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Abstract. Let X be the Fermat curve of degrege+ 1 over the fieldk of q2 elements, wherg

is some prime power. Considering the Jacohiagnof X as a constant Abelian variety over the
function fieldk(X), we calculate the multiplicities, in subfactors of the Shafarevich—Tate group, of
representations associated with the actiorXoof a finite unitary groupJy is isogenous to a power

of a supersingular elliptic curvE, the structure of whose Shafarevich—Tate group is also described.
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The Shafarevich—Tate group is an important object associated with any Abelian
variety over a global field. It classifies locally-trivial principal homogeneous spaces
and is conjectured to be finite in all cases. For modular elliptic curves of analytic
rank one or zero (and related higher dimensional examples) the finiteness is known,
thanks to well-known work of Kolyvagin, as is information relating the structure of
the group to the divisibility of certain Heegner points. Also, what is known about
its order agrees with the Birch and Swinnerton—Dyer conjecture. See [16] and [17].

The constant Abelian varieties over global function fields, i.e. those already
defined over the finite subfield of constant functions, form one of the other main
classes for which finiteness of the Shafarevich—Tate group is known (see the last
page of [15]). In this case the analog of the Birch and Swinnerton—Dyer conjecture
is also known to be true (see [12]). In this paper we analyse the Shafarevich-Tate
groups of some very special, symmetrical examples of constant Abelian varieties
over global function fields. The special nature of the examples considered has two
effects. First, there exists an intricate structure related to the action of the symmetry
group, and second, itis possible to find it. To this end we avail ourselves of the great
wealth of beautiful results in the literature concerning crystalline cohomology. The
present work was originally motivated by the desire to calculate the determinants
of certain Mordell-Weil lattices.

Let p be any prime number angl = p/ for somef > 0. Letk = F,2, the
field with g2 elements. Consider the Fermat curve of degreel in the projective
plane overk

X: xq+l + yq+l + Zq+1 =0.

https://doi.org/10.1023/A:1001721808335 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001721808335

112 NEIL DUMMIGAN

The involutorygth power automorphism df is analogous to complex conjug-
ation, and the left-hand side of the above equation is analogous to a Hermitian
form in three variables, so we say th¥tis a Hermitian curve. It has gengs=
q(g — 1)/2, by the degree-genus formula. Let

G =SUs(g) = {A € Ma(k) : A" = A7L detA = 1)

be the finite special unitary group in three variables. H&f# is the transpose of
the matrix obtained from by raising each entry to thgh power.G acts naturally
on X, by fractional linear transformations.

The curveX is also remarkable in that thg?-power endomorphism of its
JacobianJy is multiplication by —g. This follows from the following consider-
ations. Recall thafly is an Abelian variety representing the group of degree-zero
divisors onX, modulo linear equivalence. The number of points ordefined
over k is given by Weil's formula £ (k) = 1+ ¢% — Zfil a; where theq; are
certain algebraic integers, the eigenvalues for the action af4p®wer Frobenius
endomorphism on ahadic Tate moduldl;(Jx) (see [24]). With respect to any
embedding ofQ in C, theq; all have absolute valug|Y? = g. This yields the
Hasse—Weil upper boundlg? + 2gg = 1+ ¢° for #X (k). That this bound is ac-
tually attained is easily verified by changing the equatio o6 y?*! = x7z 4 xz4
then directly counting points. This compels all theto be equal to—¢g. The
opening statement of this paragraph follows from this.

Tate’s theorem on endomorphisms of Abelian varieties over finite fields [24]
now implies that/y is isogenous ovek to E¢, whereE/k is any elliptic curve in
the isogeny class such that th&-power endomorphism is multiplication byg.
Such elliptic curves may be constructed from elliptic curves with complex multi-
plication using reduction modulp (see [25]). (Whery = 3 mod 4, the elliptic
curve E:v? = u® — u is an example.) Note thaf is supersingular andy also
has maximal Newton polygon. For the number of points on a general diagonal
hypersurface over a finite field see [28]. For more on Fermat varieties over finite
fields, see [26] and [23].

In this paper we tackle ‘descent’ problems associated to the constant Abelian
varieties/xy and E over the global function field(X).

SinceJy isisogenous t&¢ and since End E) (a maximal order in a quaternion
algebra) has rank 4, the rank of Bndy) is 4g? and the rank of Hon(Jy, E) is
4g¢ = 2q(q —1). The groupH := G x G acts naturally on the endomorphism ring
End.(Jx) by (g1, g2)¢(x) = g2(¢(gl‘1(x))). Similarly it acts on several objects
we shall encounter. If we choosé&aational point onX to embed it in its Jacobian
then Eng(Jx) becomes identified with M@(X, Jx)/tors ~ Jx(k(X))/tors, the
group ofk(X)-rational points on/y, modulo torsion. This follows from the fact
that every morphism fronX to an Abelian variety (in particular tdy) factors
throughJy.

End. (Jx) is in fact naturally an even integral lattice which we shall €allThis
lattice may be identified with the interesting subgroup of the group of divisors
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modulo numerical equivalence on the surfate X. The symmetric bilinear form
is simply the intersection pairing, and is a scalar multiple of the canonical height
pairing for Jx / k(X).
Let llL be the Shafarevich—Tate group for the constant Abelian vatgtgver
the global function field (X). By definition,

W = ker(H*(k(X)., Jx) = [ [H**(X)u. Jx)).

where the cohomology is for the flat topology (see [14]) and the product is over
all local completions of the function field. According to Milne’s formula [12] (a
special case of the analog of the Birch and Swinnerton—-Dyer conjecture),

L] detL = (¢?)¢* = g%°.

The main goal of this paper is to analyse the structurdllcdnd the action of
the groupH upon it. Letlll,, denote the set of-torsion elements itll. Milne’s
formula shows thalil is a finite p-group so we have a finite filtration

, c W, c U,z C---C .

Each subquotientl , /1L -1 is anlF,[ H]-module, which in general is not com-
pletely reducible. However, we shall determine its composition factors with multi-
plicities, for each. Of course, this determines the separate fadttirisand det_,
and the group structure df.

There is a similar problem for the Shafarevich—Tate group of the elliptic curve
E overk(X), where only the grougs acts. In this case Milne’s formula reads

[UL| detL = (g?)¢ = q?t~Y,

whereL is the Mordell-Weil latticeE (k (X)) /tors >~ Hom,(Jx, E), of rank & =
2q(g—1). In[2] we calculated dek, thus determining the order of the Shafarevich—
Tate group but not its structure. In this paper we examine the filtratidil bfy
the kernels of powers of theth-power isogenyr. For each occurring irreducible
F,[G]-module we have calculated the sequence of multiplicities, confirming that
it is as predicted in [2]. In the calculation of the completelescent for the full
JacobianJy, not just its factorE, we find strange patterns for the multiplicities
of the IF,[ H]-modules, intimately related to those for tlig[G]-modules in the
elliptic curve case.

We mention a simple corollary of our results.

(1) For bothJy/k(X) andE/k(X), llLis trivial iff f < 2 (whereq = p/).
(2) ForJx/k(X), the smallest power gb annihilatingllLis p!//3!. For E/k(X),
the smallest power of annihilatingllLis /73,

We provide full details for the Jacobiafy, but in the elliptic curve case we
confine ourselves to some remarks in Section 9 on the analogous calculation. The
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Shafarevich—Tate group @ over the function field of a suitable hyperelliptic quo-
tient of X may be dealt with similarly. Indeed, our prediction for the multiplicities
was motivated partly by the requirement that it be consistent with bounds obtained
by Elkies [4] in the hyperelliptic, characteristic 2 case.

Section 1 describes the mechanism of descent and gives the Selmer group for
the multiplication-byp’ map as the first conomology group ovEr(for the flat
topology) of the sheaf associated to the group-scheme kerngi.dBection 2
recovers this group-scheme from the Dieudonné modulg, pivhich is naturally
isomorphic to the first crystalline cohomology Kf All this is inspired by a letter
from D. Ulmer to B. Gross explaining the elliptic curve case (see Section 4 of [27]
for something closely related).

In Section 3 we derive the simple expression Set- Ends(Hgy(X)/p"),
where A is the Dieudonné ring (defined in Section 2). To establish this we use
several things:

(1) The identification of the first crystalline cohomologyXfvith the first deRham
cohomology of its natural lifting{*/ W, whereW is the ring of infinite Witt
vectors ovek.

(2) The decomposition of thi#-module into rank-one eigenspaces for the action
of the diagonal subgroup @, and (following Shioda, Section 4 of [22]) the
arrangement of these eigenspaces into cyclic orbits for the action gftithe
power operator.

(3) Further information on the action df deduced from Mazur's results on
Frobenius and the Hodge filtration, as in [18] and [22].

(4) The identification (in our case) of the first crystalline cohomologyofiith
Serre’s first Witt vector cohomology (introduced in [21]). This is what allows
us to describe the Selmer groups in terms of crystalline cohomology rather
than flat cohomology.

HclryS(X)/p" is isomorphic to the Dieudonné module of the group-schemep’ker
It follows that an equivalent expression for gels End,(ker p'). Therefore endo-
morphisms of kep’ which do not lift to endomorphisms of; contribute to they’-
torsion in the Shafarevich—Tate group. One might expect that SeEnd, (kerm)
for multiplication by any integem on the Jacobian of any curve over a finite field
k (considered as an Abelian variety over the function field of that curve). In the
case thain is coprime top this may be proved easily using geometric class field
theory (the subject of [20]).

In Section 4 we explain how double-rowed ‘circle-diagrams’ may be used to
label pairs of the irreducibl& ,[ H]-modules which occur as composition factors
of LIL In Section 5 we state the main theorem on how the multiplicities of these
irreducible modules ilL i /Il ;-2 may be read off from the double-rowed circle
diagrams. In Sections 6, 7 and 8 we use the expression fgf $stablished in
Section 3 to carry out the calculation necessary to prove the theorem.
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1. The Descent Mechanism

Recall that the 2 eigenvalues ofg>-power) Frobenius foK/ k are all equal te-¢.

It follows that the number of points on the Jacobigndefined over the extension

of degree of k is (1—(—¢)")?4. This is never divisible by, soJx has no nontrivial

p-torsion points defined over the algebraic closuré.dfiowever, for each > 1,

the kernel of multiplication by’ is well-defined as a group-scheme oxer
Associated to any commutative group-scheatheverk is a sheaf, also denoted

G, on the flat site over Spgdsee [14] for the flat site and its sheaf cohomology).

For any schems locally of finite type over Spdg the group of sections @ over

S is simply Mor, (S, G). Consider the following exact sequence of sheaves on the

flat site overk

. p
0— kerp' — Jxy — Jx — 0.

Our reason for using the flat site is to ensure that the multiplicatioptbyrap is
surjective (c.f. [14] Ch. 2, 2.18). We actually have a commutative diagram with
exact rows, for any > 1.

0 kerpi Jx 4 Jx 0

R

0 kerp Jx Jx 0.

From the long exact sequences in flat conomology évere may extract the fol-
lowing commutative diagram with exact rows (notice that: H°(X, Jx)/tors):

0 L/p'L HY(X, kerp") HY(X, Jx),

0
{ proj{ Pt p"*ll {
0.

0 L/pL — p'" *H X, kerp") — p" *HY (X, Jx), —

Now it follows from the fact that the Abelian varietyy over the function field
k(X) is already defined ovek, that H(X, ker p') is isomorphic to the Selmer
group for p’ (see [27]) and thaH (X, Jx) is isomorphic to the Shafarevich-Tate
grouplll of Jx/k(X) (see [12]). Therefore we take the opportunity to rewrite the
bottom row as

0— L/pL — p'~'Selp’ - p~tllL ; — 0.
The right-hand term of this sequence is isomorphic to a subfactdir of
piilLU_pi ~ I_I_I_pi/l_l_l_pi—l.

This follows readily from the exact sequence
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et
0— I_I_I_pi—l—) I_I_I_pi —_—> plil I_I_I_pi — 0.

Therefore to determine thE,[ H ]-module composition factors (with multiplicit-
ies) of eacHlL i /llL i1 it suffices to determine those of each term in the descent
filtration Sep > pSelp? > --- > L/pL.

2. Dieudonné Modules and Group Schemes

We will find it necessary to use the crystalline cohomology, for which a convenient
reference is [7]. LeW be the ring of infinite Witt vectors over, so thatW is the
ring of integers in the unramified extension of degr¢ea? Q,,. W is a local ring
with maximal idealpW and residue fiel¢. Leto be the automorphism ¥ /Z,
which reduces mog to the pth-power Frobenius automorphism iofF ,. Associ-
ated with any proper, smooth varie/ k of dimensiond are finitely generated
W-modulesH'(Z) := Hy(Z) which are trivial except for 0< i < 2d. In our
case H'(X) is a freeW-module of rank 2 = ¢(¢ — 1). It is naturally isomorphic

to H(Jyx) and also to the algebraic deRham cohomolﬁ@x(x*), whereX*/ W

is the natural lifting ofX, with the same equation. On this module the absolute
pth-power Frobenius morphism of schemes induceslimear, injective mapF,

S0 F(av) = a°F(v) fora € W,v € HY(X). Also there is ar ~!-linear map

V such thatFV = VF = p. Since in our case the eigenvalues of Frobenius
over k are all —g, we haveF?/ = V?/ = —g = —p/. Let A be the Dieu-
donné ring, generated ové by two elementsF’ and V satisfying the relations
FV=VF=p Fa=a’F,Va=a° Vforalla e W. ThenH(X) is naturally
anA-module. According to [11], iB/k is an Abelian variety then there is a natural
isomorphism ofA-moduIechlrys(B) ~ D*(B). Here D*(B) := IiLn D*(ker p')

and D* is the contravariant functor which, to a commutative group-scheme over
k of p-power rank, associates a certain finikemodule, its Dieudonné module.
D*(ker p') may be recovered from the inverse limit 8 (B)/p'D*(B). In our
case this implies that

D*(kerp') ~ HY(X)/p'HY(X).

It follows (see [6]) from the fact thaV is nilpotent on the right-hand side that, in
our case, the definition d* is such that

D*(ker p') = Homy_g, (kerp', CW),
the set ofk-group scheme homomaorphisms from kéto the co-Witt vector&€w.
CW is defined to be the direct limit of the Witt vector-group scherigs with

respect to the shift mapg: (a1, az, ..., a,) — (0, ay, ..., a,). Recall the operator
F:(ay, ...,a,) > (ay,...,al) on W,. The action ofW = lim W, (k) on W, by
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multiplication maps is twisted by ~" to give (with F and V') an action ofA on
CW. See [6] or [19] for more on Witt vectors.

The point of all this is that we now know the Dieudonné modDigker p’) in
terms of H1(X), and the group-scheme ker may be recovered from this as the
object representing the functér— Hom,(D*(kerp'), CW(S)). Here S ranges
over schemes locally of finite type over Spe@e will use this characterisation of
ker p' in the next section to obtain a simple expression fopSel

3. F-Orbits and the Selmer Groups

We need some preliminaries on the structureHgi X). When we identify this
module with H},(X*) it attains a Hodge filtratiorH},(X*) = Mo D> M1 D

M, = {0} with Mo/M;, ~ HY(X*, Ox+) and My/M, ~ HO(X* QY. Let T be
the diagonal subgroup @f3(¢). T has ordelg + 1)° and its action orX/ k lifts to

X*/W, replacing elements &f* by their Teichmiller representatives W*.

PROPOSITION 1

(1) Ho(x*, Q1) is a freew-module with a basis of elements which may be labelled
aswy,y = x"y'zZ dvdydzforall 0 < m,n,l < g—1withm4+n+1=q—2.

(2) HY(X*, Ox+) is a free W-module with a basis of elements which may be la-
belled asw,,; = x"y"z' dx dy dz forall 0 < m, n,l < g—1withm+n+1 =
29 — 1.

(3) Eachw,,,; is an eigenvector fof" with characterdiag(a, b, ¢) > a”*t b"+1

I+1

C .

(4) These characters are all distinct.

(5) Thew,,, naturally lift to a basis (also calledw,,,;}) for the freeW-module
HY(X) = H},(X*), consisting of eigenvectors f@rwith characters as above.

This is just Proposition 5 in Section 6 of [2].
DEFINITION 1. We definew,,,; to be of typek,,,, where

0 ifm+n+1=29 -1,

kmnl =

1 fm+n+l=qg-2

fO<r<g—21landr = r0+r1p+---+rf,1pf_1with0< r; < p—1thenwe
write r = (ro, r1, ..., r—1) for this p-adic expansion.

PROPOSITION 2

(l) menl = CinlWm'n'l’ with Crmnl € Zp and

m' = (p—1- my_1, Mo, My, ..., mf_z),
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n' = (p—1- nf_1,n0, 01, ..., Af_2),
' = (p —-1- lf—l, lo, ll, N lf_z).

(2) Ordp (Cmnl) = kmnl-

This is Proposition 6 in Section 6 of [2]. It follows from [9] and the fact tifat
must multiply characters df by p.

We introduce some useful alternative notation. Choose some element in our
standard basifw,,,;} for H1(X) and call itws. Let Fw; = ciwsy, Fw, = cows, ...
with all thew; standard basis elements. Sinfc€’ acts onH1(X) as multiplication
by —g we havew, ;.1 = w1 and the subscripts should really be taken mgd®&/e
say that{wq, wy, ..., was} is anF-orbit of basis elements. Sometimes the length of
the orbit may be a proper divisor off2 SinceF/ multiplies characters df by —1
(p/ = —1 modq + 1, the exponent of"), the length of the orbit does not divide
f so will always be of the form2for somel| f.

DEFINITION 2.

(1) Definek; to be the type ofu;.
(2) Given anF-orbit J = {w1, wy, ..., wy} let H; := @flzlvij c HY(X).

LEMMA 1. W, has the same cohomology ovéf k whether considered as a sheaf
for the flat topology or the Zariski topology.

Proof. H}, and H7,, are known to be the same f@y-modules [14] [Ch. 3,
Prop. 3.7] so the case = 1 of the lemma is known to be true (note that the
sheafW, on X is the same as the structure shégpf). Forn > 1 there are exact
sequences (one for Zariski, one for flat) of sheaves

anl

O—>W1—>Wn—R>Wn,l—>O,

wherer : (ay, ..., a,_1, a,) +— (a1, ..., a,_1) is the restriction map. The long exact
sequences in cohomology fit together in a commutative diagram thanks to the
morphism of sitesX;, — Xz,.. Now it is possible to prove the lemma using
induction and a five-lemma-style argument. O

HenceforthH(X, W,) will denoteH}l(X, W,) = H} (X, W,). LetA = adeles
of k(X), A(0) = those integral at each place of the function fie(&X). See [20]
(11.5) for adeles (or répartitions) and for the case- 1 of the next lemma.

LEMMA 2.

W, (A)

HY(X,W,) ~ .
X W) = 3 X)) + W, (A O)
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Proof. There is an exact sequence of Zariski sheaves
0> W, > W, k(X)) > W,(k(X))/W, — 0.

(The middle term is a constant sheaf and the next one the sheaf cokernel.)
HY(X, W, (k(X))) = 0 so from the long exact sequence we get

HO(X, W, (k(X))/W,)

1 ~
HY (X, W,) ~ HO(X, W, (k(X)))

To prove the lemma we note that
HO(X, W, (k(X))/W,) = W,(A)/W,(A0)). O

PROPOSITION 3HY(X, W,) ~ H'(X)/V"H(X) as A-modules.

Proof. The restriction operatoR:W,.; — W, induces a mapR: H(X,
W,.1) — HY(X,W,) for eachn > 1. The inverse limit of the resulting inverse
system ofW-modules is denoted*(X, W Oy). It is Serre’s first Witt vector co-
homology [21] and is a torsion-fre®-module, in fact naturally am-module.
There is a comparison theorem relating Serre’s Witt vector cohnomology to a part
of crystalline cohomology. This was proved by Bloch [1] using algebkaitheory,
under the assumption that# 2. Without this assumption, it was proved by lIllusie
using the deRham-Witt complex (and a result of Nygaard, see [8], 4.4.2). The
theorem is that, up té-torsion, H(X, W Oy) is naturally isomorphic, as as-
module, to the largest quotient @¢f'(X) (crystalline) for which the ‘slopes of
Frobenius’ lie in the interval0, 1). This is the top subfactor of the slope filtration
of H*(X). In our case the eigenvalues of Frobeniusih X) are all—g. Since
ord,(—¢q) = (1/2)ord,(|k]), in our case the slopes are all?Zland the top subfactor
is the whole ofH(X). HenceH(X) ~ H(X, W Oy).

From the adelic description ad#*(X, W,) in the previous lemma, it is clear
that the restriction mapR : H%(X, W,,1) — H(X, W,) are surjective and that
HY(X, W,) may be recovered from the inverse limit by modding outfly Hence
the proposition. O

Recall that Sg¥ = H, (X, ker p').

PROPOSITION 4Selp’ ~ Hom, (H(X), HX(X)/p") = Endy(HY(X)/p").
Proof. Fix i. SinceV?/ = —g (on H*(X)) we can choose somesuch that
v" = p'" with i’ > i. Any homomorphism fromH(X)/p' HX(X) to CW(S) is
killed by V" so factors througf®V, (S). Temporarily we assume that= i’. Re-
covering the group-scheme ket from its Dieudonné modulei 1(X)/p' H*(X),
we find kerp’ = @G, a sum overF-orbits, where, for any schemglocally of
finite type over Speg G, (S) = Homy(H;/p'H;, W,(S)). Choose a particular
F-orbit J = {w1, wy, ..., wy}. In the case whelS = Spe is affine, lety be such
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a homomorphism and fof mod 2 leta; = ¢(w;) € W,(R). There are various
conditions that the; must satisfy in order fop to be anA-homomorphism. Define

d; = p/cg " sothat (since/ F = p) we haveV w1 = djw;.

(1) ¢ is W-linear so is determined by the.
(2) qb(Fw,) = Fqﬁ(wj) SOcjaj+1 = Faj for all J-
3 ¢(Vw;y1) = Vé(wji1) Sodja; = Vajy forall j.

Had we not assumed = i’, we would also need the conditiqﬁfaj = 0 for
eachj. SinceFV = VF = p, (2) and (3) will hold for allj iff (2) holds
whenever; = 0 (in which case orglc;) = 0) and (3) holds whenevér, = 1 (in
which case orgld;) = 0). Thus it is necessary and sufficient (assuming (1)) that
(a1, as, ..., azy) is in the kernel of the mag: (W, (R))? — (W,(R))? defined by
Y(as, ay, ..., ay) = (by, ..., by) where

(l) bj =Cjdjy1 — Faj if kj =0.
(2) bj = dj(,lj - Vaj+1 if kj =1

Of course, the subscripts here are madow v gives a homomorphism from
the group-schemeéW,)? to itself, and clearlyG; is isomorphic to the group-
scheme kernel. To prove the proposition it suffices to shoijh(X, Gy) >~
Hom, (H,, HY(X)/p') for eachF-orbit J.

The following sequence of sheaves for the flat topology is exact since, given a
setofb; e W,(R) for 1 < j < 2, the equations (1) and (2) above for thedefine
a finite flat extension oW, (R).

0> G, - W2 % w)H? > o
Taking the long exact sequence in cohomology we find that
Hj(X, Gy) = ker(y) C @2 H (X, W,) = &L, H'(X)/p'.

Here we have used the fact thef(X, (W,)%) = (W, (k))%, on which the map
Y is surjective (because it is injective, kethaving no nontrivial points ovek).
But the conditions for an elemefity, ..., vy) € @fllel(X)/pi to be in kerfy)
are exactly those for th&-linear map from#; to H*(X)/p' defined byw; > v;
to be anA-module homomorphism. Thus, in the case that i’, we get the de-
sired isomorphisms{},(X, G ;) ~ Homy(H;, H'(X)/p') and H},(X, ker p') ~
Hom, (H'(X), H'(X)/p").

Now consider the case< i’. Taking the long exact sequence in flat cohomo-
logy coming from the exact sequence of sheaves

0 — kerp’ — kerp’ LN kerp'~i — 0,
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for which the Hs vanish, we identifyH},(X, ker p') with the kernel ofp’ on
H},(X, kerp"). But this is Hom (H*(X), p" = H*(X)/p" H*(X)), and simply di-
viding by p?'~* gives us what we want. O

Notice that Seb' ~ Homs(H(X)/p', HX(X)/p') ~ Hom, (D*(kerp'),
D*(kerp')). But D* is an anti-equivalence of categories between the category
of finite unipotent group schemes overand the category ofi-modules of finite
length on whichV is nilpotent (see [6]) so we have

Selp’ ~ End,(kerp').

The descent map fromy (k(X))/tors. ~ End.(Jx) to Sep’ is now obviously just
restriction of endomorphisms.

4. Double-Rowed Circle Diagrams andfp[ H ]-Modules

Itis our aim to give the multiplicities in eadH /11l ;-1 of the irreducibler ,[ H ]-
modules occurring. Recall th#f = G x G andG = SUs(g). These irreducible
F,[H]-modules will be described in terms of the irreduciltle>]-modules oc-
curring as composition factors of tikevector spaced},(X). The standard basis
{wpn} for H7(X*) reduces mog to a standard basi®,,} for H}.(X).

LetU* be thek[G]-module coming from the standard action of the matrix group
G on column vectors of length three. Liétbe the duak[G]-module. Given &[G]-
moduleV, let V' be thek[G]-module obtained fron¥V by composing the action
of G with the p-power automorphism df/F, on matrix entries 4 — A®)). If
A € GthenA@ = ("A)~1, soU? ~ U*. We summarise some facts discussed in
more detail in Sections 7, 8 and 9 of [2].

(1) H}x(X) has Z irreduciblek[G]-module composition factors, each occurring
with multiplicity one. Each is isomorphic to something of the form

2 f-1
Vo@Vy®Vy ®---® V[,

where eaclV; is Synt (U) or Symf' (U*) witht; = p —1orp — 2.

(2) An irreducible factor as above is labelled by a ‘string diagrafal;...ds_1
whered; = X or O according as; = p — 2 or p — 1 respectively. The total
number ofX’s is odd.

(3) There is a further restriction which ensures that each of thé &tring dia-
grams labels precisely two composition factors, one occurring in each of the
subfactors of the Hodge filtration. Nametlyy, = X marks a switch fronU to
U* or vice versa. For example, wheih= 4 the string diagranX X O X labels
the irreducibles

Syn?—2(U) @ SymP-2(U*?) @ SymP~L(U*"*) @ SymP-2(UPY),
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and
SymP2(U*) @ SymP=2(U”) @ SymP~H(U?") @ SymP2(U*").

(4) IfanirreducibleV ‘belongs’ to the string diagraiahd;...ds_1 thenV? belongs
to the string diagrami,_1dy...ds_». Hence, the two factors belonging to a
single string diagram are of the forin V4 ~ V*,

(5) There is a composition series i, (X) with each composition factor gener-
ated by a subset of the,,; as ak-vector space. There ageconditions on the
basep digits ofm, n and! for v,,,; to be one of the generators for the subfactor
isomorphic to a particular ‘twisted tensor product’. Tier 1)*' condition is

mi+n+l;=p—2 or p—1 or 2p—1 or 2p-—2,
according as th& + 1)* factor in the twisted tensor product is
Syn?~2U*) or Symt~U*) or Synt~2(U*"') or Symt~lU*)

respectively.

If one forgets thek-linear structure H},(X) becomes aiff ,-vector space of di-
mension 4g. Its irreducible composition factors d@3,[G]-module each occur
with multiplicity 2 f. These factors are labelled (up to isomorphism) by ‘circle
diagrams’, in a one-to-one fashion. A circle diagram is what you get from a string
diagram by rolling it up and joining the ends. Let’s say left-to-right on the string
becomes anticlockwise on the circle Uifis an irreducibleF ,[ G]-module labelled

by a circle diagramC then thek[G]-module composition factors of ®p, k

form a single Gak/F,) orbit of 2f/r irreducibles, where is the order of ro-
tational symmetry of the circle diagram. Thes@]-irreducibles belong to the
f/r distinct string diagrams obtained by unrolling the circle. Each one, when
considered as afi,[G]-module (forgetting theé-linear structure), contains only
the composition factor labelled by, with multiplicity ». We denote a circle dia-
gram by placing one of its unrollings inside square brackets. For example, when
f=3,[X00] =[0X0] =[00X]. Itis time to pass fronk[G]-modules and
IF,[G]-modules to a consideration bfH ]-modules and,[ H]-modules.

Note that all the irreduciblé[G]-modules considered above are absolutely ir-
reducible. IfV; and V; are irreduciblek[G]-modules belonging to string diagrams
S andS? respectively then Hopi Vs, V) is an irreduciblec[ H]-module with the
action of H given by ((g1. g2)(¢))(x) = g2(¢ (g1 ' (x))). We label Hom(Vy, V)
by the double-rowed string diagram obtained by placihglirectly on top ofS2.

This string diagram also labels Hetiv;, V'), Hom, (V{, V2) and Hom(V{, V).

The double-rowed string diagram may be rolled up into a double-rowed circle
diagram (again let's say that left-to-right becomes anticlockwise). This double-
rowed circle diagram naturally labels an irreducililg] # ]-module M such that
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the k[H]-module M ®p, k has composition factors labelled by the string dia-
grams which roll up into the circle. In fact it labels two distinct irreduciblg H |-
modules. Hom(Vy, V,) and Hom(V{, V) lie in one Galk/F,)-orbit while
Homy (V{, V2) and Hom(Vy, V,)) lie in another.

Since Sep ~ Hom, (H.(X), H}x(X)), it is clear that all theF ,[ H]-module
composition factors aill i /1Ll .2 will be among those labelled by double-rowed
circle diagrams.

5. The Multiplicities

We recall from [2] a way to associate a sequence of numbérsyV,, Ns, ... 1o a
single-rowed circle diagrang'. Firstly defineN; to be the number oK’s on C.
Fori > 2, N; depends upon the exact arrangement of th&sen the circle. The
X'’s come in continuous unbroken runs which we may call odd runs and even runs
depending on the parity of the number of crosses in a run. Distinct rud&sof
are separated from each other by runax¥. Now define a sequendg,, Cs, ...
of circle diagrams of non-increasing size in the following way. Cet= C. Then,
for eachi > 2, C;,, is obtained fromC; by deleting all the even runs and agy
which is one place clockwise of an odd run, then closing up the gaps. Défitve
be the number of odd runs af).

The N; are all odd, and they form a non-increasing sequence which eventually
stabilises in 1 when all the surviving crosses merge into a single odd run.

EXAMPLE. If f = 19 andC = [00X00X00X0XXXO0X0XXO] then
C; = [OXOXOXXXXXO0O0],Cs = [XXXXXXXO0O0],Cs = [XXXXXX
XO0landCg = [XXXXXXX]. N, =9, N, =5, N3 = 3andN, = 1fori > 4.

Recall that/y is isogenous overto E¢ for some elliptic curveE / k, determined
up to isogeny. For each> 1 there is a'-power mapr': E — E?", whereE®"
is obtained fromE by raising the coefficients of a defining equation to Héh
power. For the statement of the following theoréligenotes the Shafarevich—Tate
group of E/k(X).

THEOREM 1. The multiplicity inllL,: /L -1 of the irreduciblelF ,[G]-module
labelled by the circle diagrant’ is N; — 1.

Now we return to the case ofy/k(X), where we are concerned with the multi-
plicities in LLL i /1Ll ;-1 of the two irreduciblelF,[ H]-modules labelled by a given
double-rowed circle diagram. For each such circle diagram we need two sequences
of numbers,(Nl.l) and (Nl.z), one for each irreducible. We get these by converting
the double-rowed circle diagrafinto two different single-rowed circle diagrams

D' and D? (which will generally be of smaller circumference thai. Then for

r = 1,2, (N]) is the sequence of numbers already defined for the circle diagram
D",
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THEOREM 2. The irreducibleF ,[ H]-modules associated with the double-rowed
circle diagramC may be labelled; and M in such a way that the multiplicity of
M, in L i /I i1 is NJ — 1.

It remains to describe how to obtain the single-rowed circle diagramand D?
from the double-rowed circle diagra@ (and to prove the theorem, but that is for
later sections).

Recall thatC is obtained by putting a string diagrast on top of a string
diagrams? then rolling up the double-rowed string diagram into a double-rowed
circle diagram, left-to-right becoming anticlockwisg: becomes the inner circle
C' while S becomes the outer circle®. Forr = 1,2 letss, ..., s, s7 be the
symbols §'s and0’s) on S", listedfrom right to left that is, moving clockwise on
the circle. Just as in the single-rowed case, we use square brackets to write a circle

Sl Sl~ Sl e
diagram. Thug = [ ;’Y{_,’ ’Sg]. We say that the symbol$ ands,? are positioned at
2 . :

S8 %F s

the jth locus, whergj is considered modulg. The double-rowed string diagram

Tostost, . .
jmrr2ritl s said to be theith unrolling of C. Of course, the choice of the
j—1Sip2eS i

first unrolling (i.e. the labelling of the symbols) is somewhat arbitrary.

DEFINITION 3. Eachs; is either X or O. Defines; to be an isolated cross iff

s’ = X buts®” = 0. The double-rowed circle diagraf s said to be pure iff it
has no isolated crosses.

The total number of isolated crosses®iis even, sinc&€* andC? each has an odd
number of crosses. As we move clockwise aroGnde get a repeating sequence of
isolated crosses. Assuming the circle diagram is not pure, there are precisely two
distinct ways to arrange these isolated crosses into pairs of consecutive isolated
crosses. Any particular isolated cross may be paired with either the previous one or
the next one. Suppose that we have chosen such a pairingf.i Iaeidsg form one
of our pairs of consecutive isolated crosses. All symbols positioned at loci from
to j, inclusive will be said to form a ‘chunk’. Each chunk contains an even number
of crosses and will be called an even chunk or an odd chunk according as it has
even or odd numbers of crosses on each row.

Now we describe how to get the single-rowed circle diagr@msnd D? from
C, one for each way of pairing the isolated crosses. Delete each even chunk and
replace it byg. Also delete each odd chunk and replace itﬁ]yAt this point we
have a pure circle diagram. Replacing n§vby X andg by O, we get the single-
rowed circle diagram. We have to proceed slightly differentlg ifs already pure.
GetD* by replacing’ by O and; by X, and just letb? = [X].

EXAMPLE. When f = 15 considerC = [ S0X¥OXX0%X0X00% |, ¢ may be

chunked as follows (with round brackets about each chunk):
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B [(XOXX)(OXXOX)(XOXO)OX]
- L(oox0o)(XXX00)(00XX)0X ]

This leads to the pure circle diagra{ f(ggf(] then toD! = [XX0 0 X].

Unrolling three places further clockwise we may write

_[OOXXOXXOXXOXXOX]
“Lxoxooxoxxxoooo0x/t

then the other chunking is

B [(OOXX)OX(XO)XXO(XX)OX]
- L(X0Xx0)0X(0X)XX0(00)0X [t

P P P OXXXX000X
This leads to the pure circle dlagra[ OXXXXOOOX], then to

D?>=[00XXXX000X].

Notice that the lengths ab* and D? add up tof. The reader will easily confirm
that this always happens. Also, eabh has an odd number of crosses on it, since
in the passage fromd' to the pure circle diagram, an even number of crosses is
deleted from each row.

Now N} = 3 andN}! = 1fori > 2, while N? = 5andN? = 1fori > 2.
According to Theorem 2, the two irreducildig, [ # ]-modules belonging t¢ may
be labelledM; and M, in such a way that the multiplicities aff; and M, as
composition factors dill , are 2 and 4 respectively. Both have multiplicity zero in
L, /L -2 for anyi > 2.

In general, exactly whicl¥,[ H]-module corresponds to which chunking ©f
should become apparent during the proof of Theorem 2. For now we just deal
with the previous example to illustrate the recipe. Recall that each irreducible
IF,[H]-module corresponds to a GklF ,)-orbit of irreduciblek[ H]-modules. In
the above example, the chunking leading¥ corresponds to the irreducible
IF,[H]-module whose associated orbit of irreduciblé/ ]-modules contains

Hom (Sym?2(U) ® - - - ® SymP~2(U»™),
Sym LU ® - -- ® SymP2(UP)).

The chunking leading t®? corresponds to the irreduciblg, [ H]-module whose
associated orbit of irreducibld H]-modules contains

Hom (Sym? X (U) ® - - - ® SymP~2(U*r'™),
SymP (U ® - - - ® SymP2(U ™).
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We use here the same unrollings as above. The important thing is that at the clock-
wise (left) end of a chunk the symmetric powers involve biGgtandU*.

6. Equations for the Selmer Groups

The proof of Theorem 2 will be spread across this and the following two sections.
Recall that there is a finite descent filtration

Selp > pSelp? > p®Selp®*> --- > L/pL.

Suppose that we could show that the multiplicitydf in p'~Selp’ is N/. Since
the N/’s eventually become 1, this would show that the multiplicityyfin L/pL
is one. Then the exact sequence

0— L/pL — p'~'Selp’ - p' Ml - 0

would imply that the multiplicity ofM, in L ,; /1L -1 is N/ — 1, as desired. Hence
our aim is to show that the multiplicity o/, in p'~*Selp’ is N7. We know from
Section 3 that Sef ~ End,(H(X)/p'). Before exploring the consequences of
this, we set some notation.

LetC = [zizzzé] be some particular double-rowed circle diagram. The first
unrolling of C1 isf a éouble-rowed string diagram labelling an irreducib|éf]-
module Hom(Vy, V») (and three others). Hellg andV, are subfactors QTIle(X),
each generated by a subset of the{sg}, } of standard basis elements i, (X).
These lift to subsets of the sgb,,,;} of standard basis elements fH(X).

Let wi be the standard basis element fét(X) lifting some standard basis
elementv% for an irreduciblek[G]-module V; labelled by the first unrolling of the
inner circleC?. There are, of course, many possible choicessfolOnce chosen,
w1 generates aw-orbit {wg, ..., w3,}. Say Fwi = cjwy, Fw; = czws, .... For
Jj mod 2f we say thaiw} belongsto the symbok; on C*. Recall that for symbols

the subscripts run mog, sow} andwj, , both belong ta}. Similarly we choose
w% lifting a basis elementf for an irreduciblek[ G]-moduleV; labelled by the first
unrolling of the outer circleC?. Then we get arF-orbit of wfs belonging to the
symboISsjz., with ijz. = cfwjz. 1

DEFINITION 4. Defined; := p/c;"_1 so thatVw’, ; = djw’. Also definek’; :=
ord, (c}). Thisis all forr = 1 or 2. Letk; := ka. — k}. It may be Q1 or —1.

The basigw,,, } for H1(X) gives rise to a dual basfa},,} for Homy, (H(X), W).
Starting fromw3* ® w we get an F-orbit’ {w}* ® w?} of standard basis elements
for Endy (H*(X)) or Endy (H*(X)/p"). w}* ® wf ‘belongs’ to thejth locus.

Since Sep’ = Endy (HY(X)/p"), each element of Sgi is a sum of elements of
Selp’ supported on singl&-orbits of standard basis elements for grd 1(X)/p?).
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Therefore we choose a fixddrorbit and just consider elements of gesupported
on thatF-orbit. Let¢ = ) a.,'w}* ® w]g be such an element. So for eacmodulo
the length of the orbit¢>(wjl.) = ajwjz.. Each coefficient; is in W/p'W.

DEFINITION5. If a; # O, leth; be the image of:;/p°® @) in W/pW =~ k
(this is well-defined). Ifa; = 0 then seb; = 0. If a; # Othen ord(a;) < i is
well-defined. If we say orgla;) = n for somen > i, we shall mean that; = 0.

For theW-endomorphisng to be anA-endomorphism it is necessary and sufficient
that it commute withF and V. This is equivalent to certain equations for the
coefficientsa;. Fw} = ciwji,; s0¢p(Fwj) = cja;aw?,,. On the other hand,
¢>(w}) = ajw]? o) F¢>(w]1) =a° czwa Comparing coefficients gives us

cf. (1)

1 o
aj1c; = aj

A similar computation usind’ instead ofF’ leads to the equation

a]dl = a ld2 (2
Formally either equation gives us

ord,(a;4+1) = ord,(a;) + k; 3)

but we have to be careful about things becoming OMpip'W. The cases are
examined below.

(1) If k; =0 (i.e. kl = kz) then one of the equations (1) and (2) genuinely links
a; W|th aji1. Either orq,(a,) = ord,(a;;1) ora; = a;41 = 0. Either one of
a; anda;,, determines the other, and of course a similar statement is true of
bj andel.

(2 Ifk; =1 (i.e.kjl. =0 a_ndkf = 1) thena; determines:; 1, and org,(a;;1) =
ord,(a;)+1.b; determine® ;1. If a;;1 = Othenb;,; = 0 does not determine
b;, though org(a;) must be at least— 1. If a; 1 # 0 thenb;,, determines
b;.

(3) If k; = =1 (i.e.k? = 0 andk} = 1) thena,, determines:; and ord,(a;) =
ord,(aj;1) + 1.b; 1 determines;. If a; = 0 thenb; = 0 does not determine
bj+1, though ord(a;;1) must be at least— 1. If a; # 0 thenb; determines
bj+l.

7. Pure Circle Diagrams

Recall that a pure circle diagram is one with no isolated crosses, so the inner and
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outer circleC! andC? are the same. The following fact is implied by (3) of Section
4, and will be of the utmost importance in all that follows.

LEMMA3. Forr =1o0r 2k’ #k’_; iffs; =X

Thus, as we move clockwise along thé row of the circle diagram’; switches
from 0 to 1 or vice versa precisely whenever we hit a cros§. Happens to be
a pure circle diagram, this implies thh} and k,z. will either always be equal or
always be unequal.

PROPOSITION 5If our chosenF-orbit {wi* ® w?} is such thak! = k% for all j,
then for alli, the multiplicity of the assomatdﬁ [H]-module |np’ 1Selp is 1.

Proof. k; = 0O for all j, so by (1) of the previous section; determinesz; 1
and orc;(a,) = ord,(a;;1) forall j. In fact we get a continuous chain of equations
linking all the a; to each other. Suppose that a; w *® w is an element of
Selp’ = Endy(H*(X)/p'). To map it top' ~*Selp’ |nS|de Seb = Endy (HY(X)/p)
we simply reduce the coefficients modyto From all the elements of Sel for
which ord,(a;) = O (for all j) we get a one-dimensiondl,=-vector subspace of
p'~1Selp’, where 2 is the length of theF-orbit. Note that the chain of equations
eventually linksa; to itself a{z = yay, for somey € W which depends on the
¢’ It follows from the fact thatF?/ = —q on H'(X) that Normy, w ) () =
1, then Hilbert's Theorem 90 provides us with the solutions we need to get the
one-dimensional ,2-vector subspace qf ~!Selp’.

Notice that theF ,-dimension contributed is/2the same as the number Bf-
basis elements in the-orbit. Therefore each irreducibkg H]-module (of the type
labelled by a double-rowed string diagram) contribute§grimension equal to
its dimensiond as ak-vector space. li- is the order of rotational symmetry of
the circle diagram then there arg 4 irreduciblek[ H]-modules. Half of these are
in the Galk/IF,)-orbit associated with that irreducible,[ H]-module (/;, say)
belonging toC which is distinguished from the other on&f{) by the condition
kl k2 The total contribution fronF-orbits belonging ta\/ is anF ,-dimension
of d. 2f/r Since this is exactly th& ,-dimension ofM5, we see that the multi-
plicity of M, in pi~1Selp’ is one, the same as the number of chains of equations
coming from each of thé&'-orbits involved. O

We convene that the single-rowed circle diagram associatéf} ie [X], so all
the N2 are equal to 1 and the above proposition is in accord with Theorem 2. The
next proposition is the heart of the proof of Theorem 2.

PROPOSITION 61f our chosenF-orbit {w!* ® w?} is such that for allj, k} # k%,

then for alli the multiplicity in p'~1Selp’ of the assomateﬂ‘ [ HI- moduIeMl is
NL.
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We need to make some preparations before embarking on the proof. The circle
diagramC is pure, saC! = C2. There are two single-rowed circle diagrams which
may be derived fronC. In the previous proposition we dealt with? = [X].

Now we are dealing withD! = C! = C2. Recall that there is a sequenbé =

D}, D3, D}, ... of circle diagrams such that} is the number of crosses an!

and, fori > 2, N} is the number of odd runs of crosses B Fori > 2, D}, is
obtained fromD} by deleting all the even runs of's and deleting any) which is

one place clockwise of an odd run &fs.

DEFINITION 6. For j1, j» mod 2f let R(j1, jo) = Z/1<j<iz k;. The inequality
means all thosg we encounter moving clockwise frofia before we hitjs.

The point of this definition is that } a;w}*®w? is an element of Sgf, and ifa;,
anda;, are linked by an unbroken chain of equations, then @rg) = ord, (a;,) +
R(j1, j2). This clearly follows from the relation opda; 1) = ord,(a;) + ;. Note
that sincek} # k%, k; is always+1.

Given any symbol orD! we may trace its history as we advance through the
sequenceDi, Di, D, .... At some point it may be deleted, but we may talk of a
cross onD? as being orD}, if it survives that far.

Fix j; and imagine what happens RYji, j») as j, moves clockwise around
the circle. Wherk;, = 1, R(ji1, j») is increasing. Whetk;, = —1, R(j1, jo) is
decreasingk;, switches sign whenever we pass a cross. So as we pass through a
run of X’s, R(ji1, j») oscillates up and down in steps of size one, but as we pass
through a run of0’s, R(j1, j») steadily increases or decreases, according,ds
stuck on 1 or—1. Bearing in mind these observations, the proof of the following
lemma is straightforward.

LEMMA 4.

(1) If s;;, = X ands;, = X are the beginning and end of an even runXd$ then
R(j1—1, j») =0andk;,_1 = kj,. Itis as if the even run wasn’t there.

(2) If s;; = X ands;, = X are the beginning and end of an odd runok then
R(j1, j2) =0andk;,_1 # kj,.

(3) If s;, = X ands;, = X survive to be the beginnings of successive odd runs on
D}thenk;, # kj,.

(4) Suppose that;, = X ands;, = X survive to be the beginning and end of
an odd run ofX’s on D!. Lets;, = X be the symbol which survives to be
the beginning of the next odd run &fs on D}. Suppose that;, = 1. Then
R(j1,j) < iforall j; < j < j», R(ji,j) = Oforall j; < j < jzand
R(j1. ja) > i.

(5) Same hypotheses as previous item exkgpt —1. ThenR(j1, j) > —i for
all j1 <j < j2 R, j) <Oforall j1 < j < jzandR(ji1, ja) < —i.

Note that (3), (4) and (5) hold even for= 1 if we make the convention that
D} = D*, with everyX considered to be an odd run.
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Proof of Proposition 6.Again we focus on elemenfs a;w* ® w]2 of Selp’
supported on a single-orbit. Only coefficients:; such that orgl(a;) = O will con-
tribute anything tgp'~1Selp’ C Selp. (Recall that the map from EpdH*(X)/p")
to End, (H(X)/p) is given by reduction mog of coefficients.) Let,, s,, s
X be symbols orD* which survive to be the beginnings of successive odd runs of
X's on D} (possibly with even runs in between). Lej = X be the symbol on
D* which survives to be the (clockwise) end of the odd run which starts syith
Choosekj, =1, sokj, = kj, = —1 andk;, = 1.

Forj < j'mod 2f, ord,(a;) = ord,(a;) + R(j, j)) if aj # 0in W/p'W
forall j < j/ < j'. Bearing in mind this and the above lemma, we may argue as
follows. 0< R(j1, j) < i for j1 < j < jo. Hence, if ord(a;,) = O then all thes;
for j1 < j < jo are non-zero and are linkeddq in a chain of equations. In fast,
determines all thé; for j; < j < j». However, ord(a;) > Ofor j» < j < js, and,
using case (2) at the end of the previous sectigns= 0 sinceR(j1, jz) > i. Hence
the chain of equations gets broken. Now we look at what happens anticlockwise
of ji1. SinceR(jo, j1) < —i we find thata;, = 0. Another way of looking at this
is that the conditionz;, = O forced by the previous equation break is consistent
with allowing ord,(a;,) = 0. Also, ord,(a;) > 0 for jo < j < j; so even though
some of these coefficients may be non-zero and independen},dhey do not
contribute anything tg'~'Selp’.

For each odd run ok’s on D} we have a single chain of equations. All the
coefficients contributing tp’~*Selp’ depend upomr;;, . It follows that the multipli-
city of the irreducibleF ,[ H]-module M; in p'~!Selp’ is the number of odd runs
on Dl.l, namerNl.l. Note that this argument works even wher= 1, when the
multiplicity is the number ofX’s on D*. If a single chain of equations goes right
around the circle we may use Hilbert 90 as before. O

8. Non-Pure Circle Diagrams

We complete the demonstration of Theorem 2 by reducing the general case to that
dealt with in the previous section. We now consider an eIenZe:m,-wjl.* ® wjz.

of Selp’, supported on aF-orbit belonging to a circle diagrar@ which is not

pure. In fact theF-orbit belongs to a particular chunking ¢f (recall that there

are two, one for each irreducible,[ #]-module labelled byC). This chunking is
determined by the condition thif k7 if the jth locus is the last in a chunk (i.e.

at the clockwise end of a chunk). Using the fact thiat= k_, iff s7 = X, itis

easy to see that this condition does not depend on the particular chunk (for a given
chunking). In fact we easily verify the following lemma.

LEMMA 5. Let jo and j; be the first and last loci in a chunk (so thi# locus is at
the anticlockwise end, thﬁ{h locus is at the clockwise end).

1 2
(1) kjl a kzjl'
(2) KE =K for jo < j < ja.
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(3) (Hence)ord,(a;) is constant forjo < j < ji.

ki 1. k2 D) if the chunk is even;
@ k)= "
e (L—kX ;.1—k2_)) ifthe chunk is odd.

(3) shows that nothing happens to gfd;) within a chunk. (4) shows that the effect
of the whole chunk on the’; is the same as that cﬁ if it is an even chunk, o§

if it is an odd chunk. Hence we may replace each chunlghgr § as appropriate,
and we are reduced to the case of a pure circle diagram with aaﬂtﬁek]z..

9. Remarks on the Elliptic Curve Case

We make some brief remarks on the proof of Theorem 1. For simplicity we assume
that we are in the case whekeis defined ovel,, though this is not necessary for

the truth of the theorem. Then thgh-power isogenyr mapskE to itself. Argu-
ments similar to those in Section 3 show thatSet Hom, (H(E), HY(X)/ V')

which in turn is the kernel o + V on H*(X)/ V. We can focus on elements
which are supported on aR-orbit (of standard basis elements & (X)), and
obtain chains of equations as before. Then we just have to count the chains of
equations to get the desired multiplicities. The fact that we are modding out by
Vi rather thanp’ causes some difficulty, though on the whole things are a little
simpler.

Wheni = 1 or 2 a different approach can be made to work. As in [5] (Section
14), Sekr may be identified with the space of exact holomorphic differentials on
X, which can be calculated as the kernel of the Cartier operator:‘keray be
recovered from the Dieudonné modulefofas the kernel of + V on the group-
schemeW;. Selr’ is then identified with the kernel af + V on HZ (X, W;). To
determiner Selr? inside Set we may apply Serre duality, using an observation
of Ulmer ([27], Section 4, between (4.4) and (4.5)). Using an explicit basis for
HO(X, @Y, all residues may be moved to the point at infinity, then an elaborate
calculation with Laurent series recovers the case?2 of Theorem 1. The details
are in [3]. The case > 2 does not yield to the same method.
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