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Abstract. Let X be the Fermat curve of degreeq + 1 over the fieldk of q2 elements, whereq
is some prime power. Considering the JacobianJX of X as a constant Abelian variety over the
function fieldk(X), we calculate the multiplicities, in subfactors of the Shafarevich–Tate group, of
representations associated with the action onX of a finite unitary group.JX is isogenous to a power
of a supersingular elliptic curveE, the structure of whose Shafarevich–Tate group is also described.
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The Shafarevich–Tate group is an important object associated with any Abelian
variety over a global field. It classifies locally-trivial principal homogeneous spaces
and is conjectured to be finite in all cases. For modular elliptic curves of analytic
rank one or zero (and related higher dimensional examples) the finiteness is known,
thanks to well-known work of Kolyvagin, as is information relating the structure of
the group to the divisibility of certain Heegner points. Also, what is known about
its order agrees with the Birch and Swinnerton–Dyer conjecture. See [16] and [17].

The constant Abelian varieties over global function fields, i.e. those already
defined over the finite subfield of constant functions, form one of the other main
classes for which finiteness of the Shafarevich–Tate group is known (see the last
page of [15]). In this case the analog of the Birch and Swinnerton–Dyer conjecture
is also known to be true (see [12]). In this paper we analyse the Shafarevich–Tate
groups of some very special, symmetrical examples of constant Abelian varieties
over global function fields. The special nature of the examples considered has two
effects. First, there exists an intricate structure related to the action of the symmetry
group, and second, it is possible to find it. To this end we avail ourselves of the great
wealth of beautiful results in the literature concerning crystalline cohomology. The
present work was originally motivated by the desire to calculate the determinants
of certain Mordell–Weil lattices.

Let p be any prime number andq = pf for somef > 0. Let k = Fq2, the
field with q2 elements. Consider the Fermat curve of degreeq +1 in the projective
plane overk

X: xq+1 + yq+1 + zq+1 = 0.
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112 NEIL DUMMIGAN

The involutoryqth power automorphism ofk is analogous to complex conjug-
ation, and the left-hand side of the above equation is analogous to a Hermitian
form in three variables, so we say thatX is a Hermitian curve. It has genusg =
q(q − 1)/2, by the degree-genus formula. Let

G = SU3(q) = {A ∈ M3(k) : A(q)t = A−1,detA = 1}
be the finite special unitary group in three variables. HereA(q)t is the transpose of
the matrix obtained fromA by raising each entry to theqth power.G acts naturally
onX, by fractional linear transformations.

The curveX is also remarkable in that theq2-power endomorphism of its
JacobianJX is multiplication by−q. This follows from the following consider-
ations. Recall thatJX is an Abelian variety representing the group of degree-zero
divisors onX, modulo linear equivalence. The number of points onX defined
over k is given by Weil’s formula #X(k) = 1+ q2 −∑2g

i=1 ai where theai are
certain algebraic integers, the eigenvalues for the action of theq2-power Frobenius
endomorphism on anl-adic Tate moduleTl(JX) (see [24]). With respect to any
embedding ofQ in C, the ai all have absolute value|k|1/2 = q. This yields the
Hasse–Weil upper bound 1+ q2+ 2gq = 1+ q3 for #X(k). That this bound is ac-
tually attained is easily verified by changing the equation ofX to yq+1 = xqz+xzq
then directly counting points. This compels all theai to be equal to−q. The
opening statement of this paragraph follows from this.

Tate’s theorem on endomorphisms of Abelian varieties over finite fields [24]
now implies thatJX is isogenous overk to Eg, whereE/k is any elliptic curve in
the isogeny class such that theq2-power endomorphism is multiplication by−q.
Such elliptic curves may be constructed from elliptic curves with complex multi-
plication using reduction modulop (see [25]). (Whenq ≡ 3 mod 4, the elliptic
curveE: v2 = u3 − u is an example.) Note thatE is supersingular andJX also
has maximal Newton polygon. For the number of points on a general diagonal
hypersurface over a finite field see [28]. For more on Fermat varieties over finite
fields, see [26] and [23].

In this paper we tackle ‘descent’ problems associated to the constant Abelian
varietiesJX andE over the global function fieldk(X).

SinceJX is isogenous toEg and since Endk(E) (a maximal order in a quaternion
algebra) has rank 4, the rank of Endk(JX) is 4g2 and the rank of Homk(JX,E) is
4g = 2q(q − 1). The groupH := G×G acts naturally on the endomorphism ring
Endk(JX) by (g1, g2)φ(x) = g2(φ(g

−1
1 (x))). Similarly it acts on several objects

we shall encounter. If we choose ak-rational point onX to embed it in its Jacobian
then Endk(JX) becomes identified with Mork(X, JX)/tors. ' JX(k(X))/tors., the
group ofk(X)-rational points onJX, modulo torsion. This follows from the fact
that every morphism fromX to an Abelian variety (in particular toJX) factors
throughJX.

Endk(JX) is in fact naturally an even integral lattice which we shall callL. This
lattice may be identified with the interesting subgroup of the group of divisors
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modulo numerical equivalence on the surfaceX×X. The symmetric bilinear form
is simply the intersection pairing, and is a scalar multiple of the canonical height
pairing forJX/k(X).

Let −−III be the Shafarevich–Tate group for the constant Abelian varietyJX over
the global function fieldk(X). By definition,

−−III = ker(H 1(k(X), JX)→
∏
v

H 1(k(X)v, JX)),

where the cohomology is for the flat topology (see [14]) and the product is over
all local completions of the function field. According to Milne’s formula [12] (a
special case of the analog of the Birch and Swinnerton–Dyer conjecture),

|−−III | detL = (q2)g
2 = q2g2

.

The main goal of this paper is to analyse the structure of−−III and the action of
the groupH upon it. Let−−III n denote the set ofn-torsion elements in−−III. Milne’s
formula shows that−−III is a finite p-group so we have a finite filtration

−−III p ⊂ −−III p2 ⊂ −−III p3 ⊂ · · · ⊂ −−III .
Each subquotient−−III pi /−−III pi−1 is anFp[H ]-module, which in general is not com-
pletely reducible. However, we shall determine its composition factors with multi-
plicities, for eachi. Of course, this determines the separate factors|−−III | and detL,
and the group structure of−−III.

There is a similar problem for the Shafarevich–Tate group of the elliptic curve
E overk(X), where only the groupG acts. In this case Milne’s formula reads

|−−III | detL = (q2)g = qq(q−1),

whereL is the Mordell–Weil latticeE(k(X))/tors. ' Homk(JX,E), of rank 4g =
2q(q−1). In [2] we calculated detL, thus determining the order of the Shafarevich–
Tate group but not its structure. In this paper we examine the filtration of−−III by
the kernels of powers of thepth-power isogenyπ . For each occurring irreducible
Fp[G]-module we have calculated the sequence of multiplicities, confirming that
it is as predicted in [2]. In the calculation of the completep-descent for the full
JacobianJX, not just its factorE, we find strange patterns for the multiplicities
of the Fp[H ]-modules, intimately related to those for theFp[G]-modules in the
elliptic curve case.

We mention a simple corollary of our results.

(1) For bothJX/k(X) andE/k(X), −−III is trivial iff f 6 2 (whereq = pf ).
(2) ForJX/k(X), the smallest power ofp annihilating−−III is p[f/3]. ForE/k(X),

the smallest power ofπ annihilating−−III is π [f/3].

We provide full details for the JacobianJX, but in the elliptic curve case we
confine ourselves to some remarks in Section 9 on the analogous calculation. The
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Shafarevich–Tate group ofE over the function field of a suitable hyperelliptic quo-
tient ofX may be dealt with similarly. Indeed, our prediction for the multiplicities
was motivated partly by the requirement that it be consistent with bounds obtained
by Elkies [4] in the hyperelliptic, characteristic 2 case.

Section 1 describes the mechanism of descent and gives the Selmer group for
the multiplication-by-pi map as the first cohomology group overX (for the flat
topology) of the sheaf associated to the group-scheme kernel ofpi. Section 2
recovers this group-scheme from the Dieudonné module ofJX, which is naturally
isomorphic to the first crystalline cohomology ofX. All this is inspired by a letter
from D. Ulmer to B. Gross explaining the elliptic curve case (see Section 4 of [27]
for something closely related).

In Section 3 we derive the simple expression Selpi ' EndA(H 1
crys(X)/p

i),

whereA is the Dieudonné ring (defined in Section 2). To establish this we use
several things:

(1) The identification of the first crystalline cohomology ofX with the first deRham
cohomology of its natural liftingX∗/W , whereW is the ring of infinite Witt
vectors overk.

(2) The decomposition of thisW -module into rank-one eigenspaces for the action
of the diagonal subgroup ofG, and (following Shioda, Section 4 of [22]) the
arrangement of these eigenspaces into cyclic orbits for the action of thepth-
power operatorF .

(3) Further information on the action ofF deduced from Mazur’s results on
Frobenius and the Hodge filtration, as in [18] and [22].

(4) The identification (in our case) of the first crystalline cohomology ofX with
Serre’s first Witt vector cohomology (introduced in [21]). This is what allows
us to describe the Selmer groups in terms of crystalline cohomology rather
than flat cohomology.

H 1
crys(X)/p

i is isomorphic to the Dieudonné module of the group-scheme kerpi.
It follows that an equivalent expression for Selpi is Endk(kerpi). Therefore endo-
morphisms of kerpi which do not lift to endomorphisms ofJX contribute to thepi-
torsion in the Shafarevich–Tate group. One might expect that Selm ' Endk(kerm)
for multiplication by any integerm on the Jacobian of any curve over a finite field
k (considered as an Abelian variety over the function field of that curve). In the
case thatm is coprime top this may be proved easily using geometric class field
theory (the subject of [20]).

In Section 4 we explain how double-rowed ‘circle-diagrams’ may be used to
label pairs of the irreducibleFp[H ]-modules which occur as composition factors
of −−III. In Section 5 we state the main theorem on how the multiplicities of these
irreducible modules in−−III pi /−−III pi−1 may be read off from the double-rowed circle
diagrams. In Sections 6, 7 and 8 we use the expression for Selpi established in
Section 3 to carry out the calculation necessary to prove the theorem.
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1. The Descent Mechanism

Recall that the 2g eigenvalues of (q2-power) Frobenius forX/k are all equal to−q.
It follows that the number of points on the JacobianJX defined over the extension
of degreer of k is (1−(−q)r )2g. This is never divisible byp, soJX has no nontrivial
p-torsion points defined over the algebraic closure ofk. However, for eachi > 1,
the kernel of multiplication bypi is well-defined as a group-scheme overk.

Associated to any commutative group-schemeG overk is a sheaf, also denoted
G, on the flat site over Speck (see [14] for the flat site and its sheaf cohomology).
For any schemeS locally of finite type over Speck, the group of sections ofG over
S is simply Mork(S,G). Consider the following exact sequence of sheaves on the
flat site overk

0→ kerpi → JX
pi−→ JX → 0.

Our reason for using the flat site is to ensure that the multiplication-by-pi map is
surjective (c.f. [14] Ch. 2, 2.18). We actually have a commutative diagram with
exact rows, for anyi > 1:

0 - kerpi - JX
pi - JX - 0

0
?

- kerp

pi−1

?
- JX

pi−1

?
p - JX

id
?

- 0.
?

From the long exact sequences in flat cohomology overX we may extract the fol-
lowing commutative diagram with exact rows (notice thatL ' H 0(X, JX)/tors.):

0 - L/piL - H 1(X, kerpi) - H 1(X, JX)pi
- 0

0
?

- L/pL

proj
?

- pi−1H 1(X, kerpi)

pi−1
?

- pi−1H 1(X, JX)pi

pi−1
?

- 0.
?

Now it follows from the fact that the Abelian varietyJX over the function field
k(X) is already defined overk, thatH 1(X, kerpi) is isomorphic to the Selmer
group forpi (see [27]) and thatH 1(X, JX) is isomorphic to the Shafarevich–Tate
group−−III of JX/k(X) (see [12]). Therefore we take the opportunity to rewrite the
bottom row as

0→ L/pL→ pi−1Selpi→ pi−1−−III pi → 0.

The right-hand term of this sequence is isomorphic to a subfactor of−−III:

pi−1−−III pi '−−III pi /−−III pi−1.

This follows readily from the exact sequence

https://doi.org/10.1023/A:1001721808335 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001721808335


116 NEIL DUMMIGAN

0→ −−III pi−1→ −−III pi
pi−1

−−−→ pi−1 −−III pi → 0.

Therefore to determine theFp[H ]-module composition factors (with multiplicit-
ies) of each−−III pi /−−III pi−1 it suffices to determine those of each term in the descent
filtration Selp ⊃ pSelp2 ⊃ · · · ⊃ L/pL.

2. Dieudonné Modules and Group Schemes

We will find it necessary to use the crystalline cohomology, for which a convenient
reference is [7]. LetW be the ring of infinite Witt vectors overk, so thatW is the
ring of integers in the unramified extension of degree 2f of Qp. W is a local ring
with maximal idealpW and residue fieldk. Let σ be the automorphism ofW/Zp
which reduces modp to thepth-power Frobenius automorphism ofk/Fp. Associ-
ated with any proper, smooth varietyZ/k of dimensiond are finitely generated
W -modulesHi(Z) := Hi

crys(Z) which are trivial except for 06 i 6 2d. In our
case,H 1(X) is a freeW -module of rank 2g = q(q − 1). It is naturally isomorphic
toH 1(JX) and also to the algebraic deRham cohomologyH 1

dR(X
∗), whereX∗/W

is the natural lifting ofX, with the same equation. On this module the absolute
pth-power Frobenius morphism of schemes induces aσ -linear, injective mapF ,
so F(av) = aσF (v) for a ∈ W, v ∈ H 1(X). Also there is aσ−1-linear map
V such thatFV = VF = p. Since in our case the eigenvalues of Frobenius
over k are all−q, we haveF 2f = V 2f = −q = −pf . Let A be the Dieu-
donné ring, generated overW by two elementsF andV satisfying the relations
FV = VF = p,Fa = aσF, V a = aσ−1

V for all a ∈ W . ThenH 1(X) is naturally
anA-module. According to [11], ifB/k is an Abelian variety then there is a natural
isomorphism ofA-modulesH 1

crys(B) ' D∗(B). HereD∗(B) := lim← D∗(kerpi)

andD∗ is the contravariant functor which, to a commutative group-scheme over
k of p-power rank, associates a certain finiteA-module, its Dieudonné module.
D∗(kerpi) may be recovered from the inverse limit asD∗(B)/piD∗(B). In our
case this implies that

D∗(kerpi) ' H 1(X)/piH 1(X).

It follows (see [6]) from the fact thatV is nilpotent on the right-hand side that, in
our case, the definition ofD∗ is such that

D∗(kerpi) = Homk−Gp(kerpi, CW),

the set ofk-group scheme homomorphisms from kerpi to the co-Witt vectorsCW.
CW is defined to be the direct limit of the Witt vector-group schemesWn, with
respect to the shift mapsV : (a1, a2, ..., an) 7→ (0, a1, ..., an). Recall the operator
F : (a1, ..., an) 7→ (a

p

1 , ..., a
p
n ) onWn. The action ofW = lim← Wn(k) onWn by
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multiplication maps is twisted byσ−n to give (withF andV ) an action ofA on
CW. See [6] or [19] for more on Witt vectors.

The point of all this is that we now know the Dieudonné moduleD∗(kerpi) in
terms ofH 1(X), and the group-scheme kerpi may be recovered from this as the
object representing the functorS 7→ HomA(D

∗(kerpi), CW(S)). HereS ranges
over schemes locally of finite type over Speck. We will use this characterisation of
kerpi in the next section to obtain a simple expression for Selpi.

3. F -Orbits and the Selmer Groups

We need some preliminaries on the structure ofH 1(X). When we identify this
module withH 1

dR(X
∗) it attains a Hodge filtrationH 1

dR(X
∗) = M0 ⊃ M1 ⊃

M2 = {0} with M0/M1 ' H 1(X∗,OX∗) andM1/M2 ' H 0(X∗,�1). Let T be
the diagonal subgroup ofU3(q). T has order(q +1)3 and its action onX/k lifts to
X∗/W , replacing elements ofk∗ by their Teichmüller representatives inW ∗.

PROPOSITION 1.

(1) H 0(X∗,�1) is a freeW -module with a basis of elements which may be labelled
aswmnl = xmynzl dx dy dz for all 06 m,n, l 6 q−1 withm+n+ l = q−2.

(2) H 1(X∗,OX∗) is a freeW -module with a basis of elements which may be la-
belled aswmnl = xmynzl dx dy dz for all 06 m,n, l 6 q−1 withm+n+ l =
2q − 1.

(3) Eachwmnl is an eigenvector forT with characterdiag(a, b, c) 7→ am+1 bn+1

cl+1.
(4) These characters are all distinct.
(5) Thewmnl naturally lift to a basis (also called{wmnl}) for the freeW -module

H 1(X) = H 1
dR(X

∗), consisting of eigenvectors forT with characters as above.

This is just Proposition 5 in Section 6 of [2].

DEFINITION 1. We definewmnl to be of typekmnl where

kmnl =
{

0 if m+ n+ l = 2q − 1,

1 if m+ n+ l = q − 2.

If 0 6 r 6 q − 1 andr = r0+ r1p+ · · · + rf−1p
f−1 with 06 ri 6 p− 1 then we

write r = (r0, r1, ..., rf−1) for thisp-adic expansion.

PROPOSITION 2.

(1) Fwmnl = cmnlwm′n′l′ with cmnl ∈ Zp and

m′ = (p − 1−mf−1,m0,m1, ..., mf−2),
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n′ = (p − 1− nf−1, n0, n1, ..., nf−2),

l′ = (p − 1− lf−1, l0, l1, ..., lf−2).

(2) ordp(cmnl) = kmnl .

This is Proposition 6 in Section 6 of [2]. It follows from [9] and the fact thatF

must multiply characters ofT by p.
We introduce some useful alternative notation. Choose some element in our

standard basis{wmnl} for H 1(X) and call itw1. LetFw1 = c1w2, Fw2 = c2w3, ...

with all thewj standard basis elements. SinceF 2f acts onH 1(X) as multiplication
by−q we havew2f+1 = w1 and the subscripts should really be taken mod2f . We
say that{w1, w2, ..., w2f } is anF -orbit of basis elements. Sometimes the length of
the orbit may be a proper divisor of 2f . SinceFf multiplies characters ofT by−1
(pf ≡ −1 modq + 1, the exponent ofT ), the length of the orbit does not divide
f so will always be of the form 2l for somel|f .

DEFINITION 2.

(1) Defineki to be the type ofwi.
(2) Given anF -orbit J = {w1, w2, ..., w2l} letHJ := ⊕2l

j=1Wwj ⊂ H 1(X).

LEMMA 1 .Wn has the same cohomology overX/k whether considered as a sheaf
for the flat topology or the Zariski topology.

Proof.H ∗f l andH ∗Zar are known to be the same forOX-modules [14] [Ch. 3,
Prop. 3.7] so the casen = 1 of the lemma is known to be true (note that the
sheafW1 onX is the same as the structure sheafOX). Forn > 1 there are exact
sequences (one for Zariski, one for flat) of sheaves

0→W1
V n−1

−−→Wn
R→Wn−1→ 0,

whereR : (a1, ..., an−1, an) 7→ (a1, ..., an−1) is the restriction map. The long exact
sequences in cohomology fit together in a commutative diagram thanks to the
morphism of sitesXf l → XZar . Now it is possible to prove the lemma using
induction and a five-lemma-style argument. 2
HenceforthH 1(X,Wn) will denoteH 1

f l(X,Wn) = H 1
Zar(X,Wn). LetA = adeles

of k(X), A(0) = those integral at each place of the function fieldk(X). See [20]
(II.5) for adeles (or répartitions) and for the casen = 1 of the next lemma.

LEMMA 2 .

H 1(X,Wn) ' Wn(A)
Wn(k(X))+Wn(A(0))

.
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Proof.There is an exact sequence of Zariski sheaves

0→Wn→Wn(k(X))→Wn(k(X))/Wn→ 0.

(The middle term is a constant sheaf and the next one the sheaf cokernel.)
H 1(X,Wn(k(X))) = 0 so from the long exact sequence we get

H 1(X,Wn) ' H 0(X,Wn(k(X))/Wn)

H 0(X,Wn(k(X)))
.

To prove the lemma we note that

H 0(X,Wn(k(X))/Wn) 'Wn(A)/Wn(A(0)). 2
PROPOSITION 3.H 1(X,Wn) ' H 1(X)/V nH 1(X) asA-modules.

Proof. The restriction operatorR:Wn+1 → Wn induces a mapR:H 1(X,

Wn+1) → H 1(X,Wn) for eachn > 1. The inverse limit of the resulting inverse
system ofW -modules is denotedH 1(X,WOX). It is Serre’s first Witt vector co-
homology [21] and is a torsion-freeW -module, in fact naturally anA-module.
There is a comparison theorem relating Serre’s Witt vector cohomology to a part
of crystalline cohomology. This was proved by Bloch [1] using algebraicK-theory,
under the assumption thatp 6= 2. Without this assumption, it was proved by Illusie
using the deRham–Witt complex (and a result of Nygaard, see [8], 4.4.2). The
theorem is that, up toW -torsion,H 1(X,WOX) is naturally isomorphic, as anA-
module, to the largest quotient ofH 1(X) (crystalline) for which the ‘slopes of
Frobenius’ lie in the interval[0,1). This is the top subfactor of the slope filtration
of H 1(X). In our case the eigenvalues of Frobenius onH 1(X) are all−q. Since
ordp(−q) = (1/2)ordp(|k|), in our case the slopes are all 1/2 and the top subfactor
is the whole ofH 1(X). HenceH 1(X) ' H 1(X,WOX).

From the adelic description ofH 1(X,Wn) in the previous lemma, it is clear
that the restriction mapsR : H 1(X,Wn+1)→ H 1(X,Wn) are surjective and that
H 1(X,Wn)may be recovered from the inverse limit by modding out byV n. Hence
the proposition. 2

Recall that Selpi = H 1
f l(X, kerpi).

PROPOSITION 4. Selpi ' HomA(H
1(X),H 1(X)/pi) = EndA(H 1(X)/pi).

Proof. Fix i. SinceV 2f = −q (on H 1(X)) we can choose somen such that
V n = pi

′
with i′ > i. Any homomorphism fromH 1(X)/piH 1(X) to CW(S) is

killed by V n so factors throughWn(S). Temporarily we assume thati = i′. Re-
covering the group-scheme kerpi from its Dieudonné module,H 1(X)/piH 1(X),
we find kerpi = ⊕GJ , a sum overF -orbits, where, for any schemeS locally of
finite type over Speck, GJ (S) = HomA(HJ/p

iHJ ,Wn(S)). Choose a particular
F -orbit J = {w1, w2, ..., w2l}. In the case whenS = SpecR is affine, letφ be such
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a homomorphism and forj mod 2l let aj = φ(wj ) ∈ Wn(R). There are various
conditions that theaj must satisfy in order forφ to be anA-homomorphism. Define
dj = p/cσ−1

j so that (sinceVF = p) we haveVwj+1 = djwj .
(1) φ isW -linear so is determined by theaj .
(2) φ(Fwj) = Fφ(wj ) socjaj+1 = Faj for all j .
(3) φ(Vwj+1) = V φ(wj+1) sodjaj = V aj+1 for all j .

Had we not assumedi = i′, we would also need the conditionpiaj = 0 for
eachj . SinceFV = VF = p, (2) and (3) will hold for allj iff (2) holds
wheneverkj = 0 (in which case ordp(cj ) = 0) and (3) holds wheneverkj = 1 (in
which case ordp(dj ) = 0). Thus it is necessary and sufficient (assuming (1)) that
(a1, a2, ..., a2l) is in the kernel of the mapψ : (Wn(R))

2l → (Wn(R))
2l defined by

ψ(a1, a2, ..., a2l ) = (b1, ..., b2l) where

(1) bj = cjaj+1 − Faj if kj = 0.
(2) bj = djaj − V aj+1 if kj = 1.

Of course, the subscripts here are mod2l. Now ψ gives a homomorphism from
the group-scheme(Wn)

2l to itself, and clearlyGJ is isomorphic to the group-
scheme kernel. To prove the proposition it suffices to show thatH 1

f l(X,GJ ) '
HomA(HJ ,H

1(X)/pi) for eachF -orbit J .
The following sequence of sheaves for the flat topology is exact since, given a

set ofbj ∈Wn(R) for 16 j 6 2l, the equations (1) and (2) above for theaj define
a finite flat extension ofWn(R).

0→ GJ → (Wn)
2l ψ→ (Wn)

2l → 0.

Taking the long exact sequence in cohomology we find that

H 1
f l(X,GJ ) ' ker(ψ) ⊂ ⊕2l

r=1H
1(X,Wn) = ⊕2l

r=1H
1(X)/pi.

Here we have used the fact thatH 0(X, (Wn)
2l) = (Wn(k))

2l, on which the map
ψ is surjective (because it is injective, kerp having no nontrivial points overk).
But the conditions for an element(v1, ..., v2l) ∈ ⊕2l

r=1H
1(X)/pi to be in ker(ψ)

are exactly those for theW -linear map fromHJ toH 1(X)/pi defined bywj 7→ vj
to be anA-module homomorphism. Thus, in the case thati = i′, we get the de-
sired isomorphismsH 1

f l(X,GJ ) ' HomA(HJ ,H
1(X)/pi) andH 1

f l(X, kerpi) '
HomA(H

1(X),H 1(X)/pi).
Now consider the casei < i′. Taking the long exact sequence in flat cohomo-

logy coming from the exact sequence of sheaves

0→ kerpi → kerpi
′ pi→ kerpi

′−i → 0,
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for which theH 0’s vanish, we identifyH 1
f l(X, kerpi) with the kernel ofpi on

H 1
f l(X, kerpi

′
). But this is HomA(H 1(X), pi

′−iH 1(X)/pi
′
H 1(X)), and simply di-

viding bypi
′−i gives us what we want. 2

Notice that Selpi ' HomA(H
1(X)/pi,H 1(X)/pi) ' HomA (D

∗(kerpi),
D∗(kerpi)). But D∗ is an anti-equivalence of categories between the category
of finite unipotent group schemes overk and the category ofA-modules of finite
length on whichV is nilpotent (see [6]) so we have

Selpi ' Endk(kerpi).

The descent map fromJX(k(X))/tors. ' Endk(JX) to Selpi is now obviously just
restriction of endomorphisms.

4. Double-Rowed Circle Diagrams andFp[H ]-Modules

It is our aim to give the multiplicities in each−−III pi /−−III pi−1 of the irreducibleFp[H ]-
modules occurring. Recall thatH = G × G andG = SU3(q). These irreducible
Fp[H ]-modules will be described in terms of the irreduciblek[G]-modules oc-
curring as composition factors of thek-vector spaceH 1

dR(X). The standard basis
{wmnl} for H 1

dR(X
∗) reduces modp to a standard basis{vmnl} for H 1

dR(X).
LetU ∗ be thek[G]-module coming from the standard action of the matrix group

G on column vectors of length three. LetU be the dualk[G]-module. Given ak[G]-
moduleV , let V pi be thek[G]-module obtained fromV by composing the action
of G with thepi-power automorphism ofk/Fp on matrix entries (A 7→ A(p

i)). If
A ∈ G thenA(q) = (tA)−1, soUq ' U ∗. We summarise some facts discussed in
more detail in Sections 7, 8 and 9 of [2].

(1) H 1
dR(X) has 2f irreduciblek[G]-module composition factors, each occurring

with multiplicity one. Each is isomorphic to something of the form

V0⊗ V p

1 ⊗ V p2

2 ⊗ · · · ⊗ V pf−1

f−1 ,

where eachVi is Symti (U) or Symti (U ∗) with ti = p − 1 orp − 2.
(2) An irreducible factor as above is labelled by a ‘string diagram’d0d1...df−1

wheredi = X or O according asti = p − 2 orp − 1 respectively. The total
number ofX’s is odd.

(3) There is a further restriction which ensures that each of the 2f−1 string dia-
grams labels precisely two composition factors, one occurring in each of the
subfactors of the Hodge filtration. Namely,di = X marks a switch fromU to
U ∗ or vice versa. For example, whenf = 4 the string diagramXXOX labels
the irreducibles

Symp−2(U)⊗ Symp−2(U ∗p)⊗ Symp−1(U ∗p
2
)⊗ Symp−2(Up3

),
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and

Symp−2(U ∗)⊗ Symp−2(Up)⊗ Symp−1(Up2
)⊗ Symp−2(U ∗p

3
).

(4) If an irreducibleV ‘belongs’ to the string diagramd0d1...df−1 thenV p belongs
to the string diagramdf−1d0...df−2. Hence, the two factors belonging to a
single string diagram are of the formV, V q ' V ∗.

(5) There is a composition series forH 1
dR(X) with each composition factor gener-

ated by a subset of thevmnl as ak-vector space. There aref conditions on the
base-p digits ofm,n andl for vmnl to be one of the generators for the subfactor
isomorphic to a particular ‘twisted tensor product’. The(i + 1)st condition is

mi + ni + li = p − 2 or p − 1 or 2p − 1 or 2p − 2,

according as the(i + 1)st factor in the twisted tensor product is

Symp−2(Upi ) or Symp−1(Upi ) or Symp−2(U ∗p
i

) or Symp−1(U ∗p
i

)

respectively.

If one forgets thek-linear structure,H 1
dR(X) becomes anFp-vector space of di-

mension 4fg. Its irreducible composition factors asFp[G]-module each occur
with multiplicity 2f . These factors are labelled (up to isomorphism) by ‘circle
diagrams’, in a one-to-one fashion. A circle diagram is what you get from a string
diagram by rolling it up and joining the ends. Let’s say left-to-right on the string
becomes anticlockwise on the circle. IfV is an irreducibleFp[G]-module labelled
by a circle diagramC then thek[G]-module composition factors ofV ⊗Fp k
form a single Gal(k/Fp) orbit of 2f/r irreducibles, wherer is the order of ro-
tational symmetry of the circle diagram. Thesek[G]-irreducibles belong to the
f/r distinct string diagrams obtained by unrolling the circle. Each one, when
considered as anFp[G]-module (forgetting thek-linear structure), contains only
the composition factor labelled byC, with multiplicity r. We denote a circle dia-
gram by placing one of its unrollings inside square brackets. For example, when
f = 3, [XOO] = [OXO] = [OOX]. It is time to pass fromk[G]-modules and
Fp[G]-modules to a consideration ofk[H ]-modules andFp[H ]-modules.

Note that all the irreduciblek[G]-modules considered above are absolutely ir-
reducible. IfV1 andV2 are irreduciblek[G]-modules belonging to string diagrams
S1 andS2 respectively then Homk(V1, V2) is an irreduciblek[H ]-module with the
action ofH given by((g1, g2)(φ))(x) = g2(φ(g

−1
1 (x))). We label Homk(V1, V2)

by the double-rowed string diagram obtained by placingS1 directly on top ofS2.
This string diagram also labels Homk(V1, V

q

2 ),Homk(V
q

1 , V2) and Homk(V
q

1 , V
q

2 ).
The double-rowed string diagram may be rolled up into a double-rowed circle

diagram (again let’s say that left-to-right becomes anticlockwise). This double-
rowed circle diagram naturally labels an irreducibleFp[H ]-moduleM such that
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the k[H ]-moduleM ⊗Fp k has composition factors labelled by the string dia-
grams which roll up into the circle. In fact it labels two distinct irreducibleFp[H ]-
modules. Homk(V1, V2) and Homk(V

q

1 , V
q

2 ) lie in one Gal(k/Fp)-orbit while
Homk(V

q

1 , V2) and Homk(V1, V
q

2 ) lie in another.
Since Selp ' HomA(H

1
dR(X),H

1
dR(X)), it is clear that all theFp[H ]-module

composition factors of−−III pi /−−III pi−1 will be among those labelled by double-rowed
circle diagrams.

5. The Multiplicities

We recall from [2] a way to associate a sequence of numbers,N1, N2, N3, ... to a
single-rowed circle diagramC. Firstly defineN1 to be the number ofX’s on C.
For i > 2,Ni depends upon the exact arrangement of theseX’s on the circle. The
X’s come in continuous unbroken runs which we may call odd runs and even runs
depending on the parity of the number of crosses in a run. Distinct runs ofX’s
are separated from each other by runs ofO’s. Now define a sequenceC2, C3, ...

of circle diagrams of non-increasing size in the following way. LetC2 = C. Then,
for eachi > 2, Ci+1 is obtained fromCi by deleting all the even runs and anyO
which is one place clockwise of an odd run, then closing up the gaps. DefineNi to
be the number of odd runs onCi.

TheNi are all odd, and they form a non-increasing sequence which eventually
stabilises in 1 when all the surviving crosses merge into a single odd run.

EXAMPLE. If f = 19 andC = [OOXOOXOOXOXXXOXOXXO] then
C3 = [OXOXOXXXXXOO], C4 = [XXXXXXXOO], C5 = [XXXXXX
XO] andC6 = [XXXXXXX].N1 = 9, N2 = 5, N3 = 3 andNi = 1 for i > 4.

Recall thatJX is isogenous overk toEg for some elliptic curveE/k, determined
up to isogeny. For eachi > 1 there is api-power mapπi:E → E(p

i), whereE(p
i)

is obtained fromE by raising the coefficients of a defining equation to thepith
power. For the statement of the following theorem,−−III denotes the Shafarevich–Tate
group ofE/k(X).

THEOREM 1. The multiplicity in−−III πi /−−III πi−1 of the irreducibleFp[G]-module
labelled by the circle diagramC isNi − 1.

Now we return to the case ofJX/k(X), where we are concerned with the multi-
plicities in −−III pi /−−III pi−1 of the two irreducibleFp[H ]-modules labelled by a given
double-rowed circle diagram. For each such circle diagram we need two sequences
of numbers,(N1

i ) and(N2
i ), one for each irreducible. We get these by converting

the double-rowed circle diagramC into two different single-rowed circle diagrams
D1 andD2 (which will generally be of smaller circumference thanC). Then for
r = 1,2, (Nr

i ) is the sequence of numbers already defined for the circle diagram
Dr .
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THEOREM 2. The irreducibleFp[H ]-modules associated with the double-rowed
circle diagramC may be labelledM1 andM2 in such a way that the multiplicity of
Mr in −−III pi /−−III pi−1 isNr

i − 1.

It remains to describe how to obtain the single-rowed circle diagramsD1 andD2

from the double-rowed circle diagramC (and to prove the theorem, but that is for
later sections).

Recall thatC is obtained by putting a string diagramS1 on top of a string
diagramS2 then rolling up the double-rowed string diagram into a double-rowed
circle diagram, left-to-right becoming anticlockwise.S1 becomes the inner circle
C1 while S2 becomes the outer circleC2. For r = 1,2 let sr2, ..., s

r
f , s

r
1 be the

symbols (X’s andO’s) onSr , listedfrom right to left, that is, moving clockwise on
the circle. Just as in the single-rowed case, we use square brackets to write a circle

diagram. ThusC =
[
s1
1,s

1
f ,...,s

1
2

s2
1,s

2
f ,...,s

2
2

]
. We say that the symbolss1

j ands2
j are positioned at

thej th locus, wherej is considered modulof . The double-rowed string diagram
s1
j ,s

1
j−1,...,s

1
j+2,s

1
j+1

s2
j ,s

2
j−1,...,s

2
j+2,s

2
j+1

is said to be thej th unrolling ofC. Of course, the choice of the

first unrolling (i.e. the labelling of the symbols) is somewhat arbitrary.

DEFINITION 3. Eachsrj is eitherX or O. Definesrj to be an isolated cross iff

srj = X but s3−r
j = O. The double-rowed circle diagramC is said to be pure iff it

has no isolated crosses.

The total number of isolated crosses onC is even, sinceC1 andC2 each has an odd
number of crosses. As we move clockwise aroundC we get a repeating sequence of
isolated crosses. Assuming the circle diagram is not pure, there are precisely two
distinct ways to arrange these isolated crosses into pairs of consecutive isolated
crosses. Any particular isolated cross may be paired with either the previous one or
the next one. Suppose that we have chosen such a pairing. Lets

r1
j1

andsr2j2 form one
of our pairs of consecutive isolated crosses. All symbols positioned at loci fromj1

to j2 inclusive will be said to form a ‘chunk’. Each chunk contains an even number
of crosses and will be called an even chunk or an odd chunk according as it has
even or odd numbers of crosses on each row.

Now we describe how to get the single-rowed circle diagramsD1 andD2 from
C, one for each way of pairing the isolated crosses. Delete each even chunk and
replace it byO

O
. Also delete each odd chunk and replace it byX

X
. At this point we

have a pure circle diagram. Replacing nowX
X

byX andO

O
byO, we get the single-

rowed circle diagram. We have to proceed slightly differently ifC is already pure.
GetD1 by replacingO

O
byO andX

X
byX, and just letD2 = [X].

EXAMPLE. Whenf = 15 considerC =
[
XOXXOXXOXXOXOOX

OOXOXXXOOOOXXOX

]
. C may be

chunked as follows (with round brackets about each chunk):
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C =
[ (XOXX)(OXXOX)(XOXO)OX
(OOXO)(XXXOO)(OOXX)OX

]
.

This leads to the pure circle diagram
[
XXOOX

XXOOX

]
then toD1 = [XXOOX].

Unrolling three places further clockwise we may write

C =
[OOXXOXXOXXOXXOX
XOXOOXOXXXOOOOX

]
,

then the other chunking is

C =
[ (OOXX)OX(XO)XXO(XX)OX
(XOXO)OX(OX)XXO(OO)OX

]
.

This leads to the pure circle diagram
[
OOXXXXOOOX

OOXXXXOOOX

]
, then to

D2 = [OOXXXXOOOX].
Notice that the lengths ofD1 andD2 add up tof . The reader will easily confirm
that this always happens. Also, eachDr has an odd number of crosses on it, since
in the passage fromC to the pure circle diagram, an even number of crosses is
deleted from each row.

Now N1
1 = 3 andN1

i = 1 for i > 2, whileN2
1 = 5 andN2

i = 1 for i > 2.
According to Theorem 2, the two irreducibleFp[H ]-modules belonging toC may
be labelledM1 andM2 in such a way that the multiplicities ofM1 andM2 as
composition factors of−−III p are 2 and 4 respectively. Both have multiplicity zero in
−−III pi /−−III pi−1 for anyi > 2.

In general, exactly whichFp[H ]-module corresponds to which chunking ofC
should become apparent during the proof of Theorem 2. For now we just deal
with the previous example to illustrate the recipe. Recall that each irreducible
Fp[H ]-module corresponds to a Gal(k/Fp)-orbit of irreduciblek[H ]-modules. In
the above example, the chunking leading toD1 corresponds to the irreducible
Fp[H ]-module whose associated orbit of irreduciblek[H ]-modules contains

Homk(Symp−2(U)⊗ · · · ⊗ Symp−2(Up14
),

Symp−1(U ∗)⊗ · · · ⊗ Symp−2(Up14
)).

The chunking leading toD2 corresponds to the irreducibleFp[H ]-module whose
associated orbit of irreduciblek[H ]-modules contains

Homk(Symp−1(U)⊗ · · · ⊗ Symp−2(U ∗p14
),

Symp−2(U ∗)⊗ · · · ⊗ Symp−2(U ∗p14
)).
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We use here the same unrollings as above. The important thing is that at the clock-
wise (left) end of a chunk the symmetric powers involve bothU andU ∗.

6. Equations for the Selmer Groups

The proof of Theorem 2 will be spread across this and the following two sections.
Recall that there is a finite descent filtration

Selp ⊃ pSelp2 ⊃ p2Selp3 ⊃ · · · ⊃ L/pL.
Suppose that we could show that the multiplicity ofMr in pi−1Selpi is Nr

i . Since
theNr

i ’s eventually become 1, this would show that the multiplicity ofMr in L/pL
is one. Then the exact sequence

0→ L/pL→ pi−1Selpi→pi−1−−III pi → 0

would imply that the multiplicity ofMr in −−III pi /−−III pi−1 isNr
i −1, as desired. Hence

our aim is to show that the multiplicity ofMr in pi−1Selpi is Nr
i . We know from

Section 3 that Selpi ' EndA(H 1(X)/pi). Before exploring the consequences of
this, we set some notation.

Let C =
[
s1
1,s

1
f ,...,s

1
2

s2
1,s

2
f ,...,s

2
2

]
be some particular double-rowed circle diagram. The first

unrolling of C is a double-rowed string diagram labelling an irreduciblek[H ]-
module Homk(V1, V2) (and three others). HereV1 andV2 are subfactors ofH 1

dR(X),
each generated by a subset of the set{vmnl} of standard basis elements forH 1

dR(X).
These lift to subsets of the set{wmnl} of standard basis elements forH 1(X).

Let w1
1 be the standard basis element forH 1(X) lifting some standard basis

elementv1
1 for an irreduciblek[G]-moduleV1 labelled by the first unrolling of the

inner circleC1. There are, of course, many possible choices forv1
1. Once chosen,

w1
1 generates anF -orbit {w1

1, ..., w
1
2f }. SayFw1

1 = c1
1w

1
2, Fw

1
2 = c1

2w
1
3, .... For

j mod 2f we say thatw1
j belongs to the symbols1

j onC1. Recall that for symbols
the subscripts run modf , sow1

j andw1
j+f both belong tos1

j . Similarly we choose
w2

1 lifting a basis elementv2
1 for an irreduciblek[G]-moduleV2 labelled by the first

unrolling of the outer circleC2. Then we get anF -orbit of w2
j ’s belonging to the

symbolss2
j , with Fw2

j = c2
jw

2
j+1.

DEFINITION 4. Definedrj := p/crσ−1

j so thatVwrj+1 = drjwrj . Also definekrj :=
ordp(crj ). This is all forr = 1 or 2. Letkj := k2

j − k1
j . It may be 0,1 or−1.

The basis{wmnl} forH 1(X) gives rise to a dual basis{w∗mnl} for HomW(H
1(X),W).

Starting fromw1∗
1 ⊗w2

1 we get an ‘F -orbit’ {w1∗
j ⊗w2

j } of standard basis elements
for EndW(H 1(X)) or EndW(H 1(X)/pi). w1∗

j ⊗ w2
j ‘belongs’ to thej th locus.

Since Selpi = EndA(H 1(X)/pi), each element of Selpi is a sum of elements of
Selpi supported on singleF -orbits of standard basis elements for EndW(H

1(X)/pi).
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Therefore we choose a fixedF -orbit and just consider elements of Selpi supported
on thatF -orbit. Letφ =∑ ajw

1∗
j ⊗w2

j be such an element. So for eachj modulo
the length of the orbit,φ(w1

j ) = ajw2
j . Each coefficientaj is inW/piW .

DEFINITION 5. If aj 6= 0, let bj be the image ofaj/pordp(aj ) in W/pW ' k

(this is well-defined). Ifaj = 0 then setbj = 0. If aj 6= 0 then ordp(aj ) < i is
well-defined. If we say ordp(aj ) = n for somen > i, we shall mean thataj = 0.

For theW -endomorphismφ to be anA-endomorphism it is necessary and sufficient
that it commute withF and V . This is equivalent to certain equations for the
coefficientsaj . Fw1

j = c1
jw

1
j+1 so φ(Fw1

j ) = c1
j aj+1w

2
j+1. On the other hand,

φ(w1
j ) = ajw2

j soFφ(w1
j ) = aσj c2

jw
2
j+1. Comparing coefficients gives us

aj+1c
1
j = aσj c2

j . (1)

A similar computation usingV instead ofF leads to the equation

ajd
1
j = aσ

−1

j+1d
2
j . (2)

Formally either equation gives us

ordp(aj+1) = ordp(aj )+ kj (3)

but we have to be careful about things becoming 0 inW/piW . The cases are
examined below.

(1) If kj = 0 (i.e.k1
j = k2

j ) then one of the equations (1) and (2) genuinely links
aj with aj+1. Either ordp(aj ) = ordp(aj+1) or aj = aj+1 = 0. Either one of
aj andaj+1 determines the other, and of course a similar statement is true of
bj andbj+1.

(2) If kj = 1 (i.e.k1
j = 0 andk2

j = 1) thenaj determinesaj+1 and ordp(aj+1) =
ordp(aj )+1.bj determinesbj+1. If aj+1 = 0 thenbj+1 = 0 does not determine
bj , though ordp(aj ) must be at leasti − 1. If aj+1 6= 0 thenbj+1 determines
bj .

(3) If kj = −1 (i.e.k2
j = 0 andk1

j = 1) thenaj+1 determinesaj and ordp(aj ) =
ordp(aj+1)+ 1. bj+1 determinesbj . If aj = 0 thenbj = 0 does not determine
bj+1, though ordp(aj+1) must be at leasti − 1. If aj 6= 0 thenbj determines
bj+1.

7. Pure Circle Diagrams

Recall that a pure circle diagram is one with no isolated crosses, so the inner and
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outer circlesC1 andC2 are the same. The following fact is implied by (3) of Section
4, and will be of the utmost importance in all that follows.

LEMMA 3 . For r = 1 or 2, krj 6= krj−1 iff srj = X.

Thus, as we move clockwise along therth row of the circle diagram,krj switches
from 0 to 1 or vice versa precisely whenever we hit a cross. IfC happens to be
a pure circle diagram, this implies thatk1

j andk2
j will either always be equal or

always be unequal.

PROPOSITION 5. If our chosenF -orbit {w1∗
j ⊗w2

j } is such thatk1
j = k2

j for all j ,
then for alli, the multiplicity of the associatedFp[H ]-module inpi−1Selpi is 1.

Proof. kj = 0 for all j , so by (1) of the previous section,aj determinesaj+1

and ordp(aj ) = ordp(aj+1) for all j . In fact we get a continuous chain of equations
linking all the aj to each other. Suppose that

∑
ajw

1∗
j ⊗ w2

j is an element of
Selpi = EndA(H 1(X)/pi). To map it topi−1Selpi inside Selp = EndA(H 1(X)/p)

we simply reduce the coefficients modulop. From all the elements of Selpi for
which ordp(aj ) = 0 (for all j ) we get a one-dimensionalFp2l -vector subspace of
pi−1Selpi, where 2l is the length of theF -orbit. Note that the chain of equations
eventually linksa1 to itself aσ

2l

1 = γ a1, for someγ ∈ W which depends on the
crj . It follows from the fact thatF 2f = −q onH 1(X) that NormW/W(F

p2l )(γ ) =
1, then Hilbert’s Theorem 90 provides us with the solutions we need to get the
one-dimensionalFp2l -vector subspace ofpi−1Selpi .

Notice that theFp-dimension contributed is 2l, the same as the number ofW -
basis elements in theF -orbit. Therefore each irreduciblek[H ]-module (of the type
labelled by a double-rowed string diagram) contributes anFp-dimension equal to
its dimensiond as ak-vector space. Ifr is the order of rotational symmetry of
the circle diagram then there are 4f/r irreduciblek[H ]-modules. Half of these are
in the Gal(k/Fp)-orbit associated with that irreducibleFp[H ]-module (M2, say)
belonging toC which is distinguished from the other one (M1) by the condition
k1
j = k2

j . The total contribution fromF -orbits belonging toM2 is anFp-dimension
of d.2f/r. Since this is exactly theFp-dimension ofM2, we see that the multi-
plicity of M2 in pi−1Selpi is one, the same as the number of chains of equations
coming from each of theF -orbits involved. 2

We convene that the single-rowed circle diagram associated toM2 is [X], so all
theN2

i are equal to 1 and the above proposition is in accord with Theorem 2. The
next proposition is the heart of the proof of Theorem 2.

PROPOSITION 6. If our chosenF -orbit {w1∗
j ⊗w2

j } is such that for allj , k1
j 6= k2

j ,
then for all i the multiplicity inpi−1Selpi of the associatedFp[H ]-moduleM1 is
N1
i .
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We need to make some preparations before embarking on the proof. The circle
diagramC is pure, soC1 = C2. There are two single-rowed circle diagrams which
may be derived fromC. In the previous proposition we dealt withD2 = [X].
Now we are dealing withD1 = C1 = C2. Recall that there is a sequenceD1 =
D1

2,D
1
3,D

1
4, ... of circle diagrams such thatN1

1 is the number of crosses onD1

and, fori > 2,N1
i is the number of odd runs of crosses onD1

i . For i > 2,D1
i+1 is

obtained fromD1
i by deleting all the even runs ofX’s and deleting anyO which is

one place clockwise of an odd run ofX’s.

DEFINITION 6 . For j1, j2 mod 2f let R(j1, j2) = ∑
j16j<j2 kj . The inequality

means all thosej we encounter moving clockwise fromj1 before we hitj2.

The point of this definition is that if
∑
ajw

1∗
j ⊗w2

j is an element of Selpi, and ifaj1
andaj2 are linked by an unbroken chain of equations, then ordp(aj2) = ordp(aj1)+
R(j1, j2). This clearly follows from the relation ordp(aj+1) = ordp(aj )+ kj . Note
that sincek1

j 6= k2
j , kj is always±1.

Given any symbol onD1 we may trace its history as we advance through the
sequenceD1

2,D
1
3,D

1
4, .... At some point it may be deleted, but we may talk of a

cross onD1 as being onD1
i , if it survives that far.

Fix j1 and imagine what happens toR(j1, j2) asj2 moves clockwise around
the circle. Whenkj2 = 1, R(j1, j2) is increasing. Whenkj2 = −1, R(j1, j2) is
decreasing.kj2 switches sign whenever we pass a cross. So as we pass through a
run ofX’s, R(j1, j2) oscillates up and down in steps of size one, but as we pass
through a run ofO’s, R(j1, j2) steadily increases or decreases, according askj2 is
stuck on 1 or−1. Bearing in mind these observations, the proof of the following
lemma is straightforward.

LEMMA 4 .

(1) If sj1 = X and sj2 = X are the beginning and end of an even run ofX’s then
R(j1− 1, j2) = 0 andkj1−1 = kj2. It is as if the even run wasn’t there.

(2) If sj1 = X and sj2 = X are the beginning and end of an odd run ofX’s then
R(j1, j2) = 0 andkj1−1 6= kj2.

(3) If sj1 = X andsj2 = X survive to be the beginnings of successive odd runs on
D1
i thenkj1 6= kj2.

(4) Suppose thatsj1 = X and sj2 = X survive to be the beginning and end of
an odd run ofX’s on D1

i . Let sj3 = X be the symbol which survives to be
the beginning of the next odd run ofX’s onD1

i . Suppose thatkj1 = 1. Then
R(j1, j) < i for all j1 6 j 6 j2, R(j1, j) > 0 for all j1 6 j 6 j3 and
R(j1, j3) > i.

(5) Same hypotheses as previous item exceptkj1 = −1. ThenR(j1, j) > −i for
all j1 6 j 6 j2, R(j1, j) 6 0 for all j1 6 j 6 j3 andR(j1, j3) 6 −i.

Note that (3), (4) and (5) hold even fori = 1 if we make the convention that
D1

1 = D1, with everyX considered to be an odd run.
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Proof of Proposition 6.Again we focus on elements
∑
ajw

1∗
j ⊗ w2

j of Selpi

supported on a singleF -orbit. Only coefficientsaj such that ordp(aj ) = 0 will con-
tribute anything topi−1Selpi ⊂ Selp. (Recall that the map from EndA(H 1(X)/pi)

to EndA(H 1(X)/p) is given by reduction modp of coefficients.) Letsj0, sj1, sj3 =
X be symbols onD1 which survive to be the beginnings of successive odd runs of
X’s onD1

i (possibly with even runs in between). Letsj2 = X be the symbol on
D1 which survives to be the (clockwise) end of the odd run which starts withsj1.
Choosekj1 = 1, sokj0 = kj3 = −1 andkj2 = 1.

For j < j ′ mod 2f , ordp(aj ′) = ordp(aj ) + R(j, j ′) if aj ′ 6= 0 in W/piW
for all j 6 j ′ 6 j ′. Bearing in mind this and the above lemma, we may argue as
follows. 06 R(j1, j) < i for j1 6 j 6 j2. Hence, if ordp(aj1) = 0 then all theaj
for j1 6 j 6 j2 are non-zero and are linked toaj1 in a chain of equations. In factbj1
determines all thebj for j1 6 j 6 j2. However, ordp(aj ) > 0 for j2 < j 6 j3, and,
using case (2) at the end of the previous section,aj3 = 0 sinceR(j1, j3) > i. Hence
the chain of equations gets broken. Now we look at what happens anticlockwise
of j1. SinceR(j0, j1) 6 −i we find thataj0 = 0. Another way of looking at this
is that the conditionaj0 = 0 forced by the previous equation break is consistent
with allowing ordp(aj1) = 0. Also, ordp(aj ) > 0 for j0 6 j < j1 so even though
some of these coefficients may be non-zero and independent ofaj1, they do not
contribute anything topi−1Selpi.

For each odd run ofX’s on D1
i we have a single chain of equations. All the

coefficients contributing topi−1Selpi depend uponaj1. It follows that the multipli-
city of the irreducibleFp[H ]-moduleM1 in pi−1Selpi is the number of odd runs
on D1

i , namelyN1
i . Note that this argument works even wheni = 1, when the

multiplicity is the number ofX’s onD1. If a single chain of equations goes right
around the circle we may use Hilbert 90 as before. 2
8. Non-Pure Circle Diagrams

We complete the demonstration of Theorem 2 by reducing the general case to that
dealt with in the previous section. We now consider an element

∑
ajw

1∗
j ⊗ w2

j

of Selpi, supported on anF -orbit belonging to a circle diagramC which is not
pure. In fact theF -orbit belongs to a particular chunking ofC (recall that there
are two, one for each irreducibleFp[H ]-module labelled byC). This chunking is
determined by the condition thatk1

j 6= k2
j if the j th locus is the last in a chunk (i.e.

at the clockwise end of a chunk). Using the fact thatkrj 6= krj−1 iff srj = X, it is
easy to see that this condition does not depend on the particular chunk (for a given
chunking). In fact we easily verify the following lemma.

LEMMA 5 . Letj0 andj1 be the first and last loci in a chunk (so thej th0 locus is at
the anticlockwise end, thej th1 locus is at the clockwise end).

(1) k1
j1
6= k2

j1
.

(2) k1
j = k2

j for j0 6 j < j1.
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(3) (Hence)ordp(aj ) is constant forj0 6 j 6 j1.

(4) (k1
j1
, k2
j1
) =

{
(k1
j0−1, k

2
j0−1) if the chunk is even;

(1− k1
j0−1,1− k2

j0−1) if the chunk is odd.

(3) shows that nothing happens to ordp(aj )within a chunk. (4) shows that the effect
of the whole chunk on thekrj is the same as that ofO

O
if it is an even chunk, orX

X

if it is an odd chunk. Hence we may replace each chunk byO

O
or X

X
as appropriate,

and we are reduced to the case of a pure circle diagram with all thek1
j 6= k2

j .

9. Remarks on the Elliptic Curve Case

We make some brief remarks on the proof of Theorem 1. For simplicity we assume
that we are in the case whereE is defined overFp, though this is not necessary for
the truth of the theorem. Then thepth-power isogenyπ mapsE to itself. Argu-
ments similar to those in Section 3 show that Selπi ' HomA(H

1(E),H 1(X)/V i)

which in turn is the kernel ofF + V onH 1(X)/V i . We can focus on elements
which are supported on anF -orbit (of standard basis elements forH 1(X)), and
obtain chains of equations as before. Then we just have to count the chains of
equations to get the desired multiplicities. The fact that we are modding out by
V i rather thanpi causes some difficulty, though on the whole things are a little
simpler.

Wheni = 1 or 2 a different approach can be made to work. As in [5] (Section
14), Selπ may be identified with the space of exact holomorphic differentials on
X, which can be calculated as the kernel of the Cartier operator. kerπi may be
recovered from the Dieudonné module ofE as the kernel ofF + V on the group-
schemeWi. Selπi is then identified with the kernel ofF + V onH 1

Zar(X,Wi). To
determineπSelπ2 inside Selπ we may apply Serre duality, using an observation
of Ulmer ([27], Section 4, between (4.4) and (4.5)). Using an explicit basis for
H 0(X,�1), all residues may be moved to the point at infinity, then an elaborate
calculation with Laurent series recovers the casei = 2 of Theorem 1. The details
are in [3]. The casei > 2 does not yield to the same method.
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