preparation of the manuscript; N. M. B. and K. D. collected and analysed the data. The authors do not have any financial or personal conflicts of interest.

References

