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ON CERTAIN RANKIN-SELBERG INTEGRALS ON GE6

DAVID GINZBURG and JOSEPH HUNDLEY

Abstract. In this paper we begin the study of two Rankin-Selberg integrals

defined on the exceptional group of type GE6. We show that each factorizes

and that the contribution from the unramified places is, in one case, the degree

54 Euler product LS(π × τ, E6 × GL2, s) and in the other case the degree 30

Euler product LS(π × τ,∧2 × GL2, s).

§1. Introduction

In this paper, we begin the study of the tower of Rankin-Selberg inte-

grals which was announced in [G-H3]. Specifically, we consider two integrals,

which were labelled as (c3) and (c4) in [G-H3]. In more details, let π denote

an irreducible cuspidal generic representation defined on the exceptional

group GE6(A), and let τ denote an irreducible cuspidal representation of

GL2(A). In the first integral we consider, we give a Rankin-Selberg con-

struction for the partial L function LS(π × τ,E6 × GL2, s). This is an L

function of degree 54. For the second construction, let π denote an irre-

ducible cuspidal representation of GL6. The second L function we consider

is the degree 30 L function LS(π × τ,∧2 ×GL2, s).

One of the main ingredients of these two constructions is the way that

the cuspidal representation τ is built in it. Starting with τ , we build a

residual representation defined on the group GSpin10(A), which we denote

by θτ . This representation was constructed and studied in [G-H] where

it was used in a slightly different way. In this paper, we build it inside an

Eisenstein series defined on the group GE6(A). More precisely, let P denote

one of the standard maximal parabolic subgroups of GE6 whose Levi part

is GSpin10. Let Eτ (g, s) denote the Eisenstein series which is associated to

the induced representation Ind
GE6(A)
P (A) θτδ

s
P . In other words, our Eisenstein

series is constructed using a residual representation which is associated with

a cuspidal representation on GL2(A). As far as we know this is the first
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time that such a construction is used. With the above data, the first global

integral we consider is given by

∫

Z(A)GE6(F )\GE6(A)
ϕπ(g)θ(g)Eτ (g, s) dg

where θ(g) is a vector in the space of the minimal representation of the

exceptional group E6. The second integral is constructed using the same

Eisenstein series, but it is integrated over a subgroup of GE6.

In each of the two cases, we first unfold the global integrals, and show

that they are Eulerian. This is now quite a standard procedure. Then,

in each case, we carry out the unramified computations. A part of the

unramified computations for the first integral involves an application of

invariant theory to the Rankin-Selberg method in a way that seems to be

new. Specifically, we use a theorem of D. I. Panyushev [P1] which takes as

input an algebraic group G over an algebraically closed field of characteristic

zero and a G-variety X, and gives as output a subgroup K and a subvariety

Y such that Y has the structure of a K-variety and restriction of polynomial

functions to a subvariety gives an isomorphism of the two algebras of U -

invariants. (Here U is a maximal unipotent of G or K as appropriate.) This

is applicable to our situation because checking that the summation that is

obtained from our integral is equal to the desired L function amounts to the

same thing as describing the decomposition of the symmetric algebra of the

representation (ρ, V ) used to form an L function, which, in turn, amounts

to the same thing as describing the structure of the algebra C[V ∗]U of U

invariant polynomial functions on the dual V ∗.

In both of the cases considered in this paper V = V1 ⊗W where W

is the standard two dimensional representation of SL2(C) and (ρ1, V1) is

an irreducible representation of the other component in a product group.

We pass from C[V ∗]U to C[V ∗
1 × V ∗

1 ]U . Then, using the same trick as in

[G-H2] Section 4 of multiplying by a certain polynomial, we may simplify the

summation. As described below this corresponds to passing to C[V ∗
1 ×C]U

where C is a certain cone. Each of these steps may be carried out for either

of the two representations we consider. Now, suppose we take G to be E6(C)

andX to be the variety V ∗
1 ×C obtained in the first case. ThenK ≃ GL6(C)

and Y is isomorphic to the analogous variety obtained in the second case.

The required identity then follows easily from the Littlewood-Richardson

rule.
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Interestingly enough, the treatment of the unramified computations cor-

responding to the second integral does not “factor through” this identity.

This is because the summation obtained from the Rankin-Selberg integral

in that case is not in a form which is amenable to being multiplied by the

polynomial to pass to C[V ∗
1 × C]U .

Finally, it should be mentioned that these L-functions can be studied

also using the Langlands Shahidi method of Whittaker coefficients of Eisen-

stein series. Indeed, E6 ×GL2 is a Levi subgroup of the exceptional group

E8, and E7 has a parabolic subgroup whose Levi part is of type A5 × A1.

See [S] for details.

The authors wish to take this opportunity to make a correction to

[G-H3]. In [G-H3] it is stated that Kac’s paper [K] contains a list of all

pairs (LG,V ) such that the algebra C[V ]
LG is free. This is false.

A portion of this research was completed while the second named au-

thor was a guest at Pohang University of Science and Technology. He wishes

to thank POSTECH for the hospitality and excellent working environment,

and to thank Sey Kim for help with some of the algebro-geometric back-

ground for the work of Panyushev discussed in Section 4.3.

§2. The Global integral for E6 ×GL2

Let G = GE6 denote the similitude group of the exceptional group E6.

For basic definitions and notations we refer the reader to [G]. We shall de-

note the six simple roots of G by α1, . . . , α6, ordered by the Dynkin diagram

as in [G]. For each root α there is a one dimensional unipotent subgroup

Uα of G associated to α. We fix a family of isomorphisms xα : Ga → Uα,

where Ga is the additive group, as in [Gk-Se] so that the constants N(α, β)

defined by

xα(r)xβ(s)xα(−r)xβ(−s) = xα+β(N(α, β)rs)

are as in the table on p. 416 of [Gk-Se]. We remark that they are all 0, 1,

or −1. (Here, we abuse notation: if α+β is not a root, there is no function

xα+β , but N(α, β) = 0 and xα+β(0) is defined to be identity.) For 1 ≤ i ≤ 6,

let si denote the simple Weyl element of G corresponding to the simple root

αi. Let wi := xαi
(1)x−αi

(−1)xαi
(1). Then wi is a representative for si in

G, and wixβ(r)w
−1
i = xsi·β(N(αi, β)r) with the same coefficients N(α, β) as

above, except in the case β = ±αi, in which case the appropriate coefficient

is −1. We remark that these coefficients are all zero, 1 or −1, and that

there will be no delicate points regarding these signs in the first of our two
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integrals. We shall denote by w[i1i2 · · · ir] the product wi1wi2 · · ·wir . As in

[G] p. 104 we denote by h(t0, t1, . . . , t6) the maximal torus of the group G.

The action of the Weyl group of G on this torus is described on that page.

Let π denote a generic cuspidal irreducible representation defined on the

group G(A), and for simplicity we shall assume that it has a trivial central

character. Here A is the ring of adeles of some number field F . The precise

definition of a generic representation is given in [G] Section 1.2. For our

construction we will need to work with the minimal representation of the

group G. This representation was constructed and studied in [G-R-S]. The

construction there is defined on the group E6, however there are no prob-

lems to extend this definition to the similitude group. See [G-J] for a similar

definition for the similitude exceptional group GE7. In this paper we shall

denote a function in the space of this representation by θ(g). Another repre-

sentation we will need for our construction was defined and studied in [G-H],

Section 3. The representation constructed there was defined on the group

GSO10(A). A similar definition holds for the group GSpin10(A). This rep-

resentation depends on a cuspidal representation τ defined on PGL2(A),

or, equivalently, defined on GL2(A) with trivial central character. We shall

denote a vector in this space by θτ (h) where h ∈ GSpin10(A).

To introduce the Eisenstein series we shall use, let P denote the maxi-

mal standard parabolic subgroup of G whose unipotent radical contains the

one dimensional unipotent subgroup Uα6 . Hence, the Levi factor of P is

isomorphic to GSpin10 ×GL1. Let Eτ (g, s) denote the Eisenstein series de-

fined on the group G(A) from a vector fτ (g, s) in the induced representation

Ind
G(A)
P (A)

θτδ
s
P . Here s is a complex variable.

Consider the global integral

(1)

∫

Z(A)G(F )\G(A)
ϕπ(g)θ(g)Eτ (g, s) dg.

Here ϕπ is a vector in the space of π and Z denotes the center of G.

Fix a character ψ of the additive group F\A. We introduce a convenient

shorthand for picking out particular characters of our unipotent groups. The

unipotent radical U(P ) of P is generated by the subgroups Uα associated

to those α =
∑

i niαi such that n6 > 0. We put ψU(P )(xα6(r)u
′) = ψ(r),

and what this indicates is the ψU(P ) is trivial on Uα for all α not listed.

Similarly, if V denotes the maximal unipotent subgroup of the Levi of P

associated to our choice of simple roots, we define a character ψV of V by
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ψV (xα1(r1)xα2(r2)xα3(r3)xα5(r5)v
′) = ψ(r1 + r2 + r3 + r4), and we define a

character of the maximal unipotent subgroup U = V U(P ) of G by

ψU (xα1(r1)xα2(r2)xα3(r3)xα4(r4)xα5(r5)xα6(r6)u
′)

= ψ(−r1 − r2 − r3 − r4 − r5 − r6).

Then the main result of this section is

Theorem. For Re(s) large, the integral (1) is equal to

∫

Z(A)U0(A)\G(A)
θU(P ),ψ(g)

∫

A6

Wπ(z1(m1,m2,m3,m4)w[5645]g)

× fV,ψτ (z2(l1, l2)w[45]g, s) dmidlidg,

where

z1(m1,m2,m3,m4)

= x−(000010)(m1)x−(000110)(m2)x−(000011)(m3)x−(000111)(m4)

and z2(l1, l2) = x−000110(l1)x000100(−l2), and U0 is the 34 dimensional uni-

potent group generated by {x010000(r)x001000(−r)x010100(s)x001100(−s)} and

the unipotent subgroups Uα corresponding to the other 32 positive roots.

Remark . The above integral then factors as a product of local integrals.

This follows from the fact that each of the functionals ϕπ 7→ Wπ(e), θ 7→

θU(P ),ψ(e), fτ ( · , s) 7→ fV,ψτ (e, s) lies in a one-dimensional space spanned by

a product of local functionals.

Proof. We unfold the global integral (1). Assume that Re(s) is large.

Unfolding the Eisenstein series, integral (1) equals

(2)

∫

Z(A)P (F )\G(A)
ϕπ(g)θ(g)fτ (g, s) dg.

Here fτ (g, s) is a function in the induced representation Ind
G(A)
P (A) θτδ

s
P .

Next, we expand the function θ(g) along the unipotent group U(P ). We

may sort the characters of U(P ) into orbits for the action of P by con-

jugation. By the smallness of the theta representation (see [G-R-S]) only

two of them contribute to the expansion. One is the orbit consisting of the
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trivial character; the character ψU(P ) defined above is a representative for

the other.

We have

(3) θ(g) = θU(P )(g) +
∑

γ∈L(F )\P (F )

θU(P ),ψ(γg),

where L is the stabilizer of ψU(P ) in P , θU(P )(g) is the constant term of θ(g)

along U(P ), and

θU(P ),ψ(g) =

∫

U(P )(F )\U(P )(A)
θ(ug)ψU(P )(u) du.

We plug the above expansion into (2). By the cuspidality of π, the first

term contributes zero to the integral. We thus obtain

(4)

∫

Z(A)L(F )\G(A)
ϕπ(g)θ

U(P ),ψ(g)fτ (g, s) dg.

The group L may be described as follows. Let M denote the group gen-

erated by all unipotent elements xα(r) where α =
∑4

i=1miαi and by all

torus elements h(t0, t1, . . . , t4, t
2
6, t6). Here mi are positive or negative. Thus

M/Z ∼= GL5. Denote by V1 the unipotent group generated by all xα(r)

where α =
∑4

i=1 niαi + α5. Thus dimV1 = 10. With these notations we

have L = MV1U(P ).

Next we expand fτ along V1. The group M acts on the characters of

V1(F\A) via the exterior square representation. Thus there are three orbits.

There are various ways to visualize this action. For example having noted

that the representation of GL5 is the exterior square, we may visualize its

space as the space of 5×5 skew-symmetric matrices. Then the 3 orbits cor-

respond to the three possibilities for the rank, which must be even. We also

note that V1 is contained in a Levi isomorphic to GSpin10. For purposes

of understanding unipotent subgroups there is no problem with passing to

SO10, and visualizing V1 as the set of matrices
(
I X
I

)
in SO10, defined as in

[G-H2], in which case X is skew-symmetric about the non-standard diago-

nal. We may think of a character as given by a matrix A of coefficients with

the same skew-symmetry property, by ψ(
∑

i,j aijxij). For this presentation

it is important to remember that the action on characters is dual to the

action on the matrices X. Alternatively, we may parameterize characters

by the elements of the Lie algebra of the corresponding lower triangular

parabolic of so10 (cf. [G-R-S], p. 93).
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One can check that the contributions to (4) coming from the small orbits

are both zero because of the cuspidality of π. Let us mention that in order to

show this one has to use the invariance properties of the function θU(P ),ψ(g),

as described in [G-R-S] Theorem 5.4. We choose as representative for the big

orbit the character ψ1 given by ψ1(x010110(r1)x001110(r2)v
′
1) = ψ(r1 + r2).

Recall our convention from before: V1 is the product of the groups Uα
associated to roots α =

∑6
i=1 niαi such that n6 = 0, n5 > 0, and what we

mean is ψ1|Uα ≡ 1 for all α other than the two named. Thus, integral (4)

equals

(5)

∫

Z(A)M1(F )V1(F )U(P )(F )\G(A)
ϕπ(g)θ

U(P ),ψ(g)fV1,ψ1
τ (g, s) dg,

where fV1,ψ
τ (g, s) is defined in a similar way as θU(P ),ψ(g), and M1 is the sta-

bilizer of the character ψ1 inside M . It consists of a four-dimensional unipo-

tent group Y1 which is the product of Uα, α ∈{(100000); (101000); (101100);

(111100)}, and a reductive part isomorphic to GSp4 contained in the stan-

dard Levi with simple roots α2, α3, α4. We expand fV1,ψ
τ along Y1 and

find that the nontrivial characters are permuted transitively by this copy

of GSp4. We choose the representative described with our convention by

ψ2(y1) = ψ2(x100000(r)y
′
1) = ψ(r). We denote the stabilizer of this char-

acter inside our GSp4 by M2. As above, the trivial orbit contributes zero

by cuspidality, and we now factor the integration over the unipotent group

U1 = Y1V1U(P ). Hence (5) equals

(6)

∫

Z(A)M2(F )U1(A)\G(A)
ϕU1,ψ3
π (g)θU(P ),ψ(g)fV2,ψ2

τ (g, s) dg.

Here, we extended ψ2 to a character of V2 := Y1V1 by ψ2(y1v1) = ψ2(y1)

ψ1(v1). Also the character ψ3 of U1 is given by ψ3(v2u) = ψ−1
2 (v2)ψ

−1
U(P )(u)

for v2 ∈ V2 and u ∈ U(P ).

The group M2 consists of a reductive part generated by U±(000100), the

center Z, the set of all h(a, b) = h(ab−1, b2, ab2, ab3, ab4, b2, b), and a three

dimensional unipotent part

Y2 := {x010000(r)x001000(−r)x010100(s)x001100(−s)x011100(t)}.

Recall that fτ (g, s) is a vector in the induced representation

Ind
G(A)
P (A) θτδ

s
P . Hence the unipotent integration that defines fV2,ψ2

τ amounts
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to taking a certain Fourier coefficient of a function in the space of the rep-

resentation θτ . In fact, it is essentially the same Fourier coefficient denoted

by θV,ψV in equation (7) of [G-H2]. Repeating the arguments that appear

in that paper, we first deduce that fV2,ψ2
τ is invariant by U011100(A) on the

left, and then obtain the identity

(7) fV2,ψ2
τ (g, s) =

∫

A2

fV4,ψ4
τ (z2(l1, l2)w[45]g, s) dli ,

where z2(l1, l2) = x−(000110)(l1)x−(000100)(l2), and V4 is the product of the

subgroups Uα corresponding to all of the roots α =
∑

i niαi with n6 = 0

and n5 > 0 except for α5 itself. The character ψ4 of V4 is given by

ψ4(x100000(r1)x010000(r2)x001000(r3)v
′
4) = ψ(r1 + r2 + r3).

We apply similar techniques to
∫
F\A ϕ

U1,ψ3
π (x011100(r)g) dr. Recall that U1

is the product of the subgroups Uα corresponding to a certain set of roots.

If, from this set, we delete the roots (000010); (000110); (000011); (000111)

and add (001000); (001100); (011100); −(000010); −(000110), then the

corresponding product of Uα’s is again a group, which we denote U2. By

restricting ψ3 to the common subgroup and then extending it trivially to

U2, we obtain a character of U2 which we again denote by ψ3. Next, let

U3 = w[5645]U2w[5645]−1, and ψ5(u5) := ψ3(w[5645]−1u5w[5645]). Then

ψ5(x100000(r1)x010000(r2)x001000(r3)x000100(r4)u
′)

= ψ(−r1 − r2 − r3 − r4).

The identity
∫

F\A
ϕU1,ψ3
π (x011100(r)g) dr(8)

=

∫

A4

ϕU3,ψ5
π (z(m1,m2,m3,m4)w[5645]g) dmi ,

is an application of a trick, due to Jacquet-Shalika. The same trick appears

on page 751 of [B-F-G] where it is explained in some detail. (The original

instance, on page 218 of [J-S] is more complicated than our case here.) We

now plug (7) and (8) into (6), and factor the integration over the unipotent

part of M2 to obtain
∫
ϕU5,ψ5
π (z1(m1,m2,m3,m4)w[5645]g)θU(P ),ψ(g)(9)

× fV4,ψ4
τ (z2(l1, l2)w[45]g, s) dlidmjdg.
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Here the variable g is integrated over Z(A)GL2(F )U4(A)\G(A) and the

variables li and mj are integrated over A. The group GL2 in the inte-

gration domain is generated by the unipotent groups x±(000100)(r) and the

torus h(a, b) defined above. The group U4 is the product of U1 and the

three dimensional unipotent part of M2 described above. Finally, U5 is the

product of U3 and this three dimensional unipotent part, which may also

be described as the product of the subgroups Uα corresponding to all of the

positive roots α except for α5, α6 and α5 + α6.

Next we expand the function ϕU5,ψ5
π along the unipotent group gener-

ated by x000010(r1) and x000011(r2) with points in F\A. Recall that M2

contains a subgroup isomorphic to GL2. After conjugation by w[5645]

this group acts with two orbits on this expansion. The trivial one con-

tributes zero by cuspidality. For the other we choose the representative

x000010(r5)x000011(r
′) 7→ ψ(−r5), and the stabilizer consists of Uα4 and the

torus T1 consisting of all h(1, b) for h(a, b) as above. Finally, we expand ϕπ
along x000001(r6) with r6 ∈ F\A. The nontrivial characters are permuted

by T1(F ) and we use ψ(−r6) as representative. Observe that α6 corre-

sponds under w[5465] to α4 and then under w[45] to α5. Hence when we

factor the integration over Uα4(F )Y2(F )U011100(A)\Uα4(A)Y2(A) we obtain

fV,ψτ (z2(l1, l2)w[45]g), and the stated identity follows.

§3. Unramified computations for E6 ×GL2

In this section, F is a nonarchimedean local field at which all data is

unramified. Denote by I1(Wπ, θ, fτ,s) the integral

∫

ZU0\G

∫

F 6

Wπ(z1(m1,m2,m3,m4)w[5645]g)θU(P ),ψ(g)(10)

× fV,ψV
τ (z2(l1, l2)w[45]g, s) dlidmjdg.

Here Wπ, θ
U(P ),ψ and fV,ψτ are the local functionals corresponding to the

global objects of the same name appearing in the last section. Since we are

at an unramified prime we may give formulae for them, as we will in due

course. We shall prove

Proposition. Assume all data is unramified. Then for Re(s) large,

(11) I1(Wπ, θ, fτ,s) =
L(π × τ,E6 ×GL2, 4s − 3/2)

L(τ, 12s − 7/2)L(τ, sym3, 12s − 9/2)
.
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Proof. We have

z1(m1,m2,m3,m4)w[5645]

= w[5645]x000111(m1)x000110(m2)x000010(m3)x000011(m4).

We collapse the integrals over mi and g to obtain one integral of g over

Z(A)U ′
0\G(A) where U ′

0 is the subgroup of U0 which consists of all one

dimensional unipotent root subgroups in U0 not including the roots 000111;

000110; 000010; 000011. Next we change variables g 7→ w[5645]g. We obtain
∫

ZU ′′

0 \G

∫

F 2

Wπ(g)θ
U(P ),ψ(w[5645]g)(12)

× fV,ψV
τ (w[65]x−000111(l1)x−000110(l2)g, s) dlidg.

Here U ′′
0 = w[5645]U ′

0w[5645]. Let U denote the maximal unipotent radical

of G. The quotient U ′′
0 \U is 6 dimensional, and can be identified with the

unipotent group

x000010(m1)x000011(m2)x000110(m3)x000111(m4)x010110(m5)x010111(m6).

Observe that the functions, Wπ, θ
U(P ),ψ(w[5645] · ), and fV,ψτ (w[65] · , s) are

all left-invariant by U010110, U010111. The only dependency of the integrand

on m5 is a ψ(−m5l2) that comes from the commutation relations and the

equivariance of fV,ψτ along Uα2 . We may now interpret the integration along

l2 as taking Fourier transform at m5. Integrating m5 returns the value of

the original function at m5 = 0. The situation with l1 and m6 is the same.

Thus (12) equals
∫

ZU\G

∫

F 4

Wπ(g)θ
U(P ),ψ(w[5645]y(m1 ,m2,m3,m4)g)(13)

× fV,ψV
τ (w[65]x000010(m1)x000011(m2)g, s)ψ(m1) dmidg.

Here y(m1,m2,m3,m4) = x000010(m1)x000011(m2)x000110(m3)x000111(m4).

Lemma. We may express θU(P ),ψ as

θU(P ),ψ(g) =

∫

F
fθ(w[6]x000001(r)g)ψ(r) dr

where fθ is the unramified vector in the induced representation IndGP δ
1/4
P ,

normalized so that ∫

F
fθ(w[6]x000001(r))ψ(r) dr = 1.
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Proof. This follows from the construction of the minimal representation

as a residue of an Eisenstein series [G-R-S], together with the fact, which we

have already used in passing from the global integral to a product of local

ones, that the functional θ 7→ θU(P ),ψ(e), regarded as a U(P )-intertwining

map from the minimal representation to the one dimensional representation

of U(P ) by the character ψU(P ), is unique up to scalar and factors as a

product of local functionals. Indeed, the proof of this uniquness statement

is similar to the one stated in [G-J] page 41. See also [Gu] Proposition 4.8.1.

Using this realization, we obtain the identity
∫

F 2

θU(P ),ψ(w[5645]y(m1 ,m2,m3,m4)g) dm3dm4

=

∫

F 3

fθ(w[654]x000100(r)x000110(m3)x000111(m4)g)ψ(r) drdm3dm4.

Next we write the Iwasawa decomposition for G in integral (13), re-

placing integration over g ∈ ZU\G by integration over t ∈ Z\T . The

appropriate measure is δ−1
B(G)(t) dt, where t is the Haar measure on T , and

δB(G) is the modular quasicharacter of the Borel subgroup B(G) of G. We

recall the Casselman-Shalika formula, which may be formulated as follows.

Let tπ be the semisimple conjugacy class in LG associated to the representa-

tion π. For t ∈ Z\T let Kπ(t) = Wπ(t)δ
−1/2
B(G). Let ni = v(αi(t)), where v is

the valuation in our local field. Consider
∑6

i=1 ni̟i where {̟i} is the basis

of fundamental weights for LG dual to the basis {αi} of roots of G. If this

weight is dominant, i.e., if all ni ≥ 0, then the value of Kπ(t) is the character

(trace) of the irreducible finite dimensional representation of LG with this

highest weight, evaluated at tπ. Otherwise, the value of Kπ(t) is zero. We

denote this by χE6(n1, n2, n3, n4, n5, n6) or simply χE6(n), suppressing the

dependence on tπ which is fixed throughout.

A similar description holds for fV,ψτ (t). Let tτ denote the semisimple

conjugacy class in SL2(C) associated to τ and let sym2 tτ denote its image

in SL3(C) under the symmetric square representation.

As in [G-H2], the construction of θτ is as a residue of an Eisenstein

series [G-H2]. Let Q denote the parabolic of GSpin10 used to define this

Eisenstein series. Then, as in Section 4 of [G-H2] we have

(14) fV,ψτ (t, s) = χSL3(n1, n3)χSL2(n2)χSL2(n5)δ
s
P (t)δ

1/3
Q (t)δ

1/2
B(MQ)(t).
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Here the SL2 characters are evaluated at tτ , and the SL3 character is eval-

uated at sym2 tτ .

We turn to the evaluation of
∫

F 3

fθ(w[654]x000100(r)x000110(m3)x000111(m4)t)ψ(r) drdm3dm4.

Conjugating t to the left, making appropriate changes of variable, and

using the fact that fθ is an element of IndGP δ
1/4
P we obtain a factor of

δ
1/4
P (w[654]tw[654]−1)|α3

4α
2
5α6(t))| times the integral

∫

F 3

fθ(w[654]x000100(r)x000110(m3)x000111(m4))ψ(α4(t)r) drdm3dm4.

Direct computation shows that the value of this integral is the integer n4+1.

We turn to

(15)

∫

F 2

fV,ψV
τ (w[65]x000010(m1)x000011(m2)t, s)ψ(m1) dmi.

We collect (14) into two pieces: let µ(t) = δsP (t)δ
1/3
Q (t)δ

1/2
B(MQ)(t) and

χ̃SL2(n) = χSL3(n1, n3)χSL2(n2)χSL2(n5)

which we regard as a function on the weight lattice of E6(C). In the integral

(15) we conjugate t to the left. It is convenient to introduce the notation

t′ = w[65]tw[65]−1 and fV,ψτ (t′; g, s) = µ(t′)−1fV,ψτ (t′g, s). Then (15) equals

µ(t′)|α2
5α6(t)|

∫

F 2

fV,ψV
τ (t′;w[65]x000010(m1)x000011(m2), s)ψ(α5(t)m1) dmi.

If we collect together all of the quasicharacters from all of the factors, the

result is

δ
1/4
P (w[654]tw[654]−1)|α3

4α
4
5α

2
6(t))|δ

s
P (t′)δ

1/3
Q (t′)δ

1/2
B(MQ)(t

′)δ
−1/2
B(G)(t)

= |α2
1α

3
2α

4
3α

6
4α

2
5α6(t)|

4s−3/2.

Let x = q−4s−3/2. Putting everything together, (13) equals

∞∑

ni=0

(n4 + 1)χE6(n)x2n1+3n2+4n3+6n4+2n5+n6(16)

×

∫

F 2

fV,ψV
τ (t′;w[65]x000010(m1)x000011(m2), s)ψ(pn5m1) dmi.
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To compute the last integral we break the domain into four pieces depending

on the Iwasawa decomposition of w[65]x000010(m1)x000011(m2) We introduce

a bit of notation which will help to keep the formulae short and focus at-

tention where the action will be for the next few pages. Thus, let

χE6(n
′; a, b) = χE6(n1, n2, n3, n4, a, b),

χ̃SL2(n
′; a) = χSL3(n1, n3)χSL2(n2)χSL2(a),

ℓ(n) = 2n1 + 3n2 + 4n3 + 6n4 + 2n5 + n6.

Then the first contribution, corresponding to |m1|, |m2| ≤ 1 is

I1 =

∞∑

ni=0

(n4 + 1)χE6(n
′;n5, n6)χ̃SL2(n

′;n6)x
ℓ(n).

Next we consider the case where |m1| ≤ 1 and |m2| > 1. In this case we get
∫

|m2|>1
fV,ψV
τ (t′;α∨

6 (m−1
2 ), s) dm2.

We have

δsP δ
1/3
Q δ

1/2
B(GL3)δ

1/2
B(GSO4)(α

∨
6 (m−1

2 )) = |m2|
−12s+7/2.

The above integral is equal to

(1 − q−1)
∞∑

k2=1

χ̃SL2(n
′;n6 − k2)x

3k2 .

Since the volume of |m2| = qk2 is qk2(1 − q−1), the contribution to (16) is

I2 = (1 − q−1)

∞∑

ni=0, n6≥k2≥1

(n4 + 1)χE6(n
′;n5, n6)

× χ̃SL2(n
′;n6 − k2)x

ℓ(n)+3k2

= (1 − q−1)

∞∑

ni=0, k2=0

(n4 + 1)χE6(n
′;n5, n6 + k2 + 1)

× χ̃SL2(n
′;n6)x

ℓ(n)+4k2+4.

The remaining part is
∫

F

∫

|m1|>1
fV,ψV
τ (t′;w[6]x000001(m2)x000010(m

−1
1 )α∨

5 (m−1
1 ), s)

× ψ(pn5m1) dm1dm2.
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Conjugating x000010(m
−1
1 )α∨

5 (m−1
1 ) to the right and changing variables, we

obtain
∫

F

∫

|m1|>1
fV,ψV
τ (t′t1(m

−1
1 );w[6]x000001(m2), s)

× ψ(pn5m1 + pn6m2)|m1|
−12s+7/2 dm1dm2.

The character ψ(pn6m2) is obtained from the left invariant properties of the

function fV,ψV
τ . This is also equal to

∞∑

k1=1

x3k1

∫

F
fV,ψV
τ (t′t1(p

k1);w6x000001(m2), s)ψ(pn6m2)

×

∫

|ǫ|=1
ψ(pn5−k1ǫ) dǫdm2.

If |m2| ≤ 1 then we obtain

n5+1∑

k1=1

χ̃SL2(n
′;n6 + k1)x

3k1

∫

|ǫ|=1
ψ(pn5−k1ǫ) dǫ

=

n5∑

k1=1

χ̃SL2(n
′;n6 + k1)x

3k1 − q−1
n5+1∑

k1=1

χ̃SL2(n
′;n6 + k1)x

3k1 ,

and the contribution to (16) is

I3 =

∞∑

ni=0

n5∑

k1=1

(n4 + 1)χE6(n
′;n5, n6)χ̃SL2(n

′;n6 + k1)x
ℓ(n)+3k1

− q−1
∞∑

ni=0

n5+1∑

k1=1

(n4 + 1)χE6(n
′;n5, n6)χ̃SL2(n

′;n6 + k1)x
ℓ(n)+3k1

=
∞∑

ni=0

∞∑

k1=1

(n4 + 1)χE6(n
′;n5 + k1, n6)χ̃SL2(n

′;n6 + k1)x
ℓ(n)+5k1

− q−1
∞∑

ni=0

∞∑

k1=0

(n4 + 1)χE6(n
′;n5 + k1, n6)

× χ̃SL2(n
′;n6 + k1 + 1)xℓ(n)+5k1+3.

Similarly, when |m2| > 1, we get

∞∑

k1,k2=1

x3k1+3k2χ̃SL2(n
′;n6 + k1 − k2)

∫

|ǫi|=1
ψ(pn5−k1ǫ1 + pn6−k2ǫ2) dǫi,
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and the contribution to (16) is

I4 =

∞∑

ni=0

∞∑

ki=1

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2

− q−1
∞∑

ni,k2=0

∞∑

k1=1

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1 − 1)xℓ(n)+5k1+4k2+3

− q−1
∞∑

ni,k1=0

∞∑

k2=1

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1 + 1)xℓ(n)+5k1+4k2+3

+ q−2
∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2+6.

Collecting all this together, (16) is equal to

∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2

− q−1x3
∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1 + 1)xℓ(n)+5k1+4k2

− q−1x3
∞∑

ni,ki=0
(n6,k1)6=(0,0)

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1 − 1)xℓ(n)+5k1+4k2

+ q−2x6
∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2

= (1 − q−1x3χSL2(1) + q−2x6)
∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2 ,
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where χSL2(1) denotes the character of the standard two-dimensional rep-

resentation of SL2, evaluated at the semisimple conjugacy class associated

to τ , so that

(1 − q−1x3χSL2(1) + q−2x6) = L(τ, 12s − 7/2)−1.

Thus the main equation (11) is reduced to

∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)χ̃SL2(n

′;n6 + k1)x
ℓ(n)+5k1+4k2(17)

=
L(π × τ,E6 ×GL2, 4s− 3/2)

L(τ, sym3, 12s − 9/2)
.

This identity is proved by the same method used in [G-H2]. We explain

this method and state a number of lemmas from which (17) follows. These

lemmas will be proved in the next section. Let diag(ξ, ξ−1) be the conjugacy

class in SL2(C), previously denoted tτ , which is associated to τ . Let Γν
denote the irreducible finite dimensional E6(C)-module of highest weight

ν and symk Γν its symmetric k-th power. Let tπ denote the semisimple

conjugacy class in E6(C) associated to π as above. Then the right hand

side of (17) is

(1 − x3ξ3)(1 − x3ξ)(1 − x3ξ−1)(1 − x3ξ−3)

×
∞∑

k=0

Tr(symk Γ̟6 |tπ)
∞∑

ℓ=0

Tr(symℓ Γ̟6|tπ)x
k+ℓξk−ℓ.

Here Tr(Γ|t) denotes the trace of t acting on Γ (which passes to a well-

defined function on conjugacy classes).

To describe the next step we introduce the representation ring, R[E6] of

E6(C). This is a formal ring generated by the irreducible finite dimensional

representations. The trace maps R[E6] isomorphically to the ring C[T ]W

of polynomial functions on the maximal torus which are invariant by the

Weyl group. See [F-H] Section 23.2. Let P (u) be the following element of

R[E6][u] (i.e., a polynomial over the representation ring of E6):

1 − Γ̟1u
2 + Γ̟2u

3 − Γ̟5u
5 + Γ̟1+̟6u

6 − Γ2̟1u
7 − Γ2̟6u

8

+ Γ̟1+̟6u
9 − Γ̟3u

10 + Γ̟2u
12 − Γ̟6u

13 + u15.

Then we have the following identity in R[E6][[u]]:
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Lemma.

P (u)
∞∑

ℓ=0

symℓ Γ̟6u
ℓ =

∞∑

ℓ=0

Γℓ̟6u
ℓ.

Hence (17) follows from the following two assertions:

Lemma. We have

P (xξ−1)
∞∑

ni,ki=0

(n4 + 1)χE6(n
′;n5 + k1, n6 + k2)(18)

× χ̃SL2(n
′;n6 + k1)x

ℓ(n)+5k1+4k2

= (1 − x3ξ−1)(1 − x3ξ−1)
∞∑

mi=0

χE6(m1,m2,m3, 0,m5,m6)

× xℓ(m)ξm2+2m3−m6
1 − ξ2(m1+1)

1 − ξ2
1 − ξ2(m6+1)

1 − ξ2
.

Lemma. We have

∑

k=0

Tr(symk Γ̟6|tπ)Tr(Γℓ̟6|tπ)x
k+ℓξk−ℓ(19)

= (1 − x3ξ3)−1(1 − x3ξ)−1
∞∑

mi=0

χE6(m1,m2,m3, 0,m5,m6)x
ℓ(m)

× ξm2+2m3−m6
1 − ξ2(m1+1)

1 − ξ2
1 − ξ2(m6+1)

1 − ξ2
.

§4. Lemmas for the local computations for E6 ×GL2

4.1. On the polynomial P

To explain the existence of the polynomial P it is convenient to adopt

a slightly different notation. Let tµ denote the value of the weight µ at the

element t of the torus. Let W denote the Weyl group of E6 and l the length

function defined on it. Let Aν =
∑

w∈W twν, so that the Weyl character

formula expresses the character of the irreducible finite-dimensional repre-

sentation with highest weight ν as Aν+ρ/Aρ where ρ is half the sum of the

positive roots. Then

∞∑

n=0

unTr(symn Γ̟6) =
∏

ν

(1 − tνu)−1

https://doi.org/10.1017/S0027763000025903 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025903


38 D. GINZBURG AND J. HUNDLEY

where the product is over all the weights of the representation Γ̟6. In our

case, the set of weights is eqaul to the Weyl orbit of ̟6, so

A−1
ρ

∑

n=0

An(̟6+ρ)u
n = A−1

ρ

∑

ν

a(ν)

1 − tνu
,

where a(ν) is the sum of (−1)l(w)twρ over only those elements of W such that

w̟6 = ν. The polynomial P is obtained by putting this sum over a common

denominator. It is clear that the degree is at most 26. What is not at once

clear that the coefficient of un is in fact a virtual character of E6. However,

suppose we extend the map tν 7→ Aν to an operator C[T ][u] → R[LG][u] by

C[u]-linearity. Then

P (u) = A

(
∏

ν 6=̟6

(1 − tνu)

)
.

The product is over weights of the representation with highest weight ̟6

which are not the highest one.

Once we know that the polynomial P exists, we may find it via computer

experimentation. In practice, it is better to work from both ends towards

the middle, using the following insight. Computing the coefficient of uk

entails considering k-fold sums ν1 + · · · + νk of weights that are not ̟6.

But, the sum of all the weights in any representation is zero, so we may

consider instead sums −ν1 − · · · − νn−k−1 − ̟6. This gives an easy proof

that the coefficient of u26 is zero (since −̟6 + ρ has a nontrivial stabilizer

in the Weyl group) and extends to a more practical method of checking that

the coefficients from 16 to 25 are also zero.

4.2. Proof of identity (18)

We first collect the coefficient of χE6(n) in the sum on the left hand

side. An easy computation shows that

n5∑

k1=0

n6∑

k2=0

χSL2(n6 + k1 − k2)x
3k1+3k2(20)

= x2n5+n6χSL3(n6, n5)

(
x2

x−1ξ−1

x−1ξ−1

)
.

That is, our sum of SL2 characters, each of which is evaluated at tτ =

diag(ξ, ξ−1) as above, may be interpreted as an SL3 character, now evalu-
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ated not at sym2 tτ , but at the matrix specified. It follows that the coeffi-

cient of χE6(n), which we denote by cn(x, ξ), is given by

χSL3(n1, n3)

(
ξ2

1
ξ−2

)
χSL2(n2)

(
ξ
ξ−1

)

× χSL3(n6, n5)

(
x2

x−1ξ−1

x−1ξ−1

)
(n4 + 1)xℓ

′(n),

where now we reflect all of the semisimple conjugacy classes explicitly, and

ℓ′(n) = ℓ(n) + 2n5 + n6 = 2n1 + 3n2 + 4n3 + 6n4 + 4n5 + 2n6.

We recall a method of computing products of characters (and hence tensor

products of finite dimensional representations) which is due to Brauer. Let

A be as in the last section, so that the Weyl character formula is

(21) χE6(ν) =
Aν+ρ
Aρ

,

for ν dominant. We may extend the definition of χE6 to all weights ν

by setting it equal to the right hand side of (21). Then for χE6(λ) =∑
ν mλ(ν)t

ν , we have

χE6(λ)χE6(µ) =
∑

ν

mλ(ν)χE6(µ+ ν).

Since, the weights µ + ν appearing on the left hand side need not be

dominant, we use the following facts: if StabW (η + ρ) is nontrivial, then

χE6(η) = 0, and if w(η + ρ) = η′ + ρ, then χE6(η) = (−1)l(w)χE6(η
′).

We shall use this method to compute the products arising in the left

hand side of (18), with the character from the polynomial P playing the

role of χE6(λ) and the weight n from the summation playing the role of

µ. Thus, we obtain a sum over all weights ν which appear in any of the

representations in P . There are 883 such weights, and some appear in more

than one of the representations. It will be convenient to collect the terms

corresponding to a specific weight, writing

P (u) =
∑

ν∈Λ

Pν(u)t
ν ,

where Λ is our set of 883 weights.
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Let us fix a dominant weight m. The coefficient of χE6(m) on the left

hand side is given by

(22)
∑

(w,n,ν)

(−1)l(w)cn(x, ξ)Pν(xξ
−1),

where the expression cn(x, ξ) was defined just after (20), and the sum is

over triples (w,n, ν) with w ∈W , ν ∈ Λ, and n dominant satisfying

w(n + ν + ρ) − ρ = m.

Thus, our claim is that this sum is described by the right hand side of (18).

We may approximate (22) by

(23)
∑

ν∈Λ

cm−ν(x, ξ)Pν(xξ
−1).

Indeed, it’s easy to see that they are precisely equal when all mi are suffi-

ciently large. For general m, they differ in two ways: (22) contains terms

with w 6= 1, and (23) contains terms with m − ν not dominant. Observe,

however, that if w(n + ν + ρ) − ρ = m, then n = w(m − wν + ρ) − ρ. We

shall be able to use this fact to match up our two different sorts of discrep-

ancies, once we make some observations about the properties satisfied by

the weights ν appearing in our set Λ. Before we proceed with this, however,

we record the following:

Lemma. Let c̄n(x, ξ) = cn(x, ξ)/(n4 + 1). Then,

c̄w[i](n+ρ)−ρ(x, ξ) = −c̄n(x, ξ) for i 6= 4

cw[i](n+ρ)−ρ(x, ξ) =

{
−cn(x, ξ), i = 1, 6

−cn(x, ξ) − (ni + 1)c̄n(x, ξ), i = 2, 3, 5.

Proof. This is immediate from the formula for c given above, and the

fact that the jth entry of w[i](n + ρ) − ρ is given by




−ni − 2 if j = i,

ni + nj + 1 if the nodes corresponding to αi, αj

in the Dynkin diagram are connected,

nj otherwise.
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The next lemma rests on specific observations about the properties sat-

isfied by all those weights ν that appear in the set Λ. The first is that for

all such ν, we have −2 ≤ νi ≤ 2 for all i.

Lemma. Take m dominant and ν ∈ Λ. Let w denote the product of

all simple reflections w[i] corresponding to indices i such that νi = 2 and

mi = 0. (We shall see that this product may be taken in any order.) Then

we have

cm−ν = (−1)l(w)cw(m−ν+ρ)−ρ −
∑

i=2,3,5

δmi,0δνi,2c̄m−ν

+ δm4,0δν4,2
(
cm−ν + cw[4](m−ν+ρ)−ρ

)
.

The δ’s that appear here are Kronecker δ’s. Furthermore, if n := w(m −

ν + ρ) then either n is dominant, or ni = −1 for some i.

Proof. We observe that if ν ∈ Λ, then

• the set of indices i such that νi = 2 has at most two elements,

• if νi = νj = 2, the nodes in the Dynkin diagram corresponding to i

and j are not connected.

• with i, j as above, if nodes i and j are both connected to node k, then

νk is strictly negative.

The assertion that the product of Weyl elements may be taken in any order

follows from the second observation. The formula follows from the first and

second observations and the previous lemma. For the assertion about n we

require the third observation in addition to the first two.

Now, if ni = −1 for some i, then cn(x, ξ) = 0, while if n is dominant,

then the term (−1)l(w)cnPν is precisely the contribution to the coefficient

of χE6(m) in (22) corresponding to the triple (w,n,wν). (Here we use that

w = w−1 and that Pwν = Pν .) Furthermore, all of the observations above

remain true if 2 is replaced by −2, and from this it follows that every triple

(w,n, ν ′) which provides a nonzero contribution to (22) is accounted for.

That is, (23) minus (22) equals
∑

i=2,3,5

δmi,0

∑

νi=2

Pν(xξ
−1)c̄m−ν(x, ξ)

− δm4,0

∑

ν:ν4=2

Pν(xξ
−1)
(
c̄m−ν(x, ξ) − c̄w[4](m−ν+ρ)−ρ(x, ξ)

)
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(In the last sum we have used the fact that if n4 = −2, then cn = −c̄n
and cw[4](n = c̄w[4](n.) At this point our main assertion follows from the

following six identities:
∑

ν∈Λ

c̄m−ν(x, ξ)Pν(xξ
−1) = 0 ∀m

∑

ν∈Λ

ν4c̄m−ν(x, ξ)Pν(xξ
−1) = 0 ∀m

∑

ν∈Λ:νi=2

c̄m−ν(x, ξ)Pν(xξ
−1) = 0 ∀m : mi = 0, i = 2, 3, 5

∑

ν∈Λ:ν4=2

Pν(xξ
−1)
(
c̄m−ν(x, ξ) − c̄w[4](m−ν+ρ)−ρ(x, ξ)

)

= (1 − x3ξ−3)(1 − x3ξ−1)xℓ(m)ξm2+2m3−m6

×
1 − ξ2(m1+1)

1 − ξ2
1 − ξ2(m6+1)

1 − ξ2
∀m : m4 = 0.

Now, each of these identities may be rewritten as a single identity of polyno-

mials by introducing auxiliary variables. Indeed, let Cν(x, ξ, Y1, Y2, Y3, Y5,

Y6,X5,X6) equal
∣∣∣∣∣
Y1Y3ξ−2ν1−2ν3 1 Y −1

1 Y −1
3 ξ2ν1+2ν3

Y1ξ2ν1 1 Y −1
1 ξ−2ν1

1 1 1

∣∣∣∣∣ (Y2y
−ν2 − Y −1

2 yν2)x−ℓ
′(ν)

×

∣∣∣∣∣
X2

5X
2
6x

−2ν5−2ν6 X−1
5 X−1

6 Y5Y6xν5+ν6ξ−ν5−ν6 X−1
5 X−1

6 Y −1
5 Y −1

6 xν5+ν6ξν5+ν6

X2
5x

−2ν5 X−1
5 Y5xν5ξ−ν5 X−1

5 Y −1
5 xν5ξν5

1 1 1

∣∣∣∣∣ ,

where | · | denotes a determinant. Then

c̄m−ν(x, ξ)

= xℓ
′(m)Cν(x, ξ, ξ

2m1+2, ξm2+1, ξ2m3+2, ξm5+1, ξm6+1, xm5+1, xm6+1)

C0(x, ξ, ξ2, ξ, ξ2, ξ, ξ, x, x)
.

Here, 0 = (0, 0, 0, 0, 0, 0). Our first identity is equivalent to

∑

ν∈Λ

Pν(xξ
−1)Cν(x, ξ, Y ,X) = 0.

With 883 terms, this is far too large to check by hand, but it is straightfor-

ward to verify by computer. The others are similar. We give some details
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for the last identity, as that is the only case in which the right hand side is

nonzero. Let Cν be as above and define C ′
ν to be the expression obtained

by replacing νi by νi + 1 for i = 2, 3, 5 throughout, and multiplying by x12.

(So that x−ℓ
′(ν) becomes x−ℓ

′(ν)−11+12 = x−ℓ
′(ν)+1.) Then

c̄w[4](m−ν+ρ)−ρ

= xℓ(m)C
′
ν(x, ξ, ξ

2m1+2, ξm2+1, ξ2m3+2, ξm5+1, ξm6+1, xm5+1, xm6+1)

C0(x, ξ, ξ2, ξ, ξ2, ξ, ξ, x, x)
.

What is to be checked is
∑

ν:ν4=2

Pν(xξ
−1)(Cν(x, ξ, Y ,X) − C ′

ν(x, ξ, Y ,X))

= (ξ2 − ξ−2)(ξ − ξ−1)(x2 − x−1ξ)(x2 − x−1ξ−1)(x−1ξ − x−1ξ−1)

× (1 − x3ξ−1)(1 − x3ξ−3)ξ−4Y2Y3Y
−1
6 X−2

5 X−1
6 X(Y1 − 1)(Y 2

6 − 1).

4.3. Proof of identity (19)

We first reduce (19) to the analogous statement corresponding to the

next representation in our tower using work of D. I. Panyushev. To facilitate

reference to the relevant papers, we adopt some of the notation of [P1]. Of

note: in this section K is not the maximal compact, and superscript S

means the points of a variety fixed by a certain subgroup S introduced

below, rather than product over all places not in a finite set. We first

reformulate the problem using an observation which is due to Littelmann

[L]. It will be convenient to formulate things initially in some generality.

We begin with a reductive algebraic group G defined over C, for which

we have fixed a torus, T , and a Z-basis of fundamental weights ̟i for

the lattice of weights. We work in the category of G-varieties. Let V̟
denote affine space of the appropriate dimension equipped with an action

of G by the irreducible representation with highest weight ̟. Then the full

symmetric algebra of V̟ may be identified with the algebra of polynomial

functions on the G-module dual to V̟, which we denote by V ∗
̟. We also

denote the highest weight of this G-module by ̟∗ so that V ∗
̟ = V̟∗ .

Now let ̟ be a fundamental weight. Under this interpretation, the

subalgebra ⊕

ℓ

Γℓ̟ ⊂ C[V̟∗]

may be identified as the algebra of polynomial functions on the cone

C̟∗ := {λg · vH : λ ∈ C, g ∈ G},
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where vH is any highest weight vector in V̟∗.

Consider the algebra C[V̟∗ × C̟∗]. This algebra has a natural bi-

grading corresponding to degree over V and over C individually. The (k, ℓ)-

graded piece is precisely Symk(Γ̟)⊗Γℓ̟. The subalgebra C[V̟∗×C̟∗ ]U is

preserved by the action of T and so it makes sense to speak of elements of this

algebra having a weight. Indeed, the highest-weight vectors of irreducible

components of C[V̟∗ ×C̟∗] are all in the subalgebra of U -invariants, and

describing its structure is equivalent to describing the decomposition of

Symk(Γ̟) ⊗ Γℓ̟ into irreducibles for arbitrary k, ℓ.

In the case at hand, identity (19) amounts to the following description

of the structure of C[V̟1 ×C̟1]
U : it is a polynomial algebra generated by

9 elements for which the triples (degree over V̟1 , degree over C̟1; weight)

are as follows:

(1, 0;̟6), (2, 0;̟1), (3, 0; 0), (0, 1;̟6), (1, 1;̟5),

(1, 1;̟1), (2, 1; 0), (2, 1;̟2), (3, 1;̟3).

In this section, we relate this assertion to its analog for the next repre-

sentation in our tower. That is, we prove

Lemma. Let U and Ū denote the maximal unipotent subgroups of E6

and SL6 respectively. Let ̟1 (resp. ̟′
4) denote the first (resp. fourth) fun-

damental weight of E6 (resp. SL6) defined relative to U (resp. Ū). Then we

have

C[V̟′

4
× C̟′

4
]Ū ≃ C[V̟1 × C̟1]

U .

Remark . Clearly, the assertion remains true if we replace ̟1 by ̟6

and/or ̟′
4 by ̟′

2.

Proof. This is proved by applying Theorem 1.8 of [P1] to X = V̟1 ×

C̟1. There are several intermediate steps. We sketch the general procedure

and give the specifics of our situation. We consider the action of G on the

product of X and a sort of “dual” G-variety X∗. In our case G is E6 and

X∗ is simply V̟6 × C̟6. We need to compute a certain subgroup S and a

closely related sub-semigroup T (X) of the semigroup of dominant weights.

The group S is the stabilizer of a point in general position for the action of

G on X ×X∗ which is “canonical”, as defined on p. 660 of [P1].

We first check that the stabilizer of a point in general position for the

action of E6 on X ×X∗ = V̟1 × V̟6 × C̟1 × C̟6, is isomorphic to SL2.
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By Lemmas 1 and 2 of [P2], this reduces to the same assertion about the

stabilizer of a point in general position for the action of Spin10(C) on V̟1 ×

V̟6 , which, may be computed by the procedure laid out explicitly in [P3].

Once we know that the group S is isomorphic to SL2, it is immediate from

the relations (3) and (4) between S and T (X) given on pp. 659–60 of [P1]

that the unique root of S is α4 and T (X) is the semigroup generated by

{̟i : i 6= 4}.

Next we need to find a subgroup K such that the identity component

of the normalizer of S is K times the identity component of S. There is an

element of the Weyl group that conjugates α4 to the longest root, taking

S to a conjugate S′. The identity component of the normalizer of S′ is the

product of S′ and the standard Levi of E6 isomorphic to GL6. For K, we

take the corresponding conjugate of this GL6.

Observe that the S-fixed subspace V S
̟1

is a 15-dimensional K-module.

We identify K with GL6 in such a way that its highest weight is ̟′
4. Then

C̟′

4
is identified with

{λk · vH : λ ∈ C, k ∈ K},

which is certainly contained in CS̟1
= C̟′

1
∩ V̟′

4
. Thus V̟′

4
× C̟′

4
is

identified with a subvariety of (V̟1 ×C̟1)
S . To use Panyushev’s result, we

must check that V̟′

4
× C̟′

4
is a principal component of (V̟1 × C̟1)

S , as

defined on pp. 658–9 of [P1]. The isomorphism is then given by restriction

of functions. In fact, V̟′

4
× C̟′

4
= (V̟1 × C̟1)

S , as follows from

Lemma. We have

GvH ∩ V S = KvH .

Proof. Let P̟1 denote the maximal standard parabolic subgroup whose

unipotent radical contains the root subgroup associated to the root α1. The

action of P̟1 preserves the one dimensional subspace spanned by vH .

We fix a set of representatives for the Weyl group ofK inK, and expand

it to a set of representatives for the Weyl group of G. We then fix a set Ẇ

of representatives for W/(W ∩P̟) such that every coset which contains an

element of K is represented by one.

We may write an arbitrary element of g as uwp, with p ∈ P̟1 , w ∈ Ẇ ,

and u ∈ Uw := U ∩ wŪw−1. The action of p at most scales vH , so we may

assume that p = 1. Then wvH is some vector vλ on which T acts by the

weight λ. This vector is in V S = V̟′

4
iff λ is one of the weights appearing
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in the irreducible representation of K on this space, in which case w ∈ K.

But then the group Uw is contained in K as well, and so gvH ∈ KvH . Now,

suppose vλ /∈ V S . The action of u is unipotent, so when g · vH is written

in terms of a basis of weight vectors including vλ, the coefficient of vλ is 1,

and hence g · vH is not in V S .

In order to complete the proof of (19), we need to show that C[V̟4 ×

C̟4]
U is a polynomial algebra generated by nine elements for which the

(degree over V , degree over C; weight) triples are:

(1, 0;̟2), (0, 1;̟2), (2, 0;̟4), (1, 1;̟1 +̟3), (1, 1;̟4),

(3, 0; 0), (2, 1; 0), (2, 1;̟1 +̟5), (3, 1;̟3 +̟5).

This is equivalent to:

∞∑

k=0

∞∑

l=0

Tr(symk Γ̟2) ⊗ Tr(Γl̟2)x
kyl(24)

=
∞∑

ki=0

xk1+2k3+k4+k5+3k6+2k7+2k8+3k9yk2+k4+k5+k7+k8+k9

× χSL6(k4 + k8, k1 + k2, k4 + k9, k3 + k5, k8 + k9),

where χSL6(n1, . . . , n5) denotes the character of the irreducible finite-dimen-

sional representation of SL6 with highest weight n1̟1+· · ·+n5̟5. We omit

the proof of (24). It is similar to, but much easier than, the Littlewood-

Richardson computation that is done in 7.1.

§5. The global integral for ∧2GL6 ×GL2

We continue to use the notations of Section 1. LetQ denote the maximal

parabolic subgroup of G = GE6 with Levi part isomorphic to GL1 ×GL6.

The unipotent radical of Q, denoted by U(Q), is the product of the sub-

groups Uα associated to those positive roots α =
∑
niαi such that n2 > 0.

We consider the subgroup H of the Levi of Q generated by {x±αi
(r) : i 6= 2}

and the subgroup of the maximal torus of G consisting of elements of the

form h(t−1
2 , t1, t2, t3, t4, t5, t6). This group is isomorphic to the subgroup of

GL6 consisting of elements with square determinant. The isomorphism may

be described concretely as follows. We identify xα1(r) with I + e1,2r. For

each of the other roots α ∈ {±αi : i 6= 2} we identify xα(r) with I+ei,jr for

some i, j, such that i < j if α is a positive root. The pair (i, j) is determined
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for all such α by the choice we made for α1. This pins down a specific iso-

morphism between SL6 and the subgroup generated by {x±αi
(r) : i 6= 2}.

We obtain a mapping of the torus of G to GL6 by looking at the action on

the root subgroups Uα. This mapping is

(25) h(t0, t1, . . . , t6) 7−→ diag(t1t0, t
−1
1 t3, t

−1
3 t4, t2t

−1
4 t5, t2t

−1
5 t6, t2t

−1
6 ).

In particular, the image of h(t−1
2 , t1, t2, t3, t4, t5, t6) is diag(t1t

−1
2 , t−1

1 t3, t
−1
3 t4,

t2t
−1
4 t5, t2t

−1
5 t6, t2t

−1
6 ).

An element of the center of the Levi of Q is of the form h(t32t
−6
6 , t−2

2 t56, t2,

t−1
2 t46, t

3
6, t

2
6, t6). This torus contains the center of G, denoted by Z, given by

the relations t2 = a3 and t6 = a2. The group H clearly contains Z. Using

the action of the torus on the simple roots in G, and the commutation

relations among the subgroups Uα, one can easily check that the group H

commutes with the one dimensional unipotent subgroup U122321. This root

is the highest root in G.

Let ϕπ denote a cuspform, in a generic cuspidal representation π defined

on the groupGL6(A). We shall assume that π has a trivial central character.

The global integral we consider is given by

∫

Z(A)H(F )\H(A)

∫

U(Q)(F )\U(Q)(A)

∫

(F\A)
θ(ux122321(r1)h)ψ(r1) dr1(26)

× ϕπ(h)Eτ (uh, s) dudh.

The functions θ and Eτ were defined in Section 1. Since H commutes with

x122321(r), the above integral is well defined.

In this section, we prove the following:

Theorem. Let Wπ be the function in the Whittaker model of π corre-

sponding to φπ, and let N be the unipotent subgroup of GL6 defined by

N =








1 x1 x2 y ∗ ∗
1 m x2 ∗ ∗

1 −x1 ∗ ∗
1 r1 ∗

1 r2
1








.
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Then, the global integral (26) is equal to

∫

Z(A)N(A)\H(A)

∫

U1(Q)(A)
Wπ(h)θ

U(P ),ψ(w̃0x111110(1)x011210(1)u1h)(27)

×

∫

A2

fV,ψτ (z2(m1,m2)w[45]w0u1h, s) dmidu1dh.

Here, z2 and fV,ψτ are defined as in Section 2.

Proof. To unfold this integral, we start by unfolding the Eisenstein

series. We need to consider the space P\G/UH. It is not hard to check

that this space has three representatives given by e, w[6542] and w0 =

w[65423143542]. The contribution to (26) from w0 is given by

∫

Z(A)PH(F )\H(A)

∫

U1(Q)(A)

∫

U2(Q)(F )\U2(Q)(A)

∫

F\A
ϕπ(h)(28)

× θ(u2x122321(r1)u1h)fτ (w0u2u1h, s)ψ(r1) dr1du2du1dh,

where PH = H ∩ w−1
0 Pw0, U2(Q) = U(Q) ∩ w−1

0 Pw0, and U1(Q) =

U2(Q)\U(Q). We may identify this quotient with the group U(Q) ∩

w−1
0 U(P )w0, where P is the parabolic subgroup opposite to P . The group

U2(Q) is the product of Uα for the following roots:

010111, 011111, 111111, 011211, 111211,

011221, 112211, 111221, 112221, 112321.
(29)

Similar contributions corresponding to w = e and w[6542], vanish be-

cause wU122321w
−1 is in the group U(P ) which leaves fτ invariant. Thus

(26) is equal to (28).

Lemma. We have
∫

(F\A)
θ(x122321(r1)g)ψ(r1) dr1 =

∑

δ∈F 10

θU(P ),ψ(w̃0z(δ)g),

where w̃0 = w[5431243542] and

z(δ) = x010000(δ1)x010100(δ2)x011100(δ3)x010110(δ4)x111100(δ5)

× x011110(δ6)x111110(δ7)x011210(δ8)x111210(δ9)x112210(δ10).
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Proof. We plug in the Fourier expansion (3) in the equivalent form

θ(g) = θU(P )(g) +
∑

ǫ∈F ∗

∑

γ∈S(1,2,3,4)(F )\M(P )

θU(P ),ψ(α∨
5 (ǫ)γg).

Here M(P ) is the Levi of P , and S(1, 2, 3, 4) is the maximal parabolic of this

Levi whose unipotent radical contains Uα5 . For each coset in S(1, 2, 3, 4)(F )\

M(P ) we choose a representative of the form wζ where w is (the repre-

sentative in G of) the element of minimal length in one of the cosets of

(W ∩ S(1, 2, 3, 4))\(W ∩M(P )) and ζ is an element of the maximal unipo-

tent subgroup V = U ∩M(P ) corresponding to our choice of positive roots,

with the property that wζw−1 is contained in the maximal unipotent V

opposite to V . Thus we consider integrals of the form

(30)

∫

F\A
θU(P ),ψ(α∨

5 (ǫ)wζx122321(r1)g),

with w and ζ as above. For all such w, the root w · α122321 is positive.

We conjugate x122321(r1) to the left. If w · α122321 6= α6 then θU(P ),ψ is

left-invariant by wx122321(r1)w
−1 and we get zero. The unique element w

with the property required above such that w · α122321 = α6 is w̃0. Now,

w̃0x122321(r1)w̃
−1
0 = x000001(r1), and θU(P ),ψ(x000001(r)g) = ψ(−r)θU(P ),ψ(g).

Hence (30) is equal to θU(P ),ψ(α∨
5 (ǫ)w̃0ζg)

∫
F\A ψ(r1(1 − ǫ)) dr1. This inte-

gral is zero unless ǫ = 1.

Finally, the function z is an explicit parameterization of V ∩ w̃−1
0 V w̃0.

The group PH is a maximal unipotent subgroup of H. It’s Levi MH ,

contains the roots ±αi for i = 1, 3, 4, 5. It acts on {z(δ) : δ ∈ F 10} with

three orbits. (This action is essentially the same as the action of the group

M on the characters of V1 described after equation (4).) For δ in either of

the two small orbits, θU(P ),ψ(w̃0z(δ)g) is invariant, as a function of g, by the

unipotent radical of the group PH . By the cuspidality of ϕπ, these orbits

contribute zero to our integral. We choose z0 := x111110(1)x011210(1) as a

representative of the big orbit. The stabilizer in PH consists of a reductive

part

〈x±α1(r1)x±α4(−r1), x±α3(r2), h(t
−1
2 , t1, t2, t3, t4, t

−2
1 t24, t

−1
1 t4)〉

≃ GSp4 ×GL1
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and a 9 dimensional unipotent part L. This group L is the product of the

unipotent radical L1 of PH , which corresponds to the five roots

(31) {000001, 000011, 000111, 001111, 101111}

and another subgroup L2 which corresponds to the four roots {000010,

000110, 001110, 101110}. The correspondence between a subgroup and a

set of roots is that the subgroup is the product of the groups Uα for the

roots listed. We shall continue to use this notion, keeping in mind that not

all subsets correspond to groups and not all unipotent subgroups can be

described in this way.

Since we have fixed an identification of H with a subgroup of GL6, we

can also describe this stabilizer in terms of matrices as:






g x1 x2

d y
d


 : g ∈ GSp4, d ∈ GL1, x1, x2 ∈ Mat4×1, y ∈ Mat1×1



 ,

and L1 and L2 as

L1 =

{(
I5 l′1

1

)
: l′1 ∈ Mat5×1

}
L2 =







I4 l′2

1
1


 : l′2 ∈ Mat4×1





If we identify GSp4 with its image above, we may now write (28) as
∫

Z(A)GSp4(F )L(F )\H(A)

∫

U1(Q)(A)

∫

U2(Q)(F )\U2(Q)(A)
ϕπ(h)(32)

× θU(P ),ψ(w̃0x111110(1)x011210(1)u2u1h)fτ (w0u2u1h, s) du2du1dh.

Lemma. The function θU(P ),ψ(w̃0z0g) has the following left-equivari-

ance properties:

θU(P ),ψ(w̃0z0u2g) = ψU2(Q)(u2)θ
U(P ),ψ(w̃0z0g),

θU(P ),ψ(w̃0z0l1g) = ψL1(l1)θ
U(P ),ψ(w̃0z0g),

where the characters ψU2(Q), ψL are defined, using the shorthand introduced

after (1), by

ψU2(Q)(x011211(r1)x111111(r2)u
′
2) = ψ(−r1 − r2)

ψL1(x000001(r)l
′
1) = ψ(−r).
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Proof. As noted in the proof of the last Lemma, θU(P ),ψ(w̃0x122321(r)g)

= ψ(−r)θU(P ),ψ(w̃0g). On the other hand, if α is any positive root other

than α6, or any negative root in the span of {−αi : i = 1, 2, 3, 4}, then

θU(P ),ψ is left-invariant by Uα. (See [G-R-S] Theorem 5.4.) From this we

deduce that the function θU(P ),ψ(w̃0g) is left-invariant by Uα for all α listed

in (29) and (31) above. Employing the notation [a, b] = aba−1b−1 for the

commutator, we note that θU(P ),ψ(w̃0g) is also left-invariant by [z0, xα(r)]

for α as above, with only the following exceptions:

[z0, x011211(r1)x111111(r2)] = x122321(r1 + r2)

[z0, x000001(r)] = x011211(r)x111111(r)x122321(r),

which account for ψU2(Q) and ψL respectively.

Let U1,2,3,4 denote the product of the groups Uα corresponding to

the ten roots
∑4

i=1 niαi + α5. It is the unipotent radical of the group

S(1, 2, 3, 4) defined earlier. We recall that this group was a standard max-

imal parabolic not of G, but of the Levi M(P ) of P . It is not hard to

check that w0U2(Q)w−1
0 = U1,2,3,4. If ψU1,2,3,4(u) := ψU2(Q)(w

−1
0 uw0), then

ψU1,2,3,4(x001110(r1)x010110(r2)u) = ψ(r1 + r2).

From all this we deduce that (32) equals

∫

Z(A)GSp4(F )L2(F )L1(A)\H(A)

∫

U1(Q)(A)
ϕL1,ψ
π (h)θU(P ),ψ(w̃0z0u1h)(33)

× f
U1,2,3,4,ψ
τ (w0u1h, s) du1dh.

Here

ϕL1,ψ
π (h) =

∫

L1(F )\L1(A)
ϕπ(l1h)ψL1(l1) dl1,

and

f
U1,2,3,4,ψ
τ (g, s) =

∫

U1,2,3,4(F )\U1,2,3,4(A)
fτ (ug, s)ψU1,2,3,4(u) du.

Next we consider the Fourier expansion of ϕL1,ψ
π (h) along L2(F )\L2(A).

The group GSp4(F ) acts on this expansion with two orbits. The trivial

orbit contributes zero by cuspidality. Thus we have

ϕL1,ψ
π (h) =

∑

γ∈R1(F )\GSp4(F )

ϕL,ψπ (γh).
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Here

ϕL,ψπ (h) =

∫

L(F )\L(A)
ϕπ(lh)ψL(l) dl

is defined using the character ψL(x000001(r1)x000010(r2)l
′) = ψ(−r1 − r2).

This may also be described via the identification of H with a subgroup of

GL6 as ψL(l) = ψ(−l4,5 − l5,6). We remark that one of the minus signs is

dictated by ψL1 above and the other indicates our choice of a point in the

open orbit here.

The subgroup R1 of GSp4 is the stabilizer of ψl inside GSp4 and in

matrices it is given by

R1 = GL2L3 =








det g
g

1







1 x1 x2 y
1 x2

1 −x1

1


 : g ∈ GL2




.

Returning to (33), we first plug in the expansion along L2 and collapse sum-

mation with integration. Then we factor the integration over L2(F )\L2(A).

We have

θU(P ),ψ(w̃0x111110(1)x011210(1)u1l2h)

= θU(P ),ψ(w̃0x111110(1)x011210(1)u1h).

Hence, (33) equals
∫

Z(A)R1(F )L(A)\H(A)

∫

U1(Q)(A)
ϕL,ψπ (h)(34)

× θU(P ),ψ(w̃0x111110(1)x011210(1)u1h)f
V1,ψ
τ (w0u1h, s) du1dh,

where

fV1,ψ
τ (w0u1h, s) =

∫

V1(F )\V1(A)
fτ (vw0u1h, s)ψV1(v) dv.

Here V1 is the unipotent group of E6 defined by V1 = U1,2,3,4w0L2w
−1
0 , and

ψV1(x010110(r1)x001110(r2)x100000(r3)v
′
1) = ψ(r1 + r2 + r3).

This Fourier coefficient fV1,ψ
τ is the same, as the one denoted by fV2,ψ2

τ

in Section 2. Applying again the arguments of [G-H2], we obtain

(35) fV1,ψ
τ (w0u1h, s) =

∫

A2

fV4,ψ
τ (z2(m1,m2)w[45]w0u1h, s) dmi
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where V4 is, as in Section 2 the product of all the groups Uα lying in the

Levi of the parabolic P , with the exception of Uα5 , and

fV4,ψ
τ (z(m1,m2)w[45]w0u1h, s)

=

∫

V4(F )\V4(A)
fτ (vz(m1,m2)w[45]w0u1h)ψV4(v) dv.

The character ψV4 is given by ψV4(x100000(r1)x010000(r2)x001000(r3)v
′) =

ψ(r1 + r2 + r3). We now plug the expansion (35) into (34), and we factor

the integration over the unipotent group L3 appearing in the description of

R1 above. We obtain

∫

Z(A)GL2(F )L4(A)\H(A)

∫

U1(Q)(A)
ϕL4,ψ
π (h)(36)

× θU(P ),ψ(w̃0x111110(1)x011210(1)u1h)

×

∫

A2

fV2,ψ
τ (z(m1,m2)w[45]w0u1h, s) dmidu1dh,

where L4 = LL3, and ϕL4,ψ
π can be written terms of matrices as

ϕL4,ψ
π (h) =

∫

L4(F )\L4(A)
ϕπ







1 x1 x2 y ∗ ∗
1 x2 ∗ ∗

1 −x1 ∗ ∗
1 r1 ∗

1 r2
1



h




× ψ(−r1 − r2) dl4.

(That is, the matrix appearing in the integrand gives an explicit parame-

terization of L4.)

Expand the above integral along the unipotent group of matrices of the

form I6 + n1e1,2 + n2e1,3 where ni ∈ F\A. (The corresponding roots of E6

are α1 and α1 +α3.) The group GL2(F ), embedded as a subgroup of R1(F )

defined above, acts on this expansion with two orbits. The contribution

from the trivial one is zero by cuspidality. For the other we select the

representative I6 +n1e1,2 +n2e1,3 7→ ψ(−n1). The stabilizer, P0, consists of
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Uα3 and a one dimensional torus. Thus

ϕL4,ψ
π (h) =

∑

γ∈P0(F )\GL2(F )

∫

L5(F )\L5(A)
ϕπ







1 x1 x2 y ∗ ∗
1 x3 ∗ ∗

1 x4 ∗ ∗
1 r1 ∗

1 r2
1



γh




× ψ(−r1 − r2 − x1 − x4) dl5.

We plug this into (36) and factor the integration over Uα3 . We then

perform another Fourier expansion along the group I6 + n3e2,3, i.e., Uα3 .

The zero term vanishes and the others are permuted by the torus con-

tained in P0. We choose I6 + n3e2,3 7→ ψ(−n3) as a representative. Since

w[45]w0xα3(r)(w[45]w0)
−1 = xα5(r), we finally obtain

∫

Z(A)N(A)\H(A)

∫

U1(Q)(A)
Wπ(h)θ

U(P ),ψ(w̃0x111110(1)x011210(1)u1h)(37)

×

∫

A2

fV,ψτ (z(m1,m2)w[45]w0u1h, s) dmidu1dh,

as desired.

§6. Unramified computations for ∧2GL6 ×GL2

Assume all data is unramified. We want to compute the corresponding

local integral derived from (37). That is, we compute the integral

I(Wπ, θ, fτ,s)(38)

=

∫

ZN\H

∫

U1(Q)
Wπ(h)θ

U(P ),ψ(w̃0x111110(1)x011210(1)u1h)

×

∫

F 2

fV,ψτ (z2(m1,m2)w1u1h, s) dmidu1dh.

Here θU(P ),ψ and fV,ψτ are the defined as in Section 3, and are the local

functionals corresponding to the global objects of the same name encoun-

tered in the last section. Also z2 and w̃0 are as in the last section, i.e.,

z2(m1,m2) = x−000100(m1)x−000110(m2), and w̃0 = w[5431243542] and we

have introduced the notation w1 = w[45]w0 = w[456]w̃0.

We shall prove
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Proposition. Assume all data is unramified. Then for Re(s) large

(39) I(Wπ, θ, fτ,s) =
L(π × τ,∧2GL6 ×GL2, 4s − 3/2)

L(τ, 12s − 7/2)L(τ, sym3, 12s − 9/2)
.

Proof. Let U denote the maximal unipotent of H which contains the

group N . The quotient N\U is two dimensional and inside G it can be

identified with the group x100000(r1)x101000(r2). Recall that the group U1(Q)

is the unipotent subgroup of G generated by the one dimensional unipotent

subgroups corresponding to the following 11 roots:

010000; 010100; 011100; 010110; 111100; 011110;

111110; 011210; 111210; 112210; 122321.

We make the change of variables u1 7→ x111110(−1)x011210(−1)u1, and

then factor the integration over N\U, which we identify with x100000(r1)

x101000(r2). The function Wπ produces a factor of ψ(r1). Furthermore,

x100000(r1)x101000(r2) normalizes U1(Q) and is conjugated by w̃0 to a unipo-

tent element by which the function θU(P ),ψ is invariant. We introduce the

notation

y(r1, r2) = x100000(r1)x101000(r2)

z0 = x111110(1)x011210(1).

Then, invoking the Iwasawa decomposition for H, we have
∫

Z\T
Wπ(t)δ

−1
B(H)(t)

∫

U1(Q)

∫

F 4

ψ(r1)θ
U(P ),ψ(w̃0u1t)

× fV,ψτ (z2(m1,m2)w1z
−1
0 y(r1, r2)u1t, s) dridmidt.

We conjugate t past u1 and make a change of variables in u1, obtaining a

Jacobian J(t). It will be convenient to hold off on writing J(t) out explicitly.

We now record a trick which is useful for killing unipotent integration:

Lemma. Suppose that Φ is a function with the property that, for any

ǫ ∈ o, r ∈ F we have

Φ(xα(r)) = Φ(xα(r)xβ(ǫ))

= Φ(xβ(ǫ)xα+β(±ǫr)xα(r))

= ψ(±ǫr)Φ(xα(r)).

(The two ±’s need not be the same.) Then Φ(xα(r)) = 0, unless r ∈ o.
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The proof is self-evident. In applications, Φ is typically an inner in-

tegral, the first equality holds because we are in the unramified situation,

and the third holds because we may conjugate xα(r) and xα+β(±ǫr) to the

left and either absorb them into the integration or use left -invariance and

-equivariance properties of Wπ, θ
U(P ) or fV,ψτ .

From this we obtain

Corollary. Write u1 as a product of elements xα(rα) where α ranges

over the roots listed above in any order. Then θU(P ),ψ(w̃0u1t) = 0 unless

rα ∈ o for all α 6= α122321. If u1 does satisfy this condition, then

θU(P ),ψ(w̃0u1t) = ψ(−rα122321 )δ
1/4
P (w̃0tw̃

−1
0 ).

Proof. The left equivariance by x122321 comes from the fact that

w̃0x122321(r)w̃
−1
0 = xα6(r). The relatively simple dependence on t stems

from the fact that, as an element of the torus of H, it commutes with

xα122321 , and the fact that the local minimal representation is the unrami-

fied constituent of an induced representation. To see that the rest of u1 may

simply be erased we inspect the list of roots α above, such that Uα ∈ U1(Q).

This is precisely the set of roots α such that α > 0 and w̃0 · α < 0. For

each such α, let β = 122321 − α. We observe that for each α on the list

above, β is not on the list. It follows that the above lemma may be applied

with this choice of β to restrict the integration in rα to o. But then because

we are in the unramified situation, this integration may be done away with

entirely.

Motivated by this we put µ1(t) = δ−1
B(H)(t)J(t)δ

1/4
P (w̃0tw̃

−1
0 ) and denote

xα122321(rα122321) more simply by z(r3).

We have
∫

Z\T
Wπ(t)µ1(t)

∫

F 5

ψ(r1 − r3)(40)

× fV,ψτ (z2(m1,m2)w1z
−1
0 y(r1, r2)tz(r3), s) dridmidt.

Next we conjugate w1 to the right, denoting the conjugates of z−1
0 , y,

t, z by z′0, y
′, t′, z′. Then z′0 = x−010111(−1)x−001111(−1), y′(r1, r2) =

x010100(−r1)x010110(−r2), and z(r3) = x−000111(−r3). Hence

z2(m1,m2)z
′
0y

′(r1, r2)

= y′(r1, r2)xα2(r1m1 + r2m2)z2(m1,m2)y
′′(r1, r2)z

′
0,
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where y′′(r1, r2) = x−000011(r1)x−000001(r2), so that (40) equals
∫

Z\T
Wπ(t)µ1(t)

∫

F 5

ψ(r1 − r3 − r1m1 − r2m2)

× fV,ψτ (z2(m1,m2)y
′′(r1, r2)z

′
0t

′z′(r3), s) dridmidt.

Now we conjugate t to the left and make changes of variable in the unipotent

integration. Because t was in the kernel of α122321, t
′ is now in the kernel of

α000111, so the Jacobian is 1. Let c, d, and e denote α4(t
′), α2(t

′) and α3(t
′)

respectively. Then we have
∫

Z\T
Wπ(t)µ1(t)

∫

F 5

ψ(cr1 − r3 − r1m1 − r2m2)(41)

× fV,ψτ (t′z2(m1,m2)y
′′(r1, r2)x−010111(d)x−001111(e)z

′(r3), s)

× dridmidt.

Consider the inner integral over r1, r2, and r3. By an argument similar

to the one used to eliminate most of u1 above, it is zero unless m2 and

c−m1 are in o. Now conjugate z2(m1,m2) past y′′(r1, r2). This produces a

factor of x−000111(−r1m1−r2m2) which may be absorbed into r3, simplifying

the expression inside ψ. Now we may erase the integrals over m1 and m2,

replacing z2(m1,m2) by z2(c, 0). We remark that this cancellation between

our two factors of r1m1 + r2m2 may also be seen as the assertion that two

threefold commutators are inverse to one another by tracing the genealogy

of the equivariance property of fV,ψ along Uα2 back to the original character

ψU(P ) of U(P ), which is also the origin of our ψ(−r3).

We now have
∫

Z\T
Wπ(t)µ1(t)

∫

F 5

ψ(cr1 + r3)f
V,ψ
τ (t′x−000011(r1)x−000001(r2)

× x−000111(−r3)x−000100(c)x−010111(−d)x−001111(−e), s) dridmidt.

We now break the domain of integration into two pieces corresponding to

|e| ≤ 1 and |e| > 1. In the first piece, which we denote I0, we may simply

erase x−001111(−e). In the second, which we denote I1, we may replace it

by

α∨
001111(e

−1)x001111(−e).

Here and throughout we use α∨ for the coroot associated to the root α,

which is a 1-parameter subgroup. We conjugate this expression to the left.
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Inside of fV,ψτ we have

t′α∨
001111(e

−1)x001111(−e)x001100(r1)x001110(r2)x001000(−r3)

× x−000011(e
−1r1)x−000001(e

−1r2)x−000111(−e
−1r3)

× x−000100(c)x−010111(−d).

Now, fV,ψτ is invariant by U001111U001100U001110, but equivariant along

U001000. From the definition of e, α3(t
′α∨

001111(e
−1)) = 1, so we get a factor

of ψ(r3). Making changes of variable in the ri we obtain a Jacobian of |e|3.

Next, using the trick from above, we note that the inner integral vanishes

whenever any of |d|, |c|, and |r3| exceeds one. Thus

I1 =

∫

D1

Wπ(t)µ1(t)|e|
3

∫

F 2

ψ(cer1)

× fV,ψτ (t′α∨
001111(e

−1)x−000011(r1)x−000001(r2), s) dr1dr2dt,

where D1 is the subset of Z\T defined by the conditions |e| > 1, |c|, |d| ≤ 1.

We return to I0 and break it into two pieces I01 and I00 corresponding to

|d| > 1 and |d| ≤ 1. By arguments nearly identical to those just above, we

get

I01 =

∫

D01

Wπ(t)µ1(t)|d|
3

∫

F 2

ψ(dcr1)

× fV,ψτ (t′α∨
010111(d

−1)x−000011(r1)x−000001(r2), s) dr1dr2dt,

where D01 is defined by |d| > 1, |c|, |e| ≤ 1. Continuing, we break I00 into

I000 and I001. Corresponding to |c| ≤ 1 and |c| > 1 respectively. This time,

in I001, when we conjugate x000100(c
−1)α∨

4 (c−1) to the left we obtain inside

x−000011(cr1 − r3)x−000001(−r2)x−000111(−c
−1r3),

so that when we make appropriate changes of variable in the ri, the Jacobian

is 1 and ψ(cr1 − r3) becomes simply ψ(r1). Using the fact that fV,ψτ is

invariant by Uα4 on the left, we can once again eliminate the integration

over r3, obtaining

I001 =

∫

D001

Wπ(t)µ1(t)

∫

F 2

ψ(r1)

× fV,ψτ (tα∨
4 (c−1)x−000011(r1)x−000001(r2), s) dr1dr2dt,
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where D001 is the region defined by the conditions |e|, |d| ≤ 1, |c| > 1.

Finally, we break I000 into I0000 and I0001. Observe that I0000 is the same

basic shape as I1, I01, and I001. We leave it alone for now, returning in a

moment to do some manipulations valid for any integral of this shape. As

for I0001, we plug in α∨
000111(r

−1
3 )x000111(−r3) and conjugate them to the

left, obtaining

I0001 =

∫

D000

Wπ(t)µ1(t)

∫

F−o

|r3|
2ψ(−r3)

∫

F 2

ψ(cr1r3)

× fV,ψτ (t′α∨
000111(r

−1
3 )x−000011(r1)x−000001(r2), s) dr1dr2dr3dt.

Here D000 is the subset of Z\T defined by |c|, |d|, |e| ≤ 1. It shall emerge

in a moment that the inner integral over r1 and r2 depends only on |r3|. It

follows that

I0001 = −

∫

D000

Wπ(t)µ1(t)q
2

∫

F 2

ψ(cpr1)

× fV,ψτ (t′α∨
000111(p

−1)x−000011(r1)x−000001(r2), s) dr1dr2dr3dt

(p being a uniformizer and q−1 its absolute value).

We now turn to some manipulations for a general integral of the follow-

ing shape

I ′(c̃, t′′) :=

∫

F 2

ψ(c̃r1)f
V,ψ
τ (t′′x−000011(r1)x−000001(r2), s) dr1dr2.

We first introduce the notation to describe the answer. To avoid having

two Q’s we denote the maximal parabolic subgroup of GSpin10 used to

construct the Eisenstein series of which θτ is a residue (which was denoted

by Q in Section 3) by Q(1) here. Recall that if ni = v(αi(t)), and µ3(t) =

δP (t)sδQ(1)(t)1/3(t)δ
1/2
B(M

Q(1) )
(t), then, in the notation of Section 3, we have

fV,ψτ (t) = µ3(t)χ̃SL2(n
′;n5).

We also reuse the notation x = q−4s+3/2. Let mi = v(αi(t
′′)), and let

S′(v(c̃),m) =

v(c̃)∑

k1=0

m5∑

k2=0

x3k1+3k2 χ̃SL2(m
′;m5 + k1 − k2).

Then we prove

https://doi.org/10.1017/S0027763000025903 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025903


60 D. GINZBURG AND J. HUNDLEY

Lemma. We have

I ′(c̃, t′′) = L(τ, 12s − 7/2)µ3(t
′′)S′(v(c̃),m).

Since the answer depends only on v(c̃), this allows for the simplification of

I0001 noted above.

Proof. Using the same approach as above, we obtain I ′ = I ′0+I ′1, where

I ′0 = 1o(c̃)

∫

F
fV,ψτ (t′′x−000001(r2), s) dr2,

(1o being the characteristic function of o) and

I ′1 =

∫

F−o

ψ(c̃r1)|r1|

∫

F
ψ(−α5(t

′′)r2)

× fV,ψτ (t′′α∨
000011(r

−1
1 )x−000001(r2), s) dr2dr1.

Let II ′
1(t

′′, r−1
1 ) denote the inner integral over r2. It is equal to

1o(α5(t
′′))fV,ψτ (t′′α∨

000011(r
−1
1 ), s)

+

∫

F−o

ψ(−α5(t
′′)r2)f

V,ψ
τ (t′′α∨

000011(r
−1
1 )α∨

6 (r−1
2 ), s) dr2.

Using the fact that

∫

|r2|=qk

ψ(ar2) dr2 = qk ×





(1 − q−1) if k ≤ v(a),

−q−1 if k = v(a) + 1,

0 if k > v(a) + 1,

we obtain

II ′1(t
′′, r−1

1 ) = 1o(α5(t
′′))fV,ψτ (t′′α∨

000011(r
−1
1 ), s)

+

m5∑

k2=1

fV,ψτ (t′′α∨
000011(r

−1
1 )α∨

6 (pk2), s)qk2

− q−1
m5+1∑

k2=1

fV,ψτ (t′′α∨
000011(r

−1
1 )α∨

6 (pk2), s)qk2 .
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We compute qµ3 ◦ α
∨
6 (p) and find it equal to x3. We get

µ3(t
′′α∨

000011(r
−1
1 ))(42)

×

m5∑

k2=0

x3k2
(
χ̃SL2(m

′,m5 − k2) − q−1x3χ̃SL2(m
′,m5 − k2 − 1)

)
.

Now, using the formula for the integral of ψ(c̃r1) over the annulus |r1| = qk1,

we have

I ′1 =

v(c̃)∑

k1=1

q2k1II ′1(t
′′, pk1) − q−1

v(c̃)+1∑

k1=1

q2k1II ′
1(t

′′, pk1).

We compute q2µ3 ◦α
∨
000011(p), finding it equal to x3 again. Plugging in (42)

we obtain

µ3(t
′′)

( v(c̃)∑

k1=1

m5∑

k2=0

x3k1+3k2 χ̃SL2(m
′,m5 + k1 − k2)

− q−1x3

v(c̃)∑

k1=1

m5∑

k2=0

x3k1+3k2 χ̃SL2(m
′,m5 + k1 − k2 − 1)

− q−1x3

v(c̃)∑

k1=0

m5∑

k2=0

x3k1+3k2 χ̃SL2(m
′,m5 + k1 − k2 + 1)

+ q−2x6

v(c̃)∑

k1=0

m5∑

k2=0

x3k1+3k2 χ̃SL2(m
′,m5 + k1 − k2)

)
.

A similar computation yields

I ′0 = µ3(t
′′)

m5∑

k2=0

x3k2 χ̃SL2(m
′,m5 − k2)

− q−1x3
m5−1∑

k2=0

x3k2 χ̃SL2(m
′,m5 − k2 − 1).

This time, the cut-off in the sum is provided by the support of fV,ψτ . The

result follows.
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Recalling the definition of χ̃SL2(m
′,m5 + k1 − k2) and the identity (20)

mentioned earlier, we also have

S′(v,m) = χSL3(m1,m3)

(
ξ2

1
ξ−2

)
χSL2(m2)

(
ξ
ξ−1

)

× χSL3(v,m5)

(
ξx

x−2

ξ−1x

)
,

which we denote more briefly by χ∗
SL2

(v,m).

Returning to the main argument, we have broken our original integral

into five pieces, each of which (in light of the observation that the inner

integral in I0001 depends only on |r3|) is of the form

(43)

∫

Dσ

Wπ(t)µ1(t)Jσ(t)I
′(c̃σ , t

′Tσ) dt,

Here σ is simply standing in for one of our five labels 1, 01, . . . , 0001, and

Jσ, c̃σ, and Tσ are just the appropriate expressions from the corresponding

integral, for example J1(t) = |e|3 and c̃01 = cd.

Now, recall that T is not the full torus of GE6 but only the six-

dimensional maximal torus of H. Because of this {αi(t
′) : 1 ≤ i ≤ 5}

provides a complete set of coordinates for Z\T . Let ni = v(αi(t
′)). It is

clear that each piece of the integrand above depends only on n1, . . . , n5. We

may therefore express each of our five pieces as a sum over n subject to

constraints depending on the case. Let µ2(t) = δ
1/2
B(H)µ1(t)µ3(t

′).

Lemma. We have µ2(t) = xℓ(n), where

ℓ(n) = 2n1 + 3n2 + 4n3 + 2n4 + n5.

Proof. We have µ2(t) = δ
1/2
B(H)(t)J(t)δ

1/4
P (t̃)δ

1/4
P (t′)δ

1/2
B(M

Q(1) )
(t′)δ

1/3

Q(1)(t
′),

where J is the Jacobian that emerged when t was conjugated past u1 ∈

U1(Q). Each piece is naturally interpreted as an element of ΛR⊗ZC, where

ΛR denotes the root lattice of GE6. For the pieces where the argument is

t or t̃ we apply the appropriate Weyl element to express them in terms of
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{αi(t
′)}. We find that

J(t) = (5, 12, 10, 15, 8, 1) in terms of {αi(t)}

= (−4,−6,−8,−15,−13,−11) in terms of {αi(t
′)}

δ
−1/2
B(H)(t) =

(
−

5

2
, 0,−4,−

9

2
,−4,−

5

2

)
in terms of {αi(t)}

=
(
−4,−5,−7,−

19

2
,−

13

2
,−

5

2

)
in terms of {αi(t

′)}

δ
1/4
P (t̃) = (2, 3, 4, 6, 5, 4) in terms of {αi(t̃)}

= (2, 3, 4, 3, 2, 1) in terms of {αi(t
′)}

δP (t′)s = (8s, 12s, 16s, 24s, 20s, 16s) in terms of {αi(t
′)}

δ
1/2
B(M

Q(1) )
(t′) =

(
1,

1

2
, 1, 0,

1

2
, 0
)

in terms of {αi(t
′)}

δ
1/3

Q(1)(t
′) = (2, 3, 4, 6, 3, 0) in terms of {αi(t

′)}

Recall that for t ∈ T , t′ is in the kernel of (0, 0, 0, 1, 1, 1). Reducing modulo

the span of this element, and summing, we obtain

(
8s− 3, 12s −

9

2
, 16s − 6, 8s − 3, 4s −

3

2
, 0
)
,

which gives the stated result.

Now, recall that δ
−1/2
B(H)Wπ(t) is described by the Casselman-Shalika for-

mula in terms of

(v(α1(t)), v(α3(t)), v(α4(t)), v(α5(t)), v(α6(t)))

= (n2 + n4, n5, n3 + n4, n1, n2 + n3).

Specifically, it is zero unless each of these integers is non-negative, in which

case it is the trace of the irreducible representation of SL6(C) whose highest

weight is given by the quintuple, evaluated at the conjugacy class in SL6(C)

associated to the representation π. We denote this by χSL6(n
′′). Then

Wπ(t)µ1(t)µ3(t
′) = χSL6(n

′′)xℓ(n).

Finally, in each case, Jσ(t)µ3(Tσ) is some power of x. We have seen

above that Iσ is evenly divisible by L(12s − 7/2, τ) for all σ. Let Î denote

the quotient. Then each piece of our sum is of the following shape:

∑
χSL6(n

′′)xℓ(n)+∆σχ∗
SL2

(v(c̃σ),m
σ).
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Again, σ is simply one of our labels 1, . . . , 0001.
We record the values of ∆, v(c̃), and m in the following table, along

with the constraints appropriate to each case:

case constraints x∆σ v(c̃σ) m1 m3 m2 m5

1 n3 < 0, ni ≥ 0, i 6= 3 x−3n3 n3 + n4 n1 + n3 0 n2 + n3 n5

01 n2 < 0, ni ≥ 0, i 6= 3 x−3n2 n2 + n4 n1 n2 + n3 0 n5

001 n4 < 0, ni ≥ 0, i 6= 3 1 0 n1 n3 + n4 n2 + n4 n4 + n5

0000 ni ≥ 0 all i 1 n4 n1 n3 n2 n5

0001 ni ≥ 0 all i x3 n4 − 1 n1 n3 − 1 n2 − 1 n5

Note the order of the mi. (It is chosen for convenience of plugging into

χ̃SL2.)

Our original claim is reduced to

(44) Î1 + Î01 + Î001 + Î0000 − Î0001 =
L(π × τ,∧2GL6 ×GL2, 4s − 3/2)

L(τ, sym3, 12s − 9/2)
.

This is essentially an identity of power series. To be precise, let R denote

the representation ring of SL6(C). It may be identified with the ring of

polynomial functions on the torus of SL6(C) which are symmetric with

respect to the action of the Weyl group. The characters of irreducible rep-

resentations form a basis for R as a C-vector space. We consider the ring

R[Y1, Y2][[X]] (formal power series over a polynomial ring in two variables

over R). Suppose that diag(ξ, ξ−1) is a representative for the semisimple

conjugacy class in SL2(C) associated to τ . Then for each σ there is an

element Ĩσ of R[Y1, Y2][[X]] such that Iσ may be obtained from Ĩσ by eval-

uating Y1 at ξ, Y2 at ξ−1, X at x = q−4s+3/2 and the characters in R at the

semisimple conjugacy class in SL6(C) corresponding to π.

But L(π× τ,∧2GL6 ×GL2, 4s− 3/2)/L(τ, sym3, 12s− 9/2) is obtained

by the same procedure from the power series Q, defined by

(1 −X3Y 3
1 )(1 −X3Y1)(1 −X3Y2)(1 −X3Y 3

2 )

×

∞∑

n,m=0

Tr(symm Γ̟2)Tr(symn Γ̟2)Y
m
1 Y n

2 X
m+n.

Furthermore, other than the relation ξξ−1 = 1, no specific information

about the points we are evaluating at plays any role in the proof.

Thus (39) is reduced to the identity in R[Y1, Y2][[X]]/〈Y1Y2 − 1〉:

(45) Q = Ĩ1 + Ĩ01 + Ĩ001 + Ĩ0001 + Ĩ0000,

which we prove in the appendix.
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§7. The proof of equation (45)

In this section we regard x as an indeterminate in a ring of formal

power series, and ξ and ξ−1 and the images of Y1 and Y2, respectively,

in C[Y1, Y2]/〈Y1Y2 − 1〉. It will be convenient to introduce u := xξ and

v := xξ−1.

7.1. The Littlewood Richardson rule

We first expand Q as a more explicit summation. Let (n1, n2, n3, n4, n5)

now denote the character of the irreducible representation of SL6(C) with

highest weight
∑

i ni̟i, viewed as an element of the representation ring R.

The decomposition of symnΓ̟2 is known:

Tr(symn Γ̟2) =
∑

a+2b+3c=n

(0, a, 0, b, 0).

(See [B].) Hence

Q = (1 − u3)(1 − u2v)(1 − uv2)(1 − v3)

×

∞∑

m,n=0

Tr(symnΓ̟2)Tr(symm Γ̟2)u
nvm

= (1 − u2v)(1 − uv2)

×

∞∑

mi,ni=0

(0,m1, 0,m2)(0, n1, 0, n2, 0)u
n1+2n2vm1+2m2 .

We now expand (0,m1, 0,m2)(0, n1, 0, n2, 0) using the Littlewood-Richard-

son rule. Thus we associate to (0, n1, 0, n2, 0) the partition (n1 + n2)
2(n2)

2

and it’s Young diagram, which consists of two rows of length n1+n2 and two

of length n2. To describe the multiplicities in (0,m1, 0,m2)(0, n1, 0, n2, 0) we

consider all ways of adding m1 +m2 boxes labeled a and an equal number

labelled b, and then m2 each labelled c and d, to the Young diagram of

(n1+n2)
2(n2)

2 subject to certain conditions, as described in [F-H], page 456.

We let ai denote the number of a’s in row i and define bi, ci, di similarly.

Then we have:

a1 ≥ b2 + b3, a3 ≥ b4, b2 ≥ c3, n1 ≥ a3 + b3, n2 ≥ a5 + b5,

d6 ≥ c5, c3 ≥ d4, a3 + b3 ≥ b4 + c4, b2 + b3 ≥ c3 + c4,

b2 + b3 + b4 ≥ c3 + c4 + c5, n2 + b4 ≥ a5 + b5 + c5,

n2 + b4 + c4 ≥ a5 + b5 + c5 + d5, b5 + c5 ≥ d6,

a1 + a3 = b2 + b3 + b4 + b5, b6 = a5, c3 + c4 + c5 = d4 + d5 + d6 = m2,
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and all variables not appearing in any of the above must be zero. Also,

a1 + a3 + a5 = m1 +m2. We plug this into our sum and make appropriate

changes of variable (e.g., n1 7→ n1 + a3 + b3) based on the inequalities in

the first row. The first equality in the last row becomes b5 = a1 + a3. We

eliminate m1, m2, b5, b6, and d5, and obtain a sum in all remaining variables

from 0 to ∞ subject to the following reduced set of constraints.

a3 + b3 ≥ c4, b2 + b3 + b4 ≥ c4 + c5, n2 + b4 + d6 ≥ c3 + c5,

a1 + a3 ≥ d6, b2 + b3 ≥ c4, n2 + b4 ≥ c5, c3 + c4 ≥ d6.

(The last constraint here results from the nonnegativity of the eliminated

variable d5.) The representation corresponding to a given value of these

variables is obtained as follows: having added the boxes marked a, b, c, d

to the original Young diagram, we now have the Young diagram of a new

partition. To translate back to the quintuple notation, we simply subtract

consecutive entries. Summarizing:

Q = (1 − u2v)(1 − uv2)

×
∑

un1+2n2+2a1+3a3+2a5+b3+b4va1+a3+a5+b2+b3+b4+2c3+c4+c5+2d4

× (a1 + b3, n1 + b2, a3 + b3 + c3 − c4,

n2 + b4 − c3 − c5 + d4 + d6, a1 + a3 + c3 + c4 − 2d6),

where the summation is from 0 to ∞ in all variables subject to the con-

straints listed above. Observe that a5 may be summed at once, canceling

the factor of (1 − u2v) in front.

7.2. Evaluation of the power series Ĩσ

Now that both sides of (45) have been expressed as explicit summations,

the claim is that the coefficient of the character (m1,m2,m3,m4,m5), is the

same on both sides. This, in turn, is equivalent to the identity of power

series in that we obtain by replacing (m1,m2,m3,m4,m5) with tm1
1 · · · tm5

5

everywhere. By abuse of notation, we keep the same notation for the new

power series. As we shall see, the power series Ĩσ from Section 6 are not

difficult to evaluate in closed form. We first record a few lemmas. Each is

proved by a straightforward computation.
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Lemma. We have

∞∑

n,m=0

Xn
1X

m
2 χSL3(n,m)|

(
u1

u2

u1u
−1
2

)
=

1 −X1X2

(1−X1u1)(1−X1u2)(1−X1u
−1
1 u−1

2 )(1−X2u
−1
1 )(1−X2u

−1
2 )(1−X2u1u2)

.

Lemma. We have

∞∑

n=0

XnχSL2(n)| ( u u−1 ) =
1

(1 −Xu)(1 −Xu−1)
.

Lemma. We have

∞∑

n=0

XnχSL3(n, 0)|

(
u1

u2

u1u
−1
2

)
=

1

(1 −Xu1)(1 −Xu2)(1 −Xu−1
1 u−1

2 )
.

Applying the symmetry of the Dynkin diagram to the last identity, we obtain

∞∑

n=0

XnχSL3(0, n)|

(
u1

u2

u1u
−1
2

)
=

1

(1 −Xu−1
1 )(1 −Xu−1

2 )(1 −Xu1u2)
.

Referring back to our table in Section 6, we write out the formal power

series Ĩσ:

Ĩ0000 =

∞∑

ni=0

tn2+n4
1 tn5

2 tn3+n4
3 tn1

4 tn2+n3
5 x2n1+3n2+4n3+4n4+2n5

× χSL3(n1, n3)|

(
ξ

1
ξ−2

)
χSL2(n2)

× χSL3(n4, n5)|

(
ξx

x−2

ξ−1x

)
.

Ĩ0001 =
∞∑

ni=0

tn2+n4
1 tn5

2 tn3+n4
3 tn1

4 tn2+n3
5 x2n1+3n2+4n3+4n4+2n5+3

× χSL3(n1, n3 − 1)|

(
ξ

1
ξ−2

)
χSL2(n2 − 1)

× χSL3(n4 − 1, n5)|

(
ξx

x−2

ξ−1x

)
.
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Ĩ1 =
∑

n3<0

tn2+n4
1 tn5

2 tn3+n4
3 tn1

4 tn2+n3
5 x2n1+3n2+n3+4n4+2n5

× χSL3(n1 + n3, 0)|

(
ξ

1
ξ−2

)
χSL2(n2 + n3)

× χSL3(n3 + n4, n5)|

(
ξx

x−2

ξ−1x

)
.

Ĩ01 =
∑

n2<0

tn2+n4
1 tn5

2 tn3+n4
3 tn1

4 tn2+n3
5 x2n1+4n3+4n4+2n5

× χSL3(n1, n2 + n3)|

(
ξ

1
ξ−2

)

× χSL3(n2 + n4, n5)|

(
ξx

x−2

ξ−1x

)
.

Ĩ001 =
∞∑

n4<0

tn2+n4
1 tn5

2 tn3+n4
3 tn1

4 tn2+n3
5 x2n1+3n2+4n3+4n4+2n5

× χSL3(n1, n3 + n4)|

(
ξ

1
ξ−2

)
χSL2(n2 + n4)

× χSL3(0, n4 + n5)|

(
ξx

x−2

ξ−1x

)
.

In the last three sums, summation is from 0 to ∞ in the variables not

indicated. Each of these is straightforward to sum using the lemmas above.

For example, to compute Ĩ1 we just have to make the change of variables

n3 7→ −n3 − 1, ni 7→ ni + n3 + 1, i = 1, 3, 4 (which also has the effect

ni + n3 7→ ni, i = 1, 3, 4) to obtain summation from 0 to ∞ in all variables.

We summarize the outcome. Let

A13 = (1 − u3v3t3t4t5),

B13 = (1 − u2t4)(1 − uvt4)(1 − v2t4),

C13 = (1 − u3vt3t5)(1 − u2v2t3t5)(1 − uv3t3t5),

A45 = (1 − u3v3t1t2t3),

B45 = (1 − ut2)(1 − vt2)(1 − u2v2t2),

C45 = (1 − u3v2t1t3)(1 − u2v3t1t3)(1 − uvt1t3),

C2 = (1u2vt1t5)(1 − uv2t1t5).
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Then

Ĩ0000 =
A13A45

B13C13C2B45C45
, Ĩ0001 = −u6v6x2

1x
2
3x

2
5

A13A45

B13C13C2B45C45
,

Ĩ1 =
u3v3t21t4A45

(1 − u3v3t21t4)B13C2B45C45
, Ĩ01 =

u3v3t23A13A45

(1 − u3v3t23)B13C13B45C45
,

Ĩ001 =
t2t

2
5A13

(1 − t2t25)B13C13C2B45
.

Let Ĩ000 = Ĩ0001 + Ĩ0000. It is indeed the power series corresponding to the

integral I000 from Section 6. Observe that a given quintuple (m1,m2,m3,

m4,m5) will appear in only one of the power series Ĩσ, σ ∈ {1, 01, 001, 000}.

For example, if m1 +m3 −m5 is negative, it will only appear in Ĩ001. This

allows us to break Q into four parts Qσ and compare like parts. This turns

out to be more convenient than summing, since when we put everything

over a common denominator, the numerator is irreducible of degree 42 in x.

7.3. Evaluation of the power series Qσ
We recall the form of the quintuple that appears in our summation for

Q:

(a1 + b3, n1 + b2, a3 + b3 + c3 − c4,

n2 + b4 − c3 − c5 + d4 + d6, a1 + a3 + c3 + c4 − 2d6),

Comparing with (n2 + n4, n5, n3 + n4, n1, n2 + n3) we find that the key

quantities are

a1 + c4 − d6, a3 + c3 − d6, b3 + d6 − c4

corresponding to the quantities n2, n3, and n4 of Subsection 7.2 respectively.

To complete the proof of (39) from Section 6 we must check

Proposition. For σ = 1, 01, 001, 000, we have Qσ = Ĩσ.

Proof. We recall the form of the sum:

(1 − uv2)
∑

un1+2n2+2a1+3a3+b3+b4va1+a3+b2+b3+b4+2c3+c4+c5+2d4

× (a1 + b3, n1 + b2, a3 + b3 + c3 − c4,

n2 + b4 − c3 − c5 + d4 + d6, a1 + a3 + c3 + c4 − 2d6),
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with summation from 0 to ∞ in all variables, subject to the constraints

a3 + b3 ≥ c4, b2 + b3 + b4 ≥ c4 + c5, n2 + b4 + d6 ≥ c3 + c5,

a1 + a3 ≥ d6, b2 + b3 ≥ c4, n2 + b4 ≥ c5, c3 + c4 ≥ d6.

as well as the additional constraints which define the “piece” σ. We first

observe that n1 and d4 do not appear in any constraints, and hence may be

summed at once producing factors of (1 − ut2)
−1 and (1 − v2t4)

−1 respec-

tively. Also, it will be convenient to introduce r1 = n2 + b4 − c3 − c5 + d6

and eliminate the variable n2. The resulting sum is

(1 − uv2)
∑

u2r1+2a1+3a3+b3−b4+2c3+2c5−2d6va1+a3+b2+b3+b4+2c3+c4+c5

× (a1 + b3, b2, a3 + b3 + c3 − c4, r1, a1 + a3 + c3 + c4 − 2d6),

and the new constraints are:

b2 + b3 ≥ c4(46)

b2 + b3 + b4 ≥ c4 + c5(47)

a3 + b3 ≥ c4(48)

r1 + c3 ≥ d6(49)

a1 + a3 ≥ d6(50)

c3 + c4 ≥ d6(51)

r1 + c3 + c5 ≥ b4 + d6(52)

The remainder of the computation is different in each case, but in all of the

cases we make use of the following

Lemma. For N ≤ 0 ≤M , we have

M∑

δ=N

∞∑

b4,c5=0
b4−c5=δ

(u2v)c5(u−1v)b4

=
1

(1 − u2v)(1 − u−1v)
−

(u−1v)M+1

(1 − u−1v)(1 − uv2)
−

(u2v)−N+1

(1 − u2v)(1 − uv2)
.

Proof. We break up the sum as

M∑

δ=0

∞∑

c5=0

(u2v)c5(u−1v)c5+δ +

−1∑

δ=N

∞∑

b4=0

(u2v)b4−δ(u−1v)b4

=
1 − (u−1v)M+1

(1 − u−1v)(1 − uv2)
+

u2v − (u2v)−N+1

(1 − u2v)(1 − uv2)
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and then simplify. It’s worth noting that summing (u−1v)δ = ξ−2δ from 0

to ∞ would be invalid, but summing u2v = x3ξ or uv2 = x3ξ−1 is valid for

Re(s) sufficiently large.

7.3.1. The sum Q1

For Q1 we have the additional constraint d6 ≥ a3 + c3 + 1. When we

make the change of variables d6 7→ d6 + a3 + c3 + 1, (49), (50), and (51)

become

r1 ≥ d6 + a3 + 1, a1 ≥ d6 + c3 + 1, c4 ≥ d6 + a3 + 1

respectively. We make additional changes of variable

r1 7→ r1 + d6 + a3 + 1, a1 7→ a1 + d6 + c3 + 1, c4 7→ c4 + d6 + a3 + 1,

and (48) becomes b3 ≥ c4 + d6 + 1. Making the final change of variables

b3 7→ b3+c4 +d6+1, we now have a sum from 0 to ∞ in all variables subject

only to:

b2 + b3 ≥ a3, b2 + b3 + b4 ≥ a3 + c5, r1 + c5 ≥ b4.

The summand is:

u2r1+2a1+3a3+b3+b4+2c3+c4+2c5+3d6+3

× va1+2a3+b2+b3+b4+3c3+2c4+c5+3d6+3

× ta1+b3+c3+c4+2d6+2
1 tb22 t

b3+c3
3 tr1+a3+d6+1

4 ta1+c4
5 .

The unconstrained variables a1, c3, c4 and d6 may be summed, yielding

u3v3t21t4
(1 − u3v3t21t4)(1 − u2vt1t5)(1 − u2v3t1t3)(1 − uv2t1t5)

.

The remaining sum we may write as

∞∑

s=0

s∑

b2=0

s∑

a3=0

∞∑

r1=0

(vt2)
b2(uvt1t3)

s−b2(u3v2t4)
a3(u2t4)

r1

×

r1∑

δ=a3−s

∞∑

b4,c5=0
b4−c5=δ

(u2v)c5(u−1v)b4 .
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Now, let

G(X,Y,Z) :=

∞∑

s=0

s∑

k1=0

s∑

k2=0

∞∑

k3=0

Xk1
1 Xs−k1

2 Zk2Y k3

= (1 − Y )−1G1(X,Z).

(The second equality defines G1.) Then our sum is

G(X,Y,Z)

(1 − u−1v)(1 − u2v)
−
u−1vG(X,u−1vY,Z)

(1 − u−1v)(1 − uv2)
(53)

−
u2vG(u2vX, Y, u−2v−1Z)

(1 − u2v)(1 − uv2)

where

(54) X1 = vt2, X2 = uvt1t3, Y = u2t4, Z = u3v2t4.

We now prove

Lemma. We have the identity of power series

G1(X,Z) =
1 −X1X2Z

(1 −X1)(1 −X2)(1 −X1Z)(1 −X2Z)
.

Proof. Performing the sums in k1 and k2 we obtain

(X1 −X2)
−1(1 − Z)−1

∞∑

s=0

(1 − Zs+1)(Xs+1
1 −Xs+1

2 ),

which we break into four pieces and sum over s obtaining

(X1 −X2)
−1(1 − Z)−1

(
X1

1 −X1
−

X2

1 −X2
−

X1Z

1 −X1Z
+

X2Z

1 −X2Z

)
.

When we place the sum in parentheses over a common denominator the

numerator is precisely (X1 −X2)(1 − Z)(1 −X1X2Z).

Returning to our specific situation, note that (1−XiZ) is fixed when we

replace Xi by u2vXi and Z by u−2v−1Z. Hence these factors are common
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to all three terms of (53). We easily combine the first two terms using the

identity

1

(1 − u2v)(1 − Y )
−

u−1v

(1 − uv2)(1 − u−1vY )

=
(1 − u−1v)(1 − uv2Y )

(1 − u2v)(1 − uv2)(1 − Y )(1 − u−1vY )
.

Combining with the last term is more laborious and requires simplifying

(1 − uv2Y )(1 −X1X2Z)(1 − u2vX1)(1 − u2vX2)

− (u2 − uv2Y )v(1 −X1X2Zu
2v)(1 −X1)(1 −X2).

Noting that in (54) we have uv2Y = Z, this simplifies to

(1 − u2v)(1 −X1Z)(1 −X2Z)(1 −X1X2u
2v).

We cancel the (1−u2v) in the denominator and the (1−X1Z)(1−X2Z)(1−

X1X2u
2v) factored out earlier. The (1 − uv2) in the denominator matches

the one in front of the sum. Plugging in (54) we find that 1 −X1X2u
2v =

1−u3v3t1t2t3, and that the terms which remain in the common denominator

of (53) precisely match the part of the denominator of Ĩ1 which has not

already been accounted for, i.e.

(1 − vt2)(1 − u2v2t2)(1 − uvt1t3)(1 − u3v2t1t3)(1 − u2t4)(1 − uvt4).

7.3.2. The sum Q001

For Q001 we have the additional constraint c4 ≥ b3 +d6 +1. Constraints

(51) and (50) follow from this and the other constraints, and we eliminate

them. When we make the change of variables c4 7→ c4 +b3 +d6 +1, (46) and

(48) become b2, a3 ≥ c4 + d6 + 1 making the additional changes of variable

b2 7→ b2 + c4 + d6 + 1, a3 7→ a3 + c4 + d6 + 1 The new set of constraints is

b2 + b4 ≥ c5, r1 + c3 ≥ d6, r1 + c3 + c5 ≥ b4 + d6.

The remaining computation is entirely analogous to what was done for Q1.
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7.3.3. The sum Q01

For Q01 we have the additional constraint d6 ≥ a1 + c4 + 1. Constraint

(48) follows from the others. We make the change of variables d6 7→ d6 +

a1 + c4 +1, and then a3 7→ a3 +d6 + c4 +1 and c3 7→ c3 +a1 +d6 +1, leaving

the sum
∑

u2r1+2a1+3a3+b3−b4+2c3+c4+2c5+3d6+3

× v3a1+a3+b2+b3+b4+2c3+2c4+c5+3d6+3

× ta1+b3
1 tb22 t

a1+a3+b3+c3+2d6+2
3 tr14 t

a3+c3
5 ,

subject to:

c4 ≤ b2 + b3, c4 ≤ r1 + c3, −(b2 + b3 − c4) ≤ b4 − c5 ≤ r1 + c3 − c4.

Summing the unconstrained variables a1, a3, d6 we obtain a factor of

u3v3t23
(1 − u3v3t23)(1 − u2v3t1)(1 − u3vt3t5)

in front. Let

F (X,Y ,Z) =
∞∑

ℓ=0

Zℓ
∞∑

s1,s2=ℓ

s1∑

k1=0

Xk1
1 Xs1−k1

2

s2∑

k2=0

Y k2
1 Y s2−k2

2

=
F̃ (X,Y ,Z)

(X1 −X2)(Y1 − Y2)
.

Then the remaining sum is

F (X,Y , uv2)

(1 − u2v)(1 − u−1v)
−
u−1vF (X,u−1vY , u2v)

(1 − uv2)(1 − u−1v)
−
u2vF (u2vX, Y , u−1v)

(1 − uv2)(1 − u2v)
=

(1−uv2)F̃ (X,Y , uv2)−(1−u2v)F̃ (X,u−1vY , u2v)−(1−u−1v)F̃ (u2vX, Y , u−1v)

(X1 −X2)(Y1 − Y2)(1 − u2v)(1 − uv2)(1 − u−1v)
,

(55)

evaluated at

(56) X1 = vt2, X2 = uvt1t3, Y1 = u2t4, Y2 = u2v2t3t5.

Also,

F̃ (X,Y ,Z) =

2∑

i,j=1

XiYj
(1 −Xi)(1 − Yj)(1 −XiYjZ)

.
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Observe that (1 −XiYjZ) takes the same value, namely (1 −XiYjuv
2), in

each of the three terms in (55), for all i, j. We check the identity

(1 − uv2)XY

(1 −X)(1 − Y )
−
u−1v(1 − u2v)XY

(1 −X)(1 − u−1v)
−

u2(1 − u−1v)XY

(1 − u2vX)(1 − Y )

=
(1 − u−1v)(1 − u2v)(1 − uv2XY )XY

(1 −X)(1 − Y )(1 − u−1vY )(1 − u2vX)
,

and apply it to Xi, Yj for each i, j. We then cancel (1−u−1v)(1−u2v)(1−

uv2XiYj). The sum on i, j now factors into two separate sums, which are

easy to compute. Plugging in (56), we check that the result matches Ĩ001.

7.3.4. The sum Q000

For Q000 we have the additional constraints

a3 + c3 ≥ d6(57)

a1 + c4 ≥ d6(58)

b3 + d6 ≥ c4(59)

Let

G(W,X, Y ,Z) =
∑

W a1
1 W a2

2 Xb2
1 X

b3
2 Y

r1
1 Y c3

2 Zc41 Z
d6
2

with the sum subject to all of our constraints except (47) and (52). Then,

viewing these two as defining a sum as considered in out lemma above, we

find that our sum is

G(W,X, Y ,Z1, Z2)

(1 − u−1v)(1 − u2v)
−
u−1vG(W,X, u−1vY ,Z1, uv

−1Z2)

(1 − u−1v)(1 − uv2)
(60)

−
u2vG(W,X, Y , u2vZ1, Z2)

(1 − u2v)(1 − uv2)

evaluated at

W1 = uvt1t5, W2 = u3vt3t5, X1 = vt2, X2 = uvt1t3,

Y1 = u2t4, Y2 = u2v2t3t5, Z1 = vt−1
3 t5, Z2 = u−2t−2

5 .

Now, let

H(W,X, Y ,Z) =
∑

W a1
1 W a3

2 Xb2
1 X

b3
2 Y

r1
1 Y c3

2 Zℓ

where the sum is subject to

ℓ ≤ min(b2 + b3, a3 + b3, r1 + c3, a1 + a3, a3 + c3).
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Lemma. We have

G(W,X, Y ,Z) =
1 −W1X2Y2Z1Z2

(1 −X2Z1)(1 −W1Y2Z2)
H(W,X, Y ,Z1Z2),

and

H(W,X, Y ,Z) =
1 −W1W2X2Y2Z

(1 −W1)(1 −W2)(1 −W1X2Y2Z)
F (X,Y ,ZW2),

where F is defined as in the last section.

Proof. The proof in both cases is just to break into two pieces and make

appropriate changes of variable in each piece. To prove the first identity we

consider the subsum defined by the additional condition c4 ≥ d6. Which

renders (51) and (58) redundant. We then make the change of variable

c4 7→ c4+d6, followed by b3 7→ b3+c4. The resulting constraint-set is that of

H with the role of ℓ played by d6. We obtain from this piece (1−X2Z1)
−1H.

In the sum over c4 + 1 ≤ d6 we find that (59) is redundant, and we make

the change of variable d6 7→ d6 + c4 + 1 followed by c3 7→ c3 + d6 + 1,

a1 7→ a1+d6+1. Then we again obtain the sum definingH(W,X, Y ,Z1Z2),

with the role of ℓ played by c4 this time, and the sum over d6 producing

(W1Y2Z2)(1−W1Y2Z2)
−1. Simplifying the sum of the two terms in front, we

obtain the first identity. The second identity is proved in the same manner,

this time defining our two pieces by a3 ≥ ℓ and ℓ ≥ a3 + 1.

Corollary. We have:

G(W,X, Y ,Z)

=
1 −W1W2X2Y2Z1Z2

(1 −W1)(1 −W2)(1 −X2Z1)(1 −W1Y2Z2)
F (X,Y ,Z1Z2W2).

Returning to the evaluation of (60), note that the expression in front of

the F takes the same value in all three of the terms of (60), and that value

is
1 − u6v6t21t

2
3t

2
5

(1 − u2vt1t5)(1 − u3vt3t5)(1 − uv2t1t5)(1 − u2v3t1t3)
.

The remaining expression involving F is precisely (55), which has already

been evaluated. Once again we check matching of every term.
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