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SMOOTH FORMAL EMBEDDINGS
AND THE RESIDUE COMPLEX

AMNON YEKUTIELI

ABSTRACT. Let ô: X ! S be a finite type morphism of noetherian schemes. A
smooth formal embedding of X (over S) is a bijective closed immersion X ² ÿ, where
ÿ is a noetherian formal scheme, formally smooth over S. An example of such an
embedding is the formal completion ÿ = YÛX where X ² Y is an algebraic embedding.
Smooth formal embeddings can be used to calculate algebraic De Rham (co)homology.

Our main application is an explicit construction of the Grothendieck residue com-
plex when S is a regular scheme. By definition the residue complex is the Cousin
complex of ô!OS, as in [RD]. We start with I-C. Huang’s theory of pseudofunctors on
modules with 0-dimensional support, which provides a graded sheaf

L
q K q

XÛS
. We then

use smooth formal embeddings to obtain the coboundary operator é: K q
XÛS

! K q+1
XÛS

.

We exhibit a canonical isomorphism between the complex (K Ð
XÛSÒ é) and the residue

complex of [RD]. When ô is equidimensional of dimension n and generically smooth
we show that H�nK Ð

XÛS is canonically isomorphic to to the sheaf of regular differentials

of Kunz-Waldi [KW].
Another issue we discuss is Grothendieck Duality on a noetherian formal scheme

ÿ. Our results on duality are used in the construction of K Ð
XÛS

.

0. Introduction. It is sometimes the case in algebraic geometry, that in order to
define an object associated to a singular variety X, one first embeds X into a nonsingular
variety Y. One such instance is algebraic De Rham cohomology HÐDR(X) = HÐ(YÒ Ω̂Ð),
where Ω̂Ð is the completion along X of the De Rham complex ΩÐYÛk (relative to a base field

k of characteristic 0; cf. [Ha]). Now Ω̂Ð coincides with the complete De Rham complex
Ω̂ÐÿÛk, where ÿ is the formal scheme YÛX. It is therefore reasonable to ask what sort of
embedding X ² ÿ into a formal scheme would give rise to the same cohomology.

The answer we provide in this paper is that any smooth formal embedding works. Let
us define this notion. Suppose S is a noetherian base scheme and ô: X ! S is a finite
type morphism. A smooth formal embedding of X consists of morphisms X ! ÿ ! S,
where X ! ÿ is a closed immersion of X into a noetherian formal schemeÿ, which is a
homeomorphism of the underlying topological spaces; and ÿ ! S is a formally smooth
morphism. A smooth formal embedding X ² ÿ = YÛX like in the previous paragraph is
said to be algebraizable. But in general X ² ÿ will not be algebraizable.

Smooth formal embeddings enjoy a few advantages over algebraic embeddings. First
consider an embedding X ² ÿ and an étale morphism U ! X. Then it is pretty clear (cf.
Proposition 2.4) that there is an étale morphism of formal schemes· ! ÿ and a smooth
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formal embedding U ² ·, st U ≤ ·ðÿ X. Next suppose X ² ÿÒ„ are two smooth
formal embeddings, and we are given either a closed immersion ÿ ! „ or a formally
smooth morphism „ ! ÿ, which restrict to the identity on X. Then locally on X,

„ ≤ ÿð Spf Z[[t1Ò    Ò tn]](0.1)

(Theorem 2.6).
As mentioned above, De Rham cohomology can be calculated by smooth formal

embeddings. Indeed, when char S = 0, Hq
DR(XÛS) = RôŁΩ̂ÐÿÛS, where X ² ÿ is any

smooth formal embedding (Corollary 2.8). Moreover, in [Ye3] it is proved that De Rham
homology HDR

Ð (X) can also be calculated by smooth formal embeddings, when S =
Spec k, k a field. According to the preceding paragraph, given an étale morphism g: U !

X there is a homomorphism gŁ: HDR
Ð (X) ! HDR

Ð (U), and we conclude that homology is
contravariant wrt étale morphisms. See Remark 2.11 for an application to D-modules
on singular varieties.

The main application of smooth formal embeddings in the present paper is for an
explicit construction of the Grothendieck residue complex K Ð

XÛS, when S is any regular

scheme. By definition K Ð
XÛS is the Cousin complex Eô!OS, in the notation of [RD]

Sections IV.3 and VII.3.
Recall that Grothendieck Duality, as developed by Hartshorne in [RD], is an abstract

theory, stated in the language of derived categories. Even though this abstraction is
suitable for many important applications, often one wants more explicit information. In
particular a significant amount of work was directed at finding an explicit presentation of
duality in terms of differential forms and residues. Mostly the focus was on the dualizing
sheaf °X, in various circumstances. The structure of °X as a coherent OX-module and
its variance properties are thoroughly understood by now, thanks to an extended effort
including [KW], [Li], [HK1], [HK2], [LS1] and [HS]. Regarding an explicit presentation
of the full duality theory of dualizing complexes, there have been some advances in recent
years, notably in the papers [Ye1], [SY], [Hu], [Hg1] [Sa] and [Ye3]. The later papers
[Hg2], [Hg3] and [LS2] somewhat overlap our present paper in their results, but their
methods are quite distinct; specifically, they do not use formal schemes.

We base our construction of K Ð
XÛS on I-C. Huang’s theory of pseudofunctors on

modules with zero dimensional support (see [Hg1]). Suppose û: A ! B is a residually
finitely generated homomorphism between complete noetherian local rings, and M is
a discrete A-module (i.e. dim supp M = 0). Then according to [Hg1] there is a discrete
B-moduleû#M, equipped with certain variance properties (cf. Theorem 6.2). In particular
when û is residually finite there is a map Trû:û#M ! M. Huang’s theory is developed
using only methods of commutative algebra.

Now given a point x 2 X with s: = ô(x) 2 S, consider the local homomorphism
û: ÔSÒs ! ÔXÒx. Define KXÛS(x) := û#Hd

¡s
ÔSÒs, where d := dim ÔSÒs, ¡s is the maximal

ideal and Hd
¡s

is local cohomology. Then KXÛS(x) is an injective hull of k(x) as OXÒx-
module. As a graded OX-module we take K Ð

XÛS :=
L

x2X KXÛS(x), with the obvious
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grading. Then for any scheme morphism f : X ! Y, we deduce from Huang’s theory a
homomorphism of graded sheaves Trf : fŁK Ð

XÛS ! K Ð
YÛS.

The problem is to exhibit a coboundary operator é: K q
XÛS ! K q+1

XÛS, and to determine

that the complex we obtain is indeed isomorphic to Eô!OS. For this we use smooth formal
embeddings, as explained below.

In Section 5 we discuss Grothendieck Duality on formal schemes, extending the
theory of [RD]. We propose a definition of dualizing complex R Ð on a noetherian formal
scheme (Definition 5.2), and prove its uniqueness (Theorem 5.6). It is important to
note that the cohomology sheaves HqR Ð are discrete quasi-coherent Oÿ-modules, and
in general not coherent. We define the Cousin functor E associated to R Ð, and show
that ER Ð ≤ R Ð in the derived category, and ER Ð is a residual complex. On a regular
formal scheme ÿ the (surprising) fact is that RΓdiscOÿ is a dualizing complex, and not
Oÿ (Theorem 5.14).

Now let U ² X be an affine open set and suppose U ² · is a smooth formal
embedding. Say n := rank Ω̂1

·ÛS, so Ω̂n
·ÛS is a locally free O·-module of rank 1,

and RΓdiscΩ̂n
·ÛS[n] is a dualizing complex. Since the Cousin complex is a sum

of local cohomology modules, there is a natural identification of graded O·-
modules ERΓdiscΩ̂n

·ÛS[n] ≤ K Ð
·ÛS. This makes K Ð

·ÛS into a complex. Since K Ð
UÛS ≤

Hom·(OUÒK Ð
·ÛS) we come up with an operator é on K Ð

UÛS = K Ð
XÛSjU.

Given another smooth formal embedding U ² ⁄ we have to compare the complexes
K Ð
·ÛS and K Ð

⁄ÛS. This is rather easy to do using the following trick. Choosing a sequence
a of generators of some defining ideal of·, and letting KÐ1(a) be the associated Koszul
complex, we obtain an explicit presentation of the dualizing complex, namely

RΓdiscΩ̂n
·ÛS[n] ≤ KÐ1(a)
 Ω̂n

·ÛS[n]

(cf. Lemma 4.5). By the structure of smooth formal embeddings we may assume there
is a morphism f :· ! ⁄ which is either formally smooth or a closed immersion. Then
choosing relative coordinates (cf. formula 0.1) and using Koszul complexes we produce a
morphism RΓdiscΩ̂n

·ÛS[n] ! RΓdiscΩ̂m
⁄ÛS[m]. Applying the Cousin functor E we recover

Trf : K Ð
·ÛS ! K Ð

⁄ÛS as a map of complexes! We conclude that é is independent of · and
hence it glues to a global operator (Theorem 6.14).

If f : X ! Y is a finite morphism, then the trace map Trf : fŁK Ð
XÛS ! K Ð

YÛS, which is
provided by Huang’s theory, is actually a homomorphism of complexes (Theorem 7.1).
We show this by employing the same trick as above of going from Koszul complexes
to Cousin complexes, this time inserting a “Tate residue map” into the picture. We use
Theorem 7.1 to prove directly that if ô: X ! S is equidimensional of dimension n and
generically smooth, then H�nK Ð

XÛS coincides with the sheaf of regular differentials °̃n
XÛS

of Kunz-Waldi [KW] (Theorem 7.10).
Finally in Theorem 8.1 we exhibit a canonical isomorphism êX between the complex

K Ð
XÛS constructed here and the complex ô4OS = Eô!OS of [RD]. Given a morphism of

schemes f : X ! Y the isomorphisms êX and êY send Huang’s trace map Trf : fŁK Ð
XÛS !

https://doi.org/10.4153/CJM-1998-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-046-1


866 AMNON YEKUTIELI

K Ð
YÛS to the trace TrRD

f : fŁEô!
XOS ! Eô!

YOS of [RD] Section VI.4. In particular it follows
that for f proper, Trf is a homomorphism of complexes (Corollary 8.3).

Sections 1 and 3 of the paper contain the necessary supplements to [EGA]. Perhaps
the most noteworthy result there is Theorem 1.22, which states that formally finite type
morphisms are stable under base change. This was also proved in [AJL2].

ACKNOWLEDGMENTS. The author wishes to thank L. Alonso, I-C. Huang, R. Hübl,
A. Jeremı́as, J. Lipman and P. Sastry for helpful discussions, some of which took place
during a meeting in Oberwolfach in May 1996.

1. Formally finite type morphisms. In this section we define formally finite type
morphisms between noetherian formal schemes. This mild generalization of the finite
type morphism of [EGA] I Section 10 has the advantage that it includes the completion
morphism ÿ ! ÿÛZ (cf. Proposition 1.21), and still is preserved under base change
(Theorem 1.22).

We follow the conventions of [EGA] 0I Section 7 on adic rings. Thus an adic ring
is a commutative ring A which is complete and separated in the µ-adic topology, for
some ideal µ ² A. As for formal schemes, we follow the conventions of [EGA] I
Section 10. Throughout the paper all formal schemes are by default noetherian (adic)
formal schemes.

We write A[t] = A[t1Ò    Ò tn] for the polynomial algebra with variables t1Ò    Ò tn over
a ring A. The easy lemma below is taken from [AJL2].

LEMMA 1.1. Let A ! B be a continuous homomorphism between noetherian adic
rings, and let ∂ ² B be a defining ideal. Then the following are equivalent:

(i) A ! BÛ∂ is a finite type homomorphism.
(ii) For some homomorphism f : A[t] ! B extending A ! B one has ∂ = B Ð f�1(∂)

and A[t] ! BÛ∂ is surjective.

PROOF. (i) ) (ii): Say b1Ò    Ò bm generate ∂ as a B-module, and the images of
bm+1Ò    Ò bn generate BÛ∂ as an A-algebra. Then the homomorphism A[t] ! B, ti ! bi

has the required properties.
(ii) ) (i): Trivial.

DEFINITION 1.2. Let A ! B be a continuous homomorphism between adic noetherian
rings. We say that A ! B is of formally finite type (fft) if the equivalent conditions of
Lemma 1.1 hold. We shall also say that B is a formally finite type A-algebra.

EXAMPLE 1.3. Let I ² A be any open ideal, and let B := lim i AÛIi. Then A ! B is
fft

Recall that if A0 and B are adic A-algebras, with defining ideals µ0 and ∂, the complete
tensor product A0
̂AB is the completion of A0 
A B wrt the topology defined by the
image of (µ0 
A B) ý (A0 
A ∂).

PROPOSITION 1.4. Let AÒA0 and B be noetherian adic rings, A ! B a fft homomor-
phism, and A ! A0 any continuous homomorphism. Then B0 := A0
̂AB is a noetherian
adic ring, and A0 ! B0 is a fft homomorphism.
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PROOF. Choose a homomorphism f : A[t] ! B satisfying condition (ii) of Lemma 1.1.
Let ∂ ² B and µ0 ² A0 be defining ideals. Write C := A0 
A B and ∑ := µ0 Ð C + C Ð ∂,
so B0 = lim i CÛ∑i. Consider the homomorphism f 0: A0[t] ! C, and let ∑0 := f 0�1(∑)
and dA0[t] := lim i A0[t]Û∑0i. Since ∑ = C Ð ∑0, it follows from [CA] Section III.2.11
Proposition 14 that dA0[t] ! B0 is surjective. Hence B0 is a noetherian adic ring with the
∂0-adic topology, where ∂0 = B0 Ð ∑. Furthermore A0[t] ! B0Û∂0 is surjective, and we
conclude that A0 ! B0 is fft

In the next three examples A is an adic ring with defining ideal µ.

EXAMPLE 1.5. Recall that for a 2 A, the complete ring of fractions Afag is the com-
pletion of the localized ring Aa wrt the µa-adic topology. Then Afag ≤ A
̂Z[t]Z[tÒ t�1],
which proves that A ! Afag is fft

EXAMPLE 1.6. Given indeterminates t1Ò    Ò tn, the ring of restricted formal power
series Aftg = Aft1Ò    Ò tng is the completion of the polynomial ring A[t] wrt the
(A[t] Ð µ)-adic topology. Hence Aftg ≤ A
̂ZZ[t], which demonstrates that A ! Aftg is
fft

EXAMPLE 1.7. Consider the adic ring A
̂ZZ[[t]], where Z[[t]] = Z[[t1Ò    Ò tn]] is the
ring of formal power series, with the (t)-adic topology. Since inverse limits commute,
we see that A
̂ZZ[[t]] ≤ A[[t]], the ring of formal power series over A, endowed with
the

�
A[[t]] Ð (µ + t)

�
-adic topology. By Proposition 1.4, A ! A[[t]] is fft

Let A ! B be a f.f.t homomorphism between adic rings. Choose a defining ideal
∂ ² B, and set Bi := BÛ∂i+1. For n ½ 0 define

Ω̂n
BÛA := lim

 i
Ωn

BiÛA ≤ lim
 i

Bi 
B Ωn
BÛA

(cf. [EGA] 0IV 20.7.14). Let Ω̂ÐBÛA :=
L

n½0 Ω̂n
BÛA, which is a topological DGA (differential

graded algebra), with Ω̂0
BÛA = B. This definition is independent of the ideal ∂. Since Ωn

BiÛA

is finite over Bi it follows that Ω̂n
BÛA is finite over B.

REMARK 1.8. If A ! B is fft then Ω̂ÐBÛA ≤ ΩÐÒsep
BÛA , where ΩÐÒsep

BÛA is the separated
algebra of differentials defined in [Ye1] Section 1.5 for semi-topological algebras. Also
Ω̂ÐBÛA is the universally finite differential algebra in the sense of [Ku].

PROPOSITION 1.9. Let L ! A ! B be fft homomorphisms between adic noetherian
rings.

1. A ! B is formally smooth relative to L iff the sequence

0 ! B 
A Ω̂1
AÛL

v
! Ω̂1

BÛL
u
! Ω̂1

BÛA ! 0

is split exact.
2. A ! B is formally étale relative to L iff B
A Ω̂1

AÛL ! Ω̂1
BÛL is bijective.
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PROOF. Use the results of [EGA] 0IV Section 20.7, together the fact that these are
finite B-modules.

PROPOSITION 1.10. Let f : A ! B be a formally smooth, fft homomorphism between
noetherian adic rings. Then B is flat over A and Ω̂1

BÛA is a projective finitely generated
B-module.

PROOF. For flatness it suffices to show that if ¬ is a maximal ideal of B and ¡ :=
f�1(¬), then Â¡ ! B̂¬ is flat (B̂¬ is the completion of B¬ with the¬-adic topology). Now
¬ is open, and hence so is ¡. Both A ! Â¡ and B ! B̂¬ are formally étale, therefore
Â¡ ! B̂¬ is formally smooth. Because A ! B is fft it follows that AÛ¡ ! BÛ¬ is
finite type, and hence finite (and ¡ is a maximal ideal). By [EGA] 0IV Theorem 19.7.1,
B̂¬ is flat over Â¡.

The second assertion follows from [EGA] 0IV Theorem 20.4.9.

PROPOSITION 1.11. Let f : A ! B be a fft, formally smooth homomorphism of
noetherian adic rings, and let ≈ 2 Spf B. Suppose rank Ω̂1

B̂≈ÛA
= n. Then:

1. For some b 2 B� ≈ there is a formally étale homomorphism f̃ : A[t] =
A[t1Ò    Ò tn] ! Bfbg extending f .

2. For any ≈0 2 Spf Bfbg let ∆ := f̃�1(≈0). Then dA[t]∆ ! B̂≈0 is finite étale.
3. Let ƒ := f�1(≈). Assume Âƒ is regular of dimension m, and tr degk(ƒ) k(≈) = l. Then

B̂≈ is regular of dimension n + m � l.

PROOF. 1. By Proposition 1.10 we can find b st Ω̂1
BfbgÛA ≤ Bfbg 
B Ω̂1

BÛA is free,

say with basis db1Ò    Ò dbn. Then we get a homomorphism A[t] ! Bfbg, ti 7! bi. In
order to stay inside the category of adic rings we may replace A[t] with its completion
Aftg (cf. Examples 1.5–1.7 for the notation). According to Proposition 1.9 we see that
A[t] ! Bfbg is formally étale relative to A. But since A ! Bfbg is formally smooth, this
implies that A[t] ! Bfbg is actually (absolutely) formally étale.

2. Consider the formally étale homomorphism k(∆) ! B̂≈0Û∆B̂≈0 . Since ≈0 is an
open prime ideal it follows that A ! BÛ≈0 is a finite type homomorphism, so the field
extension k(∆) ! k(≈0) is finitely generated. By [Hg1] Lemma 3.9 we see that in fact
B̂≈0Û∆B̂≈0 = k(≈0), so k(∆) ! k(≈0) is finite separable. Hence dA[t]∆ ! B̂≈0 is finite étale.

3. Take ≈0 := ≈. Under the assumption the ring dA[t]∆ is regular, and according to
[Ma] Section 14.c Theorem 23, dim dA[t]∆ = m + n� l. By part 2, B̂≈ is also regular, and
dim B̂≈ = dim dA[t]∆.

Let us now pass to formal schemes.
Given a noetherian formal scheme ÿ, choose a defining ideal I ² Oÿ, and set

Xn := (ÿÒOÿÛI n+1)(1.12)

Xn is a noetherian (usual) scheme, and ÿ ≤ limn! Xn in the category of formal schemes.
One possible choice for I is the largest defining ideal, in which case one has X0 = ÿred,
the reduced closed subscheme (cf. [EGA] I Section 10.5).
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LEMMA 1.13. Suppose f :ÿ ! „ is a morphism between noetherian formal schemes.
There are defining ideals I ² Oÿ and J ² O„ st f�1J Ð Oÿ ² I . Letting Xn and Yn be
the corresponding schemes (cf. (1.12)), we get morphisms of schemes fn: Xn ! Yn, with
f = limn! fn.

PROOF. See [EGA] I Section 10.6. For instance, one could take I to be the largest
defining ideal and J arbitrary.

DEFINITION 1.14. Let f :ÿ ! „ be a morphism of noetherian (adic) formal schemes.
We say that f is of formally finite type (or that ÿ is a formally finite type formal scheme
over „) if the morphism f0: X0 ! Y0 in Lemma 1.13 is finite type, for some choice of
defining ideals of ÿ and „.

Observe that if the morphism f0 is finite type then so are all the fn, and the definition
doesn’t depend on the defining ideals chosen.

REMARK 1.15. The definition of fft morphism we gave in an earlier version of the
paper was more cumbersome, though equivalent. The present Definition 1.14 is taken
from [AJL2], where the name is “pseudo-finite type morphism”, and I wish to thank
A. Jeremı́as for bringing it to my attention.

Here are a couple of examples of fft morphisms:

EXAMPLE 1.16. A finite type morphism ÿ ! „ (in the sense of [EGA] I Sec-
tion 10.13) is fft

EXAMPLE 1.17. Let X be a scheme of finite type over a noetherian scheme S, and
let X0 ² X be a locally closed subset. Then the completion ÿ = XÛX0

(see [EGA] I
Section 10.8) is of fft over S. Such a formal scheme is called algebraizable.

DEFINITION 1.18. A fft morphism f :ÿ ! „ is called formally finite (resp. formally
proper) if the morphism f0: X0 ! Y0 in Lemma 1.4 is finite (resp. proper), for some
choice of defining ideals.

EXAMPLE 1.19. If in Example 1.17 the subset X0 ² X is closed, then ÿ ! X is
formally finite. If X0 ! S is proper, then ÿ ! S is formally proper.

PROPOSITION 1.20. 1. An immersion ÿ ! „ is fft
2. If ÿ ! „ and „ ! ‰ are fft, then so is ÿ ! ‰.
3. Let · = Spf B and ⁄ = Spf A. Then a morphism · ! ⁄ is fft iff the ring

homomorphism A ! B is fft

PROOF. Consider morphisms of schemes X0 ! Y0 etc. as in Lemma 1.13. For part 3
use condition (i) of Lemma 1.1.

PROPOSITION 1.21. Letÿ be a noetherian formal scheme and Z ² ÿ a locally closed
subset. Then there is a noetherian formal schemeÿÛZ, with underlying topological space
Z, and the natural morphismÿÛZ ! ÿ is fft
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PROOF. Pick an open subset· ² ÿ st Z ² · is closed, and choose a defining ideal
I of Z. Let O‰ := lim i O·ÛI i. According to [EGA] I Section 10.6,ÿÛZ := (ZÒO‰) is a
noetherian formal scheme. Clearly ÿÛZ ! ÿ is fft

In [EGA] I Section 10.3 it is shown that finite type morphisms between noetherian
formal schemes are preserved by base change. This is true also for fft morphisms:

THEOREM 1.22. Suppose ÿ, „ and „0 are noetherian formal schemes, ÿ ! „ is a
fft morphism, and „0 ! „ is an arbitrary morphism. Then ÿ0 := ÿ ð„ „

0 is also
noetherian, and the morphismÿ0 ! „0 is fft

PROOF. First note that the formal schemeÿ0 = ÿð„„0 exists ([EGA] I Section 10.7).
For any affine open sets · = Spf B ² ÿ, ⁄0 = Spf A0 ² „0 and ⁄ = Spf A ² „ such
that · ! ⁄ and ⁄0 ! ⁄, one has ·0 = ·ð⁄ ⁄

0 = Spf B
̂AA0, and ·0 ² ÿ0 is open.
By Propositions 1.4 and 1.20, ·0 is a noetherian formal scheme, and ·0 ! ⁄0 is fft
But finitely many such ·0 cover ÿ0.

COROLLARY 1.23. If ÿ1, ÿ2 and „ are noetherian and ÿi ! „ are fft morphisms,
then ÿ3 := ÿ1 ð„ ÿ2 is also noetherian, and ÿ3 ! „ is fft

REMARK 1.24. I do not know an example of a fft formal scheme ÿ over a scheme
S which is not locally algebraizable. (Locally algebraizable means there is an open
coveringÿ =

S
·i, with ·i ! S algebraizable, in the sense of Example 1.17.)

DEFINITION 1.25. A morphism of formal schemes ÿ ! „ is said to be formally
smooth (resp. formally étale) if, given a (usual) affine scheme Z, a morphism Z ! „

and a closed subscheme Z0 ² Z defined by a nilpotent ideal, the map Hom „(ZÒ ÿ) !
Hom „(Z0Ò ÿ) is surjective (resp. bijective).

This is the definition of formal smoothness used in [EGA] IV Section 17.1. We shall
also require the next notion.

DEFINITION 1.26. A morphism g:ÿ ! „ between noetherian formal schemes is
called étale if it is of finite type (see [EGA] I Section 10.13) and formally étale.

Note that if „ is a usual scheme, then so is ÿ, and g is an étale morphism of schemes.
According to [EGA] I Proposition 10.13.5 and by the obvious properties of formally
étale morphisms, if · ! ÿ and ⁄ ! ÿ are étale, then so is ·ðÿ ⁄ ! ÿ. Hence for
fixed ÿ, the category of all étale morphisms · ! ÿ forms a site (cf. [Mi] Chapter II
Section 1). We call this site the small étale site on ÿ, and denote it by ÿet.

2. Smooth formal embeddings and De Rham cohomology. Fix a noetherian base
scheme S and a finite type S-scheme X.

DEFINITION 2.1. A smooth formal embedding (s.f.e.) of X (over S) is the following
data:

(i) A noetherian formal scheme ÿ.
(ii) A formally finite type, formally smooth morphism ÿ ! S.
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(iii) An S-morphism X ! ÿ, which is a closed immersion and a homeomorphism
between the underlying topological spaces.

We shall refer to this by writing “X ² ÿ is a sfe”

EXAMPLE 2.2. Suppose Y is a smooth S-scheme, X ² Y a locally closed subset, and
ÿ = YÛX the completion. Then X ² ÿ is a smooth formal embedding. Such an embedding
is called an algebraizable embedding (cf. Remark 1.24).

The smooth formal embeddings of X form a category, in which a morphism of em-
beddings is an S-morphism of formal schemes f :ÿ ! „ inducing the identity on X. Note
that any morphism of embeddings f :ÿ ! „ is affine (cf. [EGA] I Proposition 10.6.12),
and the functor fŁ: Mod (ÿ) ! Mod („) is exact. Let ÿ and „ be two smooth formal
embeddings of X. Consider the formal schemeÿðS„. Then the diagonal ∆: X ! ÿðS„

is an immersion (we do not assume our formal schemes are separated!).

PROPOSITION 2.3. The completion (ÿ ðS „)ÛX of ÿ ðS „ along ∆(X) is a smooth
formal embedding of X, and moreover it is a product of ÿ and „ in the category of
smooth formal embeddings.

PROOF. By Theorem 1.22 and Proposition 1.21 it follows that (ÿðS „)ÛX is formally
finite type over S, so in particular it is noetherian. Clearly (ÿ ðS „)ÛX ! S is formally
smooth.

The benefit of using formal rather than algebraic embeddings is in:

PROPOSITION 2.4. Let X ² ÿ be a smooth formal embedding (over S) and g: U !

X an étale morphism. Then there exists a noetherian formal scheme · and an étale
morphism ĝ:· ! ÿ stU ≤ ·ðÿX. ĝ:· ! ÿ is unique (up to a unique isomorphism),
and moreover U ! · is a smooth formal embedding.

PROOF. This is essentially the “topological invariance of étale morphisms”, (cf.
[EGA] IV Section 18.1 or [Mi] Chapter I Theorem 3.23). Let I := Ker(Oÿ ! OX)
and Xi := (ÿÒOÿÛI i+1); so X = X0. For every i there is a unique étale morphism
gi: Ui ! Xi st U ≤ Ui ðXi X. Identifying the underlying topological spaces of Ui and
U we get an inverse system of sheaves fOUig on U. Setting O· := lim i OUi we get a
noetherian formal scheme· having the proclaimed properties (cf. [EGA] I Section 10.6).

Thus we can considerÿet as a “smooth formal embedding” of Xet. If M is a sheaf on
Xet and U ! X is an étale morphism, we denote by M jU the restriction of M to UZar.

COROLLARY 2.5. Let X ² ÿ be a smooth formal embedding over S. Then there is
a sheaf of DGAs Ω̂ÐÿetÛS on Xet, with the property that for each g: U ! X in Xet and

corresponding ĝ:· ! ÿ in ÿet, one has Ω̂ÐÿetÛSjU ≤ Ω̂Ð·ÛS.
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PROOF. By Proposition 1.9, Ω̂p
·ÛS ≤ ĝŁΩ̂p

ÿÛS. Now Ω̂p
ÿÛS is coherent, so we can use

[Mi] Chapter II Corollary 1.6 (which applies to our étale site ÿet).

For smooth formal embeddings, closed immersions and smooth morphisms are locally
trivial, in the following sense. Recall that for an adic algebra A, the ring of formal power
series A[[t]] = A[[t1Ò    Ò tn]] is adic (cf. Example 1.7).

THEOREM 2.6. Let f :ÿ ! „ be a morphism of smooth formal embeddings of X over
S. Assume f is a closed immersion (resp. formally smooth). Then, given a point x 2 X,
there are affine open sets U ² X and W ² S, with x 2 U and U ! W, satisfying
condition (Ł) below.

(*) Let W = Spec L, and let Spf A ² „ and Spf B ² ÿ be the affine formal schemes
supported on U. Then there is an isomorphism of topological L-algebras A ≤ B[[t]]
(resp. B ≤ A[[t]]) such that f Ł: A ! B is projection modulo (t) (resp. the inclusion).

PROOF. 1. Assume f is a closed immersion. According to [EGA] 0IV Theorem 19.5.3
and Corollary 20.7.9, by choosing U = Spec C small enough, and setting I := Ker(f Ł :
A ! B), we obtain an exact sequence

0 ! IÛI2
! B 
A Ω̂1

AÛL ! Ω̂1
BÛL ! 0

of free B-modules. Choose a1Ò    Ò anÒ b1Ò    Ò bm 2 A st faig is a B-basis of IÛI2, and
fdbig is a B-basis of Ω̂1

BÛL.

By the proof of Proposition 1.11 the homomorphisms L[s] ! B, L[sÒ t] ! A and
L[sÒ t] ! B[[t]], sending si 7! bi and ti 7! ai, are all formally étale. Take µ := Ker(A !

C), which is a defining ideal of A, containing A Ð (t) = I. Let ∂ := µ ÐB, which is a defining
ideal of B. Hence the ideal ∑ = B[[t]] Ð (∂Ò t) is a defining ideal of B[[t]]. By formal
étaleness of L[sÒ t] ! A and L[sÒ t] ! B[[t]], the isomorphism AÛµ ≤ B[[t]]Û∑ ≤ C lifts
uniquely to an isomorphism A ≤ B[[t]].

2. Now assume f is formally smooth. Let ∂ := Ker(B ! C), which is a defining ideal
of B. Since A ! BÛ∂ is surjective it follows that (BÛ∂) 
B Ω̂1

BÛA is generated by d(∂).

By Nakayama’s Lemma we see that Ω̂1
BÛA = B Ð d(∂). After shrinking U sufficiently we

get Ω̂1
BÛA =

Ln
i=1 B Ð dbi with bi 2 ∂, and the homomorphism A[[t]] ! B, ti 7! bi, is

formally étale. Continuing like in part 1 of the proof we conclude that this is actually an
isomorphism.

THEOREM 2.7. Suppose S is a noetherian scheme of characteristic 0, and X is a finite
type S-scheme. Let f :ÿ ! „ be a morphism of smooth formal embeddings of X. Then the
DGA homomorphism f Ł: Ω̂Ð„ÛS ! Ω̂ÐÿÛS is a quasi-isomorphism. Moreover, if g:ÿ ! „

is any other morphism, then H(f Ł) = H(gŁ).

PROOF. The assertions of the theorem are both local, and they will be proved in three
steps.
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STEP 1. Assume f is a closed immersion. By Theorem 2.6 it suffices to check the
case f : Spf B = · ! Spf A = ⁄ with A ≤ B[[t]] as topological L-algebras. We must
show that Ω̂ÐAÛL ! Ω̂ÐBÛL is a quasi-isomorphism. But sinceQ ² L, this is the well known
Poincaré Lemma for formal power series (cf. [Ha] Chapter II Proposition 1.1, or [Ye3]
Lemma 7.5).

STEP 2. Suppose f1Ò f2:ÿ ! „ are two morphisms. We wish to show that H(f Ł1 ) =
H(f Ł2 ). First consider

„
diag
! („ ðk „)ÛX

pi
! „

Since the diagonal immersion is closed, we can apply the result of the previous paragraph
to it. We conclude that H(pŁ1) = H(pŁ2), and that these are isomorphisms. But looking at

ÿ
diag
! (ÿðk ÿ)ÛX

f1ðf2
! („ ðk „)ÛX

pi
! „

we see that our claim is proved.

STEP 3. Consider an arbitrary morphism f :ÿ ! „. Take any affine open set U ² X,
with corresponding affine formal schemes Spf B = · ² ÿ and Spf A = ⁄ ² „.
The definition of formal smoothness implies there is some morphism of embeddings
g:⁄ ! ·. This morphism will not necessarily be an inverse of f j·, but nonetheless,
according to Step 2, H(gŁ) and H(f jŁ·) will be isomorphisms between HΩ̂Ð·ÛS and HΩ̂Ð⁄ÛS,
inverse to each other.

In [Ha] the relative De Rham cohomology HÐDR(XÛS) was defined. In the situation of
Example 2.2, where X ² Y is a smooth algebraic embedding of S-schemes,ÿ = YÛX and

ô:ÿ ! S is the structural morphism, the definition is HÐDR(XÛS) = HÐRôŁΩ̂ÐÿÛS. Even if

X is not globally embeddable, HÐDR(XÛS) can still be defined, by taking a system of local
embeddings fUi ² Vig, X =

S
Ui, and putting together a “Čech-De Rham” complex (cf.

[Ha] pp. 28–29; it seems one should also assume X separated and the Ui are affine).

COROLLARY 2.8. Suppose S has characteristic 0. Let X ² ÿ be any smooth formal
embedding (not necessarily algebraizable). Then HÐDR(XÛS) = HÐRôŁΩ̂ÐÿÛS as graded
OS-algebras.

PROOF. Assume for simplicity that a global smooth algebraic embedding exists.
The general case, involving a system of embeddings, only requires more bookkeeping.
Say X ² Y is the given algebraic embedding, and let „ := YÛX. Now the two formal
embeddings ÿ and „ are comparable: their product (ÿ ðS „)ÛX maps to both. By the
theorem we get quasi-isomorphic DGAs on X.

REMARK 2.9. From Corollaries 2.5 and 2.8 we see that there is a sheaf of DGAs
Ω̂ÐÿetÛS on Xet, with the property that for any U ! X étale, HÐDR(UÛS) = HÐΓ(UÒ Ω̂ÐÿetÛS).

As will be shown in [Ye4], the DGA Ω̂ÐÿÛS has an adelic resolution A ÐÿÛS, where ApÒq
ÿÛS =

A
q
red(Ω̂p

ÿÛS), Beilinson’s sheaf of adeles. The adeles calculate cohomology: HÐDR(XÛS) =
HÐΓ(XÒAÐÿÛS). Furthermore the adeles extend to an étale sheaf A ÐÿetÛS.
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REMARK 2.10. Suppose S = Spec k, a field of characteristic 0. In [Ye3] a complex
F Ð
ÿ, called the De Rham-residue complex, is defined. One has Hi(XÒF Ð

ÿ) = HDR
�i (X), the

De Rham homology. Moreover there is a sheaf F Ð
ÿet

on Xet, which directly implies that the
De Rham homology is contravariant for étale morphisms. Furthermore F Ð

ÿ is naturally a
DG A Ðÿ-module,

REMARK 2.11. Smooth formal embeddings can be also used to define the category
of D-modules on a singular scheme X (in characteristic 0). Say X ² ÿ is such an
embedding. Then a formal version of Kashiwara’s Theorem (cf. [Bo] Theorem VI.7.11)
implies that Mod disc(Dÿ), the category of discrete modules over the ring of differential
operators Dÿ is, as an abelian category, independent of ÿ.

3. Quasi-coherent sheaves on formal schemes. Letÿbe a noetherian (adic) formal
scheme. By definition, a quasi-coherent sheaf on ÿ is an Oÿ-module M , such that on
sufficiently small open sets· ² ÿ there are exact sequences O (J)

· ! O(I)
· ! M j· ! 0,

for some indexing sets IÒ J (cf. [EGA] 0I Section 5.1). We shall denote by Mod (ÿ)
(resp. Coh (ÿ), resp. QCo (ÿ)) the category of Oÿ-modules (resp. the full subcategory of
coherent, resp. quasi-coherent, modules). It seems that the only important quasi-coherent
sheaves are the coherent and the discrete ones (Definition 3.7). Nevertheless we shall
consider all quasi-coherent sheaves, at the price of a little extra effort.

REMARK 3.1. There is some overlap between results in this section and [AJL2].

Let A be a noetherian adic ring, and let · := Spf A be the affine formal scheme. Then
there is an exact functor M 7! M4 from the category Mod f (A) of finitely generated
A-modules to Mod (·). It is an equivalence between Mod f (A) and Coh (·) (see [EGA] I
Section 10.10).

PROPOSITION 3.2. The functor M 7! M4 extends uniquely to a functor Mod (A) !
Mod (·), which is exact and commutes with direct limits. The O·-module M4 is quasi-
coherent. For any O·-module M the following are equivalent:

(i) M ≤ M4 for some A-module M.
(ii) M ≤ limã!Mã for some directed system fMãg of coherent O·-modules.

(iii) For every affine open set ⁄ = Spf B ² ·, one has Γ(⁄ÒM ) ≤ B
A Γ(·ÒM ).

PROOF. Take any A-module M and write it as M = limã!Mã with finitely generated
modules Mã. Define a presheaf M4 on · by Γ(⁄ÒM4) := limã! Γ(⁄ÒM4ã ), for ⁄ ² ·

open. Since · is a noetherian topological space it follows that M4 is actually a sheaf.
By construction M 7! M4 commutes with direct limits. Since the functor is exact on
Mod f (A), it’s also exact on Mod (A).

The implication (i) ) (ii) is because M4ã is coherent. (ii) ) (iii): for such B one has
Γ(⁄ÒMã) ≤ B 
A Γ(·ÒMã); now apply limã!. (iii) ) (i): set M := Γ(·ÒM ). Then
for every affine ⁄ we have Γ(⁄ÒM ) = B
A M = Γ(⁄ÒM4), so M = M4.

Finally the module M has a presentation A(I) ! A(J) ! M ! 0. By exactness we get
a presentation for M4.

It will be convenient to write O· 
A M instead of M4.
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REMARK 3.3. I do not know whether Serre’s Theorem holds, namely whether every
quasi-coherent O·-module M is of the form M ≤ O· 
A M. Thus it may be that
QCo (·) is not closed under direct limits in Mod (·) (cf. Lemma 4.1).

COROLLARY 3.4. Let M be a quasi-coherent Oÿ-module and x 2 ÿ a point. Then
there is an open neighborhood· = Spf A of x st M j· ≤ O·
A Γ(·ÒM ). For such·
one has H1(·ÒM ) = 0.

PROOF. Choose·affine such that M j· has a presentation O (J)
·

û
! O(I)

·

†
! M j· ! 0.

Define M := Coker(û: A(I) ! A(J)). Applying the exact functor O·
A to A(I) û! A(J) !

M ! 0 we get M j· ≤ O· 
A M. By the proposition M ≤ Γ(·ÒM ). As for H1(·Ò�),
use the fact that it vanishes on coherent sheaves.

PROPOSITION 3.5. Let M be coherent and N quasi-coherent (resp. coherent). Then
Hom Oÿ

(M ÒN ) is quasi-coherent (resp. coherent).

PROOF. For small enough· = Spf A we get M j· ≤ O·
A M and N j· ≤ O·
A N.
Now for any ⁄ = Spf B ² ·, A ! B is flat; so

Hom B(B 
A MÒB 
A N) ≤ B
A Hom A(MÒN)

Hence

Hom Oÿ
(M ÒN )j· ≤ O· 
A Hom A(MÒN)

Recall that a subcategory B of an abelian category A is called a thick abelian subcat-
egory if for any exact sequence M1 ! M2 ! N ! M3 ! M4 in A with Mi 2 B, also
N 2 B.

PROPOSITION 3.6. The category QCo (ÿ) is a thick abelian subcategory of Mod (ÿ).

PROOF. First observe that the kernel and cokernel of a homomorphism M ! N
between quasi-coherent sheaves is also quasi-coherent. This is immediate from Corol-
lary 3.4 and Proposition 3.2. So it suffices to prove: 0 ! M 0 ! M ! M 00 ! 0 exact,
M 0ÒM 00 quasi-coherent ) M quasi-coherent. For a sufficiently small affine open for-
mal subscheme· = Spf A we will get, by Corollary 3.4, that H1(·ÒM 0) = 0. Hence the
sequence

0 ! Γ(·ÒM 0) ! M = Γ(·ÒM ) ! Γ(·ÒM 00) ! 0

is exact. This implies that M j· ≤ O· 
A M.

DEFINITION 3.7. Let M be an Oÿ-module. Define

ΓdiscM := lim
n!

Hom Oÿ
(OÿÛI n

ÒM ) ² M

where I ² Oÿ is any defining ideal. M is called discrete if ΓdiscM = M .

PROPOSITION 3.8. Let M be a quasi-coherent Oÿ-module. Then ΓdiscM is quasi-
coherent, and in fact is a direct limit of discrete coherent Oÿ-modules.
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PROOF. Let Xn be as in formula (1.12) and Mn := Hom Oÿ
(OXn ÒM ), so ΓdiscM =

limn!Mn. If M is quasi-coherent, then Mn is a quasi-coherent OXn-module (by Propo-
sition 3.5), and hence is a direct limit of coherent modules.

4. Some derived functors of Oÿ-modules. Denote by Mod disc(ÿ) (resp.
QCo disc(ÿ)) the full subcategory of Mod (ÿ) consisting of discrete modules (resp. dis-
crete quasi-coherent modules). These are thick abelian subcategories. In this section we
study injective objects in the category QCo disc(ÿ), and introduce the discrete Cousin
functor ERΓdisc.

LEMMA 4.1. Mod disc(ÿ) is a locally noetherian category, with enough injectives.

PROOF. A family of noetherian generators consists of the sheaves OU, where X ² ÿ

is a closed subscheme, U ² X is an open set, and OU is extended by 0 to all of X (cf.
[RD] Theorem II.7.8). If J 2 Mod (ÿ) is injective then ΓdiscJ is injective in Mod disc(ÿ).

Given a point x 2 ÿ let J(x) be an injective hull of the residue field k(x) over the
local ring OÿÒx, and let J (x) be the corresponding Oÿ-module. Then J (x) is a discrete

quasi-coherent sheaf, constant on fxg, and it is injective in Mod (ÿ).

PROPOSITION 4.2. 1. QCo disc(ÿ) is a locally noetherian category with enough injec-
tives.

2. Let J 2 QCo disc(ÿ) be an injective object. Then J is injective in Mod disc(ÿ) and
injective on Coh (ÿ). For any M 2 Mod disc(ÿ) or M 2 Coh (ÿ) the sheaf Hom ÿ(M Ò J )
is flasque.

PROOF. 1. Let N 2 QCo disc(ÿ). Choose a defining ideal I of ÿ and let X0 be
the scheme (ÿÒOÿÛI ). Define N0 := Homÿ(OX0 ÒN ), which is a quasi-coherent OX0 -
module. Then the injective hull of N0 in Mod (X0) is isomorphic to

L
ã J0(xã) for some

xã 2 X0. According to Proposition 3.8, QCo disc(ÿ) is locally noetherian, and this implies
that

L
ã J (xã) is an injective object in it. Now N0 ² N and N0 ²

L
ã J (xã) are essential

submodules, so there is some homomorphism N !
L
ã J (xã), which is necessarily

injective and essential.
2. If N = J is injective in QCo disc(ÿ), it follows that J !

L
ã J (xã) is an isomor-

phism. Since Mod disc(ÿ) is locally noetherian it follows that J is injective in it. Given
M 2 Mod disc(ÿ) and open sets ⁄ ² · ² ÿ consider the sheaves M j⁄ ² M j· ² M
(extension by 0). Then Hom ÿ(M j·Ò J ) ! Hom ÿ(M j⁄Ò J ) is surjective.

The category Coh (ÿ) is noetherian, and therefore the functor Hom ÿ(�Ò J ) is exact on
it. Given M 2 Coh (ÿ) we have Hom ÿ(M Ò J ) ≤

L
Homÿ

�
M Ò J (xã)

�
which is clearly

flasque.

COROLLARY 4.3. Let J Ð 2 D+
�
QCo disc(ÿ)

�
be a complex of injectives. Then for any

M Ð 2 D�
�
Mod disc(ÿ)

�
or M Ð 2 D�

�
Coh (ÿ)

�
one has

RHomÿ(M Ð
Ò J Ð) ≤ Homÿ(M Ð

Ò J Ð)
R Hom

ÿ
(M Ð

Ò J Ð) ≤ Hom
ÿ

(M Ð
Ò J Ð) ≤ Γ

�
ÿÒHom ÿ(M Ð

Ò J Ð)
�

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PROOF. The first equality follows from Proposition 4.2 (cf. [RD] Section I.6). Since
each sheaf Homÿ(M pÒ J q) is flasque we obtain the second equality.

The functor Γdisc: Mod (ÿ) ! Mod disc(ÿ) has a derived functor

RΓdisc: D+
�
Mod (ÿ)

�
! D+

�
Mod disc(ÿ)

�
Ò

which is calculated by injective resolutions.
There is another way to compute cohomology with supports. Let t be an indeterminate.

Define KÐ(t) to be the Koszul complex Z[t]
Ðt
! Z[t], in dimensions 0 and 1, and let

KÐ1(t) := limi!KÐ(ti). Given a sequence t = (t1Ò    Ò tn) define KÐ1(t) := KÐ1(t1)
 Ð Ð Ð 


KÐ1(tn), a complex of flat Z[t]-modules (in fact it’s a commutative DGA). If A is a
noetherian commutative ring and a = (a1Ò    Ò an) 2 An, then we write KÐ1(a) instead of
KÐ1(t) 
Z[t] A. Now suppose µ ² A is an ideal, and a are generators of µ. Then for any
MÐ 2 D+

�
Mod (A)

�
there is a natural isomorphism

RΓµMÐ ≤ KÐ1(a)
 MÐ(4.4)

in D
�
Mod (A)

�
. We refer to [LS1], [Hg1] and [AJL1] for full details and proofs. For

sheaves one has:

LEMMA 4.5. Suppose a 2 Γ(·ÒO·)n generates a defining ideal of the formal scheme
·. Then for any M Ð 2 D+

�
Mod (·)

�
there is a natural isomorphism

RΓdiscM Ð
≤ KÐ1(a) 
M Ð



PROOF. Let I := O· Ð a. Then Γdisc = ΓI , and we may use [AJL1] Lemma 3.1.1.

PROPOSITION 4.6. Let X be a noetherian scheme, X0 ² X a closed subset, ÿ = XÛX0

and g:ÿ ! X the completion morphism. Then for any M Ð 2 D+
qc

�
Mod (X)

�
there is

a natural isomorphism gŁRΓX0
M Ð ≤ RΓdiscgŁM Ð. In particular for a single quasi-

coherent sheaf M one has gŁΓX0
M ≤ ΓdiscgŁM .

PROOF. Let M Ð ! J Ð be a resolution by quasi-coherent injectives. Since g is flat we
get

û: gŁRΓX0
M Ð = gŁΓX0

J Ð ! ΓdiscgŁJ Ð ! RΓdiscgŁJ Ð = RΓdiscgŁM Ð

Locally on any affine open U ² X, with U0 = U \ X0 and · = UÛU0
, we can find

a in Γ(UÒOU ) which define U0. It’s known that ΓU0
(J ÐjU) ! KÐ1(a) 
 (J ÐjU) is a

quasi-isomorphism. Since g is flat we obtain quasi-isomorphisms

ûj·: gŁΓU0
(J ÐjU) ! gŁ

�
KÐ1(a) 
 (J ÐjU)

�
≤ KÐ1(a) 
 gŁ(J ÐjU) = RΓdiscgŁ(J ÐjU)

It follows that û is an isomorphism.
Denote by D+

d

�
Mod (ÿ)

�
the subcategory of complexes with discrete cohomologies.

LEMMA 4.7. 1. If M Ð 2 D+
d

�
Mod (ÿ)

�
then RΓdiscM ! M is an isomorphism.

2. If M Ð 2 D+
qc

�
Mod (ÿ)

�
then RΓdiscM 2 D+

qc

�
Mod disc(ÿ)

�
.
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PROOF. From Lemma 4.5 we see that the functor RΓdisc has finite cohomological
dimension. By way-out reasons (cf. [RD] Section I.7) we may assume M Ð is a single
discrete (resp. quasi-coherent) sheaf. Then the claims are obvious (use Proposition 3.8
for 2).

THEOREM 4.8. The identity functor D+
�
QCo disc(ÿ)

�
! D+

dqc

�
Mod (ÿ)

�
is an equiva-

lence of categories. In particular any M Ð 2 D+
dqc

�
Mod (ÿ)

�
is isomorphic to a complex

of injectives J Ð 2 D+
�
QCo disc(ÿ)

�
.

PROOF. According to Lemma 4.7 we see that D+
qc

�
Mod disc(ÿ)

�
! D+

dqc

�
Mod (ÿ)

�
is an equivalence with quasi-inverse RΓdisc. Next, by Proposition 4.2 and by [RD]
Proposition I.4.8, the functor D+

�
QCo disc(ÿ)

�
! D+

qc

�
Mod disc(ÿ)

�
is an equivalence.

REMARK 4.9. In [AJL2] it is proved that D
�
QCo disc(ÿ)

�
! Ddqc

�
Mod (ÿ)

�
is an

equivalence, using the quasi-coherator functor.

Suppose there is a codimension function d:ÿ ! Z, i.e. a function satisfying d(y) =
d(x) + 1 whenever (xÒ y) is an immediate specialization pair. Then there is a filtration
Ð Ð Ð ¦ Zp ¦ Zp+1 ¦ Ð Ð Ð of ÿ, with Zp := fF ² ÿ j F closedÒ d(F) ½ pg. Here
d(F) := minfd(x) j x 2 Fg. This filtration determines a Cousin functor

E: D+
�
Ab (ÿ)

�
! C+

�
Ab (ÿ)

�
(4.10)

where C+ denotes the abelian category of bounded below complexes (cf. [RD] Sec-
tion IV.1).

Given a point x 2 ÿ and a sheaf M 2 Ab (ÿ) we let ΓxM := (Γ
fxg

M )x ² Mx. The

derived functor RΓx: D+
�
Ab (ÿ)

�
! D(Ab ) is calculated by flasque sheaves. Let us write

Hq
xM := HqRΓxM , the local cohomology, and let ix: fxg ! ÿ be the inclusion.
According to [RD] Section IV.1 Motif F one has a natural isomorphism

EpM Ð = H p
ZpÛZp+1M Ð

≤
M

d(x)=p
ixŁHp

xM Ð
(4.11)

Observe that if M 2 D+
�
Mod (ÿ)

�
then EM Ð 2 C+

�
Mod (ÿ)

�
and RΓxM 2

D+
�
Mod (OÿÒx)

�
.

Unlike an ordinary scheme, on a formal scheme the topological support of a quasi-
coherent sheaf does not coincide with its algebraic support. But for discrete sheaves
these two notions of support do coincide. This suggests:

DEFINITION 4.12. Given M 2 D+
�
Mod (ÿ)

�
its discrete Cousin complex is

ERΓdiscM Ð.

THEOREM 4.13. For any M Ð 2 D+
qc

�
Mod (ÿ)

�
the complex ERΓdiscM Ð consists of

discrete quasi-coherent sheaves. So we get a functor

ERΓdisc: D+
qc

�
Mod (ÿ)

�
! C+

�
QCo disc(ÿ)

�

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PROOF. According to Theorem 4.8 we may assume N Ð = RΓdiscM Ð is in
D+
�
QCo disc(ÿ)

�
. On any open formal subscheme · = Spf A we get N Ð = O· 
A NÐ,

where Nq = Γ(·ÒNq) (cf. Propositions 3.8 and 3.2). Then for x 2 ·,

RΓxRΓdiscM Ð = RΓxN Ð = RΓƒNÐƒ

where ƒ ² A is the prime ideal of x. Hence Hq
xRΓdiscM Ð = Hq

ƒN
Ð
ƒ is ƒ-torsion. So the

sheaf corresponding to x in (4.11) is quasi-coherent and discrete.

5. Dualizing complexes on formal schemes. In this section we propose a theory
of duality on noetherian formal schemes. There is a fundamental difference between this
theory and the duality theory on schemes, as developed in [RD]. A dualizing complex
R Ð on a scheme X has coherent cohomology sheaves; this will not be true on a general
formal schemeÿ, where HqR Ð are discrete quasi-coherent sheaves (Definition 5.2). We
prove uniqueness of dualizing complexes (Theorem 5.6), and existence in some cases
(Proposition 5.11 and Theorem 5.14).

Before we begin here is an instructive example due to J. Lipman.

EXAMPLE 5.1. Consider the ring A = k[[t]] of formal power series over a field k.
Let ÿ := Spf A, which has a single point. The modules A and J = H1

(t)A both have
finite injective dimension and satisfy HomA(AÒA) = HomA(JÒ J) = A. Which one is a
dualizing complex on ÿ? We will see that J is the correct answer (Definition 5.2), and
A is a “fake” dualizing complex (Theorem 5.14). The relevant relation between them is:
J = RΓdiscA[1].

Suppose N Ð 2 D+
�
Mod (ÿ)

�
. We say N Ð has finite injective dimension on QCodisc(ÿ)

if there is an integer q0 st for all q Ù q0 and M 2 QCo disc(ÿ), HqRHomÿ(M ÒN Ð) = 0.

DEFINITION 5.2. A dualizing complex on ÿ is a complex R Ð 2 Db
dqc

�
Mod (ÿ)

�
satis-

fying:
(i) R Ð has finite injective dimension on QCo disc(ÿ).

(ii) The adjunction morphism Oÿ ! RHom ÿ(R ÐÒR Ð) is an isomorphism.
(iii) For some defining ideal I of ÿ, RHomÿ(OÿÛI ÒR Ð) has coherent cohomology

sheaves.

LEMMA 5.3. Let N Ð 2 D+
dqc

�
Mod (ÿ)

�
. Then N Ð has finite injective dimension on

QCo disc(ÿ) iff it is isomorphic to a bounded complex of injectives in QCo disc(ÿ).

PROOF. Because of Theorem 4.8 and Corollary 4.3, the proof is just like [RD]
Proposition I.7.6.

In light of this, we can, when convenient, assume the dualizing complex R Ð is a
bounded complex of discrete quasi-coherent injectives.

PROPOSITION 5.4. Let R Ð be a dualizing complex on ÿ. Then for any M Ð 2

Db
c

�
Mod (ÿ)

�
the morphism of adjunction

M Ð
! RHomÿ

�
RHomÿ(M Ð

ÒR Ð)ÒR Ð
�

is an isomorphism.
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PROOF. We can assume ÿ is affine, and so replace M Ð with a complex of coherent
sheaves. By “way-out” arguments (cf. [RD] Section I.7) we reduce to the case M Ð = Oÿ,
to which property (ii) applies.

LEMMA 5.5. Suppose R Ð is a dualizing complex on ÿ. Let I be any defining ideal of
ÿ, and let X0 be the scheme (ÿÒOÿÛI ). Then RHomÿ(OX0 ÒR Ð) is a dualizing complex
on X0.

PROOF. We can assume R Ð is a bounded complex of injectives in QCo disc(ÿ), so
R Ð

0 := Homÿ(OX0 ÒR Ð) is a complex of injectives on X0. Property (iii) implies that R Ð
0

has coherent cohomology sheaves. Now

Hom X0 (R Ð
0 ÒR Ð

0 ) ≤ Hom ÿ
�

Homÿ(OX0 ÒR Ð)ÒR Ð
�
≤ OX0 Ò

so R Ð
0 is dualizing.

THEOREM 5.6 (UNIQUENESS). Suppose R Ð and R̃ Ð are dualizing complexes and ÿ
is connected. Then R̃ Ð ≤ R Ð 
 L[n] in D

�
Mod (ÿ)

�
, for some invertible sheaf L and

integer n.

PROOF. We can assume both R Ð and R̃ Ð are bounded complexes of injectives in
QCo disc(ÿ). Choose a defining ideal I and let Xm be the scheme (ÿÒOÿÛI m+1). Define
a complex R Ð

m := Homÿ(OXm ÒR Ð) and likewise R̃ Ð
m . These are dualizing complexes on

Xm, so by [RD] Theorem IV.3.1 there is an isomorphism

ûm: R Ð
m 
 Lm[nm] ! R̃ Ð

m

in D
�
Mod (Xm)

�
, for some invertible sheaf Lm and integer nm. Writing M Ð

m :=

Hom Xm (R Ð
m Ò R̃ Ð

m ) we have M Ð
m ≤ Lm[nm] in D

�
Mod (Xm)

�
. Now

M Ð
m ≤ Hom Xm+1(Hom Xm+1 (OXm ÒR Ð

m+1)ÒR Ð
m+1)) 
 Lm+1[nm+1]

as complexes of OXm+1-modules, so by the dualizing property of R Ð
m+1 we deduce an

isomorphism M Ð
m ≤ OXm 
 Lm+1[nm+1] in D

�
Mod (Xm+1)

�
. We conclude that nm = nm+1

and Lm ≤ OXm 
 Lm+1. Set n := nm and L := lim m Lm.
Next, since R q

m ² R q
m+1 and R̃ q

m+1 is injective in Mod (Xm+1), we see that M q
m+1 ! M q

m

is surjective for all qÒm. Furthermore, HqM Ð
m+1 ! HqM Ð

m is also surjective, since
HqM Ð

m = Lm or 0. Define

M Ð := Hom ÿ(R Ð
Ò R̃ Ð) ≤ lim

 m
M Ð

m

According to [Ha] Corollary I.4.3 and Proposition I.4.4 it follows that HqM Ð =
lim m HqM Ð

m. This implies that Homÿ(R Ð 
 L[n]Ò R̃ Ð)) ≤ Oÿ in D
�
Mod (ÿ)

�
, so by

Corollary 4.3
H0Hom ÿ(R Ð


 L[n]Ò R̃ Ð) ≤ Γ(ÿÒOÿ)

Choose a homomorphism of complexes û: R Ð 
 L[n] ! R̃ Ð corresponding to 1 2

Γ(ÿÒOÿ). Backtracking we see that for every m, û induces a homomorphism R Ð
m 


L[n] ! R̃ Ð
m which represents ûm in D

�
Mod (Xm)

�
. So û = limm! ûm is a quasi-

isomorphism.
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PROBLEM 5.7. Let R Ð be a dualizing complex. Is it true that the following conditions
on N Ð 2 Db

dqc

�
Mod (ÿ)

�
are equivalent?

(i) N Ð ≤ RHom Ðÿ(M ÐÒR Ð) for some M Ð 2 Db
c

�
Mod (ÿ)

�
.

(ii) For any M discrete coherent, RHom Ðÿ(M ÒN Ð) 2 Db
c

�
Mod (ÿ)

�
.

Recall that for a point x 2 ÿ we denote by J(x) an injective hull of k(x) over OÿÒx,
and J (x) is the corresponding quasi-coherent sheaf.

LEMMA 5.8. Suppose R Ð is a dualizing complex on ÿ. For any x 2 ÿ there is a
unique integer d(x) st

Hq
xR Ð

≤

²
J(x) if q = d(x)
0 otherwise.

Furthermore d is a codimension function.

PROOF. We can assume R Ð is a bounded complex of injectives in QCo disc(ÿ). Then
as seen before Hq

xR Ð = HqΓxR Ð. Define schemes Xm and complexes R Ð
m like in the proof

of Theorem 5.6. Since R Ð
m is dualizing it determines a codimension function dm on Xm

(cf. [RD] Chapter V Section 7). But the arguments used before show that dm = dm+1.
Finally HqΓxR Ð = limm! HqΓxR Ð

m , and HqΓxR Ð
m ≤ Jm(x), an injective hull of k(x) over

OXmÒx.

DEFINITION 5.9. A residual complex on the noetherian formal schemeÿ is a dualizing
complex K Ð which is isomorphic, as Oÿ-module, to

L
x2ÿ J (x).

PROPOSITION 5.10. Say R Ð is a dualizing complex on ÿ. Let d be the codimen-
sion function above, and let E be the associated Cousin functor. Then R Ð ≤ ER Ð in
D
�
Mod (ÿ)

�
, and ER Ð is a residual complex.

PROOF. By Lemma 5.8 R Ð is a Cohen-Macaulay complex, in the sense of [RD]
p. 247, Definition. So there exists some isomorphism R Ð ! ER Ð in Db

�
Mod (ÿ)

�
.

To conclude this section we consider some situations where a dualizing complex
exists. If f :ÿ ! „ is a morphism then („Ò fŁOÿ) is a ringed space, and f̄ :ÿ ! („Ò fŁOÿ)
is a morphism of ringed spaces.

PROPOSITION 5.11. Let f :ÿ ! „ be a formally finite morphism, and assume K Ð is a
residual complex on „. Then f̄ ŁHom „(fŁOÿÒK Ð) is a residual complex on ÿ.

PROOF. Let fn: Xn ! Yn be morphisms as in Lemma 1.13, and let K Ð
n :=

Hom „(OYn ÒK Ð). Since fn is a finite morphism, f̄ Łn Hom Yn(fnŁOXn ÒK Ð
n ) is a residual complex

on Xn. As in the proof of Theorem 5.6,

f̄ ŁHom „(fŁOÿÒK Ð) ≤ lim
n!

f̄ Łn Hom Yn(fnŁOXn ÒK Ð
n )

is residual.
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EXAMPLE 5.12. Suppose X0 ² X is closed,ÿ = XÛX0
and g:ÿ ! X is the completion

morphism. Let K Ð be a residual complex on X. In this case g = ḡ, and by Proposition 4.6

gŁHom X(gŁOÿÒK Ð) ≤ lim
n!

gŁK Ð
n ≤ gŁΓX0

K Ð
≤ ΓdiscgŁK Ð

is a residual complex. We see that if R Ð is any dualizing complex on X then ERΓdiscgŁR Ð

is dualizing on ÿ.

We call a formal schemeÿ regular of all its local rings OÿÒx are regular.

LEMMA 5.13. Suppose ÿ is a regular formal scheme. Then d(x) := dim OÿÒx is a
bounded codimension function on ÿ.

PROOF. Let · = Spf A ² ÿ be a connected affine open set. If x 2 · is the point
corresponding to an open prime ideal ƒ, then Âƒ ≤ ÔÿÒx. Therefore Aƒ is a regular local
ring. Now in the adic noetherian ring A any maximal ideal ¡ is open. Hence, by [Ma]
Section 18 Lemma 5(III), A is a regular ring, of finite global dimension equal to its Krull
dimension.

Now let U := Spec A, so as a topological space, · ² U is the closed set defined by
any defining ideal I ² A. Since U is a regular scheme, OU is a dualizing complex on
it. The codimension function d0 corresponding to OU satisfies d0(y) = dim OUÒy. Thus
0 � d0(y) � dim U. But clearly dj· = d0j·. By covering ÿ with finitely many such ·
this implies that d is a bounded codimension function.

THEOREM 5.14. Supposeÿ is a regular formal scheme. Then RΓdiscOÿ is a dualizing
complex on ÿ.

PROOF. By the proof of Theorem 4.13 and known properties of regular local rings,
for any x 2 ÿ

Hq
xRΓdiscOÿ ≤ Hq

¡x
ÔÿÒx ≤

²
J(x) if q = d(x)
0 otherwise

where ¡x ² ÔÿÒx is the maximal ideal, and J(x) is an injective hull of k(x). Since
d is bounded it follows that K Ð := ERΓdiscOÿ is a bounded complex of injectives in
QCo disc(ÿ). Like in the proof of Proposition 5.10, RΓdiscOÿ ≤ K Ð in D

�
Mod (ÿ)

�
.

To complete the proof it suffices to show that for any affine open set · = Spf A ² ÿ

the complex K Ðj· is residual on ·. Let U := Spec A and let g:· ! U be the canonical
morphism. Let U0 ² U be the closed set g(·), so that · ≤ UÛU0

. Define K Ð
U := EOU,

which is a residual complex on U. Then according to Proposition 4.6

RΓdiscO· ≤ gŁRΓU0
OU ≤ gŁΓU0

K Ð
U

As in Example 5.12 this is a dualizing complex, so K Ðj· ≤ ERΓdiscO· is a residual
complex.

REMARK 5.15. According to [RD] Theorem VI.3.1, if f : X ! Y is a finite type mor-
phism between finite dimensional noetherian schemes, and if K Ð is a residual complex
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on Y, then there is a residual complex f4K Ð on X. Now suppose f :ÿ ! „ is a fft
morphism and fn: Xn ! Yn are like in Lemma 1.13. In the same fashion as in Proposi-
tion 5.11 we set f4K Ð := limn! f4n K Ð

n . This is a residual complex on ÿ. If f is formally
proper then Trf = limn! Trfn induces a duality

RfŁM Ð
! RHom „

�
RfŁRHomÿ(M Ð

Ò f4K Ð)ÒK Ð
�

for every M Ð 2 Db
�
Coh (ÿ)

�
. The proofs are standard, given the results of this section.

6. Construction of the complex K Ð
XÛS. In this section we work over a regular

noetherian base scheme S. We construct the relative residue complex K Ð
XÛS on any finite

type S-scheme X. The construction is explicit and does not rely on [RD].
Let AÒB be complete local rings, with maximal ideals ¡Ò¬. Recall that a local

homomorphism û: A ! B is called residually finitely generated if the field extension
AÛ¡ ! BÛ¬ is finitely generated. Denote by Mod disc(A) the category of ¡-torsion
A-modules (equivalently, modules with 0-dimensional support).

Suppose A[t] = A[t1Ò    Ò tn] is a polynomial algebra and ƒ ² A[t] is some maximal
ideal. Then A ! B = dA[t]ƒ is formally smooth of relative dimension n and residually
finite. Let bi 2 BÛ¬ be the image of ti and q̄i 2 (AÛ¡)[b1Ò    Ò bi�1][ti] the monic
irreducible polynomial of bi, of degree di. Choose a monic lifting qi 2 A[t1Ò    Ò ti]. Then
for a discrete A-module M one has

Hn
ƒ(Ω̂

n
BÛA 
A M) ≤

M
1�il

M
0�jlÚdl

tj1
1 Ð Ð Ð tjnn dt1 Ð Ð Ð dtn

qi1
1 Ð Ð Ð qin

n

M

As in [Hg1] Section 7 define the Tate residue

rest1ÒÒtn;AÒB: Hn
ƒ(Ω̂

n
BÛA 
A M) ! M(6.1)

by the rule
tj1
1 Ð Ð Ð tjnn dt1 Ð Ð Ð dtn

qi1
1 Ð Ð Ð qin

n

 m 7!

²
m if il = 1, jl = dl � 1
0 otherwise

(cf. [Ta]). Observe that any residually finite homomorphism A ! C factors into some
A ! B = dA[t]ƒ ! C.

THEOREM 6.2 (HUANG). Consider the category Loc of complete noetherian local
rings and residually finitely generated local homomorphisms. Then:

1. For any morphism û: A ! B in Loc there is a functor

û#: Mod disc(A) ! Mod disc(B)

For composable morphisms A
û
! B

†
! C there is an isomorphism (†û)# ≤ †#û#, and

(1A)# ≤ 1Mod disc(A). These data form a pseudofunctor on Loc (cf. [Hg1] Definition 4.1).
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2. If û: A ! B is formally smooth of relative dimension q, and n = rank Ω̂1
BÛA, then

there is an isomorphism, functorial in M 2 Mod disc(A),

û#M ≤ Hq
¬(Ω̂n

BÛA 
A M)

3. If û: A ! B is residually finite then there is an A-linear homomorphism, functorial
in M 2 Mod disc(A),

Trû:û#M ! MÒ

which induces an isomorphismû#M ≤ Homcont
A (BÒM). For composable homomorphisms

A
û
! B

†
! C one has Tr†û = Trû Tr† under the isomorphism of part 1.

4. If B = dA[t]ƒ then Trû = rest1ÒÒtn;AÒB under the isomorphism of part 2.

PROOF. Parts 1 and 2 are [Hg1] Theorem 6.12. Parts 3 and 4 follow from [Hg1]
Section 7.

DEFINITION 6.3. Suppose L is a regular local ring of dimension q, with maximal ideal
∆. Given a homomorphism û: L ! A in Loc , define

K (AÛL) := û#Hq
∆LÒ

the dual module of A relative to L.

Since Hq
∆L is an injective hull of the field LÛ∆, it follows that K (AÛL) is an injective

hull of AÛ¡ (cf. [Hg1] Corollary 3.10).

COROLLARY 6.4. If †: A ! B is a residually finite homomorphism, then there is an
A-linear homomorphism

Tr† = TrBÛA: K (BÛL) ! K (AÛL)

Given another such homomorphism B ! C, one has TrCÛA = TrBÛA TrCÛB.

REMARK 6.5. One can show that when L is a perfect field, there is a functorial
isomorphism between K (AÛL) = û#L above and the dual module K (A) of [Ye2], which
was defined via Beilinson completion algebras.

Suppose ô:ÿ ! S is a formally finite type (fft) formally smooth morphism.
According to Proposition 1.11, ÿ is a regular formal scheme. When we write n =
rank Ω̂1

ÿÛS we mean that n is a locally constant function n:ÿ ! N.

LEMMA 6.6. Given a fft morphism ô:ÿ ! S and a point x 2 ÿ, let s := ô(x), and
define

dS(x) := dim ÔSÒs � tr degk(s) k(x)

Then:
1. dS is a codimension function.
2. If ô is formally smooth then

dS(x) = dim ÔÿÒx � rank Ω̂1
ÿÛS
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PROOF. We shall prove 2 first. Let L := ÔSÒs and A := ÔÿÒx. By Proposition 1.11,

n := rank Ω̂1
AÛL = dim A� dim L + tr degLÛ∆ AÛ¡

We see that dS is the codimension function associated with the dualizing complex
RΓdiscOÿ[n] (see Theorem 5.14).

As for 1, the property of being a codimension function is local. But locally there is
always a closed immersion ÿ ² „ with „ ! S formally smooth.

We shall use the codimension function dS by default.

DEFINITION 6.7. Let ô:ÿ ! S be a formally finite type morphism. Given a point
x 2 ÿ, consider û: L = ÔSÒô(x) ! A = ÔÿÒx, which is a morphism in Loc . Since L is a
regular local ring, the dual module K (AÛL) is defined. Let KÿÛS(x) be the quasi-coherent

sheaf which is constant on fxg with group of sections K (AÛL), and define

K q
ÿÛS :=

M
dS(x)=q

KÿÛS(x)

In Theorem 6.14 we are going to prove that on the graded sheaf K Ð
XÛS there is a

canonical coboundary operator é which makes it into residual complex.

DEFINITION 6.8. Let f :ÿ ! „ be a morphism of formal schemes over S. Define a
homomorphism of graded O„-modules Trf : fŁK Ð

ÿÛS ! K Ð
„ÛS as follows. If x 2 ÿ is

closed in its fiber and y = f (x), then A = Ô„Òy ! B = ÔÿÒx is a residually finite L-algebra
homomorphism. The homomorphism TrBÛA: K (BÛL) ! K (AÛL) of Corollary 6.4 gives
a map of sheaves

Trf : fŁKÿÛS(x) ! K„ÛS(y)

If x is not closed in its fiber, we let Trf vanish on fŁKÿÛS(x).

PROPOSITION 6.9. 1. Trf is functorial: if g:„ ! ‰ is another morphism, then Trgf =
Trg Trf .

2. If f is formally finite (see Definition 1.18), then Trf induces an isomorphism of
graded sheaves

fŁK Ð
ÿÛS ≤ Hom „(fŁOÿÒK Ð

„ÛS)

3. If g:· ! ÿ is an open immersion, then there is a natural isomorphism K Ð
·ÛS ≤

gŁK Ð
ÿÛS.

PROOF. Part 3 is trivial. Part 1 is a consequence of Corollary 6.4. As for part 2, f is
an affine morphism, and fibers of f are all finite, so all points of X are closed in their
fibers.

Suppose a = (a1Ò    Ò an) is a sequence of elements in the noetherian ring A. Let us
write K̃Ð1(a) for the subcomplex K½1

1 (a), so we get an exact sequence

0 ! K̃Ð1(a) ! KÐ1(a) ! A ! 0(6.10)
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For any MÐ 2 D+
�
Mod (A)

�
let M Ð be the complex of sheaves OX 
MÐ on X := Spec A,

and let U ² X be the open set
S
fai 6= 0g. Then

RΓ(UÒM Ð) ≤ K̃Ð1(a)[1] 
 MÐ

in D
�
Mod (A)

�
. In fact K̃Ð1(a)
OX is a shift by 1 of the Čech complex corresponding to

the open cover of U.

LEMMA 6.11. Let A be an adic noetherian ring and MÐ 2 D+
�
Mod (A)

�
. Define

· := Spf A and M Ð := O· 
 MÐ.
1. Let x 2 · with corresponding open prime ideal ƒ ² A. Suppose the sequence a

generates ƒ. Then
RΓxRΓdiscM Ð

≤ RΓƒMÐƒ ≤ KÐ1(a) 
MÐƒ

in D+
�
Mod (Aƒ)

�
.

2. Suppose y 2 · is an immediate specialization of x, and its ideal ≈ has generators
aÒ b. Then

RΓxRΓdiscM Ð ≤ KÐ1(a) 
 K̃Ð1(b)[1] 
 MÐ≈

in D+
�
Mod (A≈)

�
.

3. Assume d is a codimension function on·. Then in the Cousin complex ERΓdiscM Ð

the map
Hd(x)

x RΓdiscM Ð
! Hd(y)

y RΓdiscM Ð

is given by applying Hd(y) to
�
KÐ1(a) 
 K̃Ð1(b) ! KÐ1(aÒ b)

�

 MÐ≈

PROOF. Part 1 follows immediately from formula (4.4). Parts 2 and 3 are true because
Spec(AÛƒ)≈ = fƒÒ ≈g.

As a warm up for Theorem 6.14, here is:

PROPOSITION 6.12. If ô:ÿ ! S is formally smooth, with n = rank Ω̂1
ÿÛS, then there is

a canonical isomorphism of graded sheaves

K Ð
ÿÛS ≤ ERΓdiscΩ̂n

ÿÛS[n]

This makes K Ð
ÿÛS into a residual complex.

PROOF. Take any point x, and with the notation of Definition 6.7 let p := dim L and
q := dim A. Then by Lemma 6.11 part 1 and [Hg1] Proposition 2.6 we have a canonical
isomorphism

Hd(x)
x RΓdiscΩ̂n

ÿÛS[n] ≤ Hq
¡Ω̂n

AÛL ≤ Hq�p
¡ (Ω̂n

AÛL 
L Hp
∆L) ≤ K (AÛL)

According to Theorem 5.14 and Proposition 5.10, ERΓdiscΩ̂n
ÿÛS[n] is a residual complex.

In particular taking ÿ = S we get K Ð
SÛS = EOS.

LEMMA 6.13. Suppose X ² ÿ and X ² „ are sfe’s and f :ÿ ! „ is a morphism of
embeddings. Then Trf : K Ð

ÿ ! K Ð
„ is a homomorphism of complexes.
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PROOF. Factoring f through (ÿ ðS „)ÛX we can assume that f is either a closed
immersion, or that it is formally smooth. At any rate f is an affine morphism, so we can
take ÿ = Spf B, „ = Spf A and S = Spec L. By Theorem 2.6 we can suppose one of the
following holds: (i) B ≤ A[[t]] for a sequence of indeterminates t = (t1Ò    Ò tl), and
A ! B is the inclusion; or (ii) A ≤ B[[t]] and A ! B is the projection modulo t. We
shall treat each case separately.

(i) Choose generators a for a defining ideal of A. Let m := rank Ω̂1
AÛL and

n := rank Ω̂1
BÛL, so n = m + l. Define an A-linear map ö: KÐ1(t) 
 Ω̂l

BÛA[l] ! A by

ö(t(�1ÒÒ�1)dt) = 1 and ö(tidt) = 0 if i 6= (�1Ò    Ò �1). Extend ö linearly to

ö: KÐ1(aÒ t) 
 Ω̂n
BÛL[n] ! KÐ1(a) 
 Ω̂m

AÛL[m]

This ö sheafifies to give a map of complexes in Ab (X)

ö̃: KÐ1(aÒ t)
 Ω̂n
ÿÛS[n] ! KÐ1(a) 
 Ω̂m

„ÛS[m]

By Lemma 6.11 and [Hg1] Section 5, for any point x 2 X, Hd(x)
x (ö̃) recovers Trf :

KÿÛS(x) ! K„ÛS(x). Thus Trf = E(ö̃) is a homomorphism of complexes.
(ii) Now l = m� n. Take a to be generators of a defining ideal of B. Define a B-linear

map ö0: B ! KÐ1(t) 
 Ω̂l
AÛL[l] by ö0(1) = t(�1ÒÒ�1)dt. Extend ö linearly to

ö0: KÐ1(a) 
 Ω̂n
BÛL[n] ! KÐ1(aÒ t) 
 Ω̂m

AÛL[m]

Again this extends to a map of complexes of sheaves ö̃0 in Ab (X), and checking punctually
we see that Trf = E(ö̃0).

THEOREM 6.14. Suppose X ! S is a finite type morphism. There is a unique operator
é: K q

XÛS ! K q+1
XÛS, satisfying the following local condition:

(LE) Suppose U ² X is an open subset, and U ² · is a smooth formal em-
bedding. By Proposition 6.9 there is an inclusion of graded OU-modules
K Ð

XÛSjU ² K Ð
·ÛS. Then éjU is compatible with the coboundary operator

on K Ð
·ÛS coming from Proposition 6.12.

Moreover (K Ð
XÛSÒ é) is a residual complex on X.

PROOF. Define éjU using (LE). According to Lemma 6.13, éjU is independentof·, so
it glues. We get a bounded complex of quasi-coherent injectives on X. By Proposition 6.12
it follows that it is residual.

REMARK 6.15. This construction of K Ð
XÛS actually allows a computation of the oper-

ator é, given the data of a local embedding. The formula is in part 3 of Lemma 6.11, with
MÐ = Ω̂n

AÛL[n]. The formula for changing the embedding can be extracted from the proof

of Lemma 6.13. Of course when rank Ω̂1
ÿÛS is high these computations can be nasty.
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REMARK 6.16. The recent papers [Hg2], [Hg3] and [LS2] also use the local theory
of [Hg1] as a starting point for explicit constructions of Grothendieck Duality. Their
constructions are more general than ours: Huang constructs f !M Ð for a finite type
morphism f : X ! Y and a residual complex complex M Ð; and Lipman-Sastry even
allow M Ð to be any Cousin complex.

7. The trace for finite morphisms. In this section we prove that Trf is a homo-
morphism of complexes when f is a finite morphism. The proof is by a self contained
calculation involving Koszul complexes and a comparison of global and local Tate
residue maps. In Theorem 7.10 we compare the complex K Ð

XÛS to the sheaf of regular
differentials of Kunz-Waldi. Throughout S is a regular noetherian scheme.

THEOREM 7.1. Suppose f : X ! Y is finite. Then Trf : fŁK Ð
XÛS ! K Ð

YÛS is a homomor-
phism of complexes.

The proof appears after some preparatory work, based on and inspired by [Hg1]
Section 7.

REMARK 7.2. In Section 8 we prove a much stronger result, namely Corollary 8.3,
but its proof is indirect and relies on the Residue Theorem of [RD] Chapter VII. We have
decided to include Theorem 7.1 because of its direct algebraic proof.

Let A be an adic noetherian ring with defining ideal µ. Suppose p 2 A[t] is a monic
polynomial of degree e Ù 0. Define an A-algebra

B := lim
 i

A[t]ÛA[t] Ð pi
(7.3)

Let ∂ := Bµ + Bp; then B ≤ lim i BÛ∂i, so that B is an adic ring with the ∂-adic
topology. The homomorphismû: A ! B is fft and formally smooth, and Ω̂1

BÛA = B Ðdt.
Furthermore p 2 B is a non-zero-divisor, and by long division we obtain an isomorphism

H1
(p)B = H1

�
KÐ1(p) 
 B

�
≤
M
1�i

M
0� jÚe

A Ð
tj

pi
(7.4)

Define an A-linear homomorphism ResBÛA: H1
(p)Ω̂1

BÛA ! A by

ResBÛA

� tjdt
pi

�
:=
²

1 if i = 1, j = e � 1
0 otherwise.

We call ResBÛA the global Tate residue. It gives rise to a map of complexes in Mod (A):

ResBÛA: KÐ1(p)[1] 
 Ω̂1
BÛA ! A(7.5)

Note that both the algebra B and the map ResBÛA depend on t and p.
Suppose ≈ ² B is an open prime ideal and ƒ = û�1(≈) ² A. Then the local homo-

morphism û≈: Âƒ ! B̂≈ is formally smooth of relative dimension 1 and residually finite.
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Let ≈̃ := ≈ \ Âƒ[t], and denote by ≈̄ the image of ≈̃ in k(ƒ)[t], so k(ƒ)[t]Û≈̄ = k(≈). For a
polynomial q 2 Âƒ[t] let q̄ be its image in k(ƒ)[t]. Suppose q satisfies:

q is monic, and the ideal (q̄) ² k(ƒ)[t] is ≈̄-primary.(7.6)

Then B̂≈ Ð ≈ =
q

B̂≈ Ð (ƒÒ q) ² B̂≈, and

B̂≈ ≤ lim
 i

Âƒ[t]Û≈̃
i
≤ lim
 i

Âƒ[t]ÛÂƒ[t] Ð qi


Hence q is a non-zero-divisor in B̂≈ and B̂≈ÛB̂≈ Ð q is a free Âƒ-module with basis
1Ò tÒ    Ò td�1, where d = deg q. We see that a decomposition like (7.4) exists for H1

(q)B̂≈.

Suppose we are given a discrete Âƒ-module M. Then one gets

H1
≈(Ω̂1

B̂≈ÛÂƒ

Âƒ

M) ≤ (H1
(q)Ω̂1

B̂≈ÛÂƒ
)
Âƒ

M ≤
M
1�i

M
0� jÚd

tjdt
qi


M

(cf. [Hg1] pp. 41–42). Define the local Tate residue map

ResB̂≈ÛÂƒ
: H1
≈(Ω̂1

B̂≈ÛÂƒ

Âƒ

M) ! M

by

ResB̂≈ÛÂƒ

� tjdt 
m
qi

�
:=
²

m if i = 1, j = d � 1
0 otherwise.

Clearly ResB̂≈ÛÂƒ
is functorial in M, and it depends on t.

LEMMA 7.7. ResB̂≈ÛÂƒ
is independent of q. It coincides with the residue map rest;B̂≈ÛÂƒ

of (6.1), i.e. of [Hg1] Definition 8.1.

PROOF. Suppose the polynomials q1Ò q2 2 Âƒ[t] satisfy (7.6). Then so does q3 :=
q1q2. Let deg qh = dh, and let ResB̂≈ÛÂƒ;qh

be the residue map determined by qh. Pick any

1 � i and 0 � j Ú d1, and write qi
2 =

Pid2
l=0 altl, so aid2 = 1. By the rules for manipulating

generalized fractions (cf. [Hg1] Section 1) we have

ResB̂≈ÛÂƒ;q3

� tjdt 
m
qi

1

�
=

id2X
l=0

ResB̂≈ÛÂƒ;q3

� tl+jdt 
 alm
qi

3

�
(7.8)

If i ½ 2 or j � d1 � 2 one has l + j � id3 � 2, and therefore each summand of the right
side of (7.8) is 0. When i = 1 and j = d1 � 1 the only possible nonzero residue there is
for l = d2, and this residue is m. We conclude that ResB̂≈ÛÂƒ;q3

= ResB̂≈ÛÂƒ;q1
. Clearly also

ResB̂≈ÛÂƒ;q3
= ResB̂≈ÛÂƒ;q2

.
If we take q such that (q̄) = ≈̄, this is by definition the residue map of (6.1).

LEMMA 7.9. Let F be the set of prime ideals in BÛ(p) lying over ƒ. Then for any
M 2 Mod disc(Âƒ) one has

(H1
(p)Ω̂1

BÛA) 
A M ≤
M
≈02F

H1
≈0(Ω̂1

B̂≈0ÛÂƒ

Âƒ

M)Ò

and wrt this isomorphism,

ResBÛA
1 =
X
≈02F

ResB̂≈0ÛÂƒ

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PROOF. The isomorphism of modules is not hard to see. Let p̄ =
Q
≈02F p̄≈0 be the

primary decomposition in k(ƒ)[t] (all the p̄≈0 monic). By Hensel’s Lemma this decompo-
sition lifts to p =

Q
≈02F p≈0 in Âƒ[t]. Since each polynomial p≈0 satisfies condition (7.6)

for the prime ideal ≈0, we can use it to calculate ResB̂≈0ÛÂƒ
.

PROOF OF THEOREM 7.1. This claim is local on Y, so we may assume X, Y and S are
affine, say X = Spec B̄, Y = Spec Ā and S = Spec L. By the functoriality of Tr we can
assume B̄ = Ā[b] for some element b 2 B̄. It will suffice to find suitable sfe’s X ² ÿ and
Y ² „ with a morphism f̂ :ÿ ! „ extending f , and to check that Trf̂ : f̂ŁK Ð

ÿÛS ! K Ð
„ÛS

commutes with é.
Pick any sfe Y ² „ = Spf A, so µ := Ker(A ! Ā) is a defining ideal. Let A[t] ! B̄

be the homomorphism t 7! b. Choose any monic polynomial p(t) 2 A[t] st p(b) = 0,
and define the adic ring B as in formula (7.3). So ÿ := Spf B is the sfe of X we want.

Let (y0Ò y1) be an immediate specialization pair in Y, and let Fi := f�1(yi) ² X. Let
ƒ0 ² ƒ1 ² A be the prime ideals corresponding to (y0Ò y1). Pick a sequence of generators
a for ƒ0, and generators (aÒ a0) for ƒ1. Let m := rank Ω̂1

AÛL.
Consider the commutative diagram of complexes

KÐ1(aÒ p)[1] 
 K̃Ð1(a0)
 (Ω̂m+1
BÛL)ƒ1

ResBÛA
1
��! KÐ1(a)
 K̃Ð1(a0) 
 (Ω̂m

AÛL)ƒ1???y
???y

KÐ1(aÒ a0Ò p)[1] 
 (Ω̂m+1
BÛL)ƒ1

ResBÛA
1
��! KÐ1(aÒ a0) 
 (Ω̂m

AÛL)ƒ1

gotten from tensoring the map ResBÛA of (7.5) with Aƒ1 
 Ω̂m
AÛL and the various KÐ1.

Applying Hi to this diagram, where i := dim Âƒ1 , and using Lemmas 6.11 and 7.9 we
obtain a commutative diagram

L
≈02F0 H1

≈0
(Ω̂1

B̂≈0
ÛÂƒ0


 Hi�1
ƒ0

Ω̂m
Âƒ0ÛL

)
P

Res
��! Hi�1

ƒ0
Ω̂m

Âƒ0ÛL???y
???y

L
≈12F1 H1

≈1
(Ω̂1

B̂≈1
ÛÂƒ1


 Hi
ƒ1

Ω̂m
Âƒ1ÛL

)
P

Res
��! Hi

ƒ1
Ω̂m

Âƒ1ÛL


In this diagram Res = ResB̂≈0ÛÂƒ0
etc. Using the definitions this is the same as

L
x02F0 fŁKÿÛS(x0)

Trf
��! K„ÛS(y0)

é

???y é

???y
L

x12F1 fŁKÿÛS(x1)
Trf

��! K„ÛS(y1)

According to [KW], if ô: X ! S is equidimensional of dimension n and generically
smooth, and X is integral, then the sheaf of regular differentials °̃n

XÛS (relative to the
DGA OS) exists. It is a coherent subsheaf of Ωn

k(X)Ûk(S).
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THEOREM 7.10. Supposeô: X ! S is equidimensionalof dimension n and generically
smooth, and X is integral. Then K �n

XÛS = Ωn
k(X)Ûk(S), and

°̃
n
XÛS = H�nK Ð

XÛS

First we need:

LEMMA 7.11. Suppose L0 ! A0 ! B0 are finitely generated field extensions,
with L0 ! A0 and L0 ! B0 separable, A0 ! B0 finite, and tr degL0

A0 = n. Then
K (A0ÛL0) = Ωn

A0ÛL0
, K (B0ÛL0) = Ωn

B0ÛL0
, and TrB0ÛA0

: K (B0ÛL0) ! K (A0ÛL0) coin-

cides with õL0

B0ÛA0
: Ωn

B0ÛL0
! Ωn

A0ÛL0
of [Ku] Section 16.

PROOF. Since L0 ! A0 is formally smooth, we get K (A0ÛL0) = Ωn
A0ÛL0

. The same for
B0. Consider the trivial DGA L0. Then the universal B0-extension of ΩÐA0ÛL0

is ΩÐB0ÛL0
, so

õ
L0

B0ÛA0
makes sense. To check that õL0

B0ÛA0
= TrB0ÛA0

we may reduce to the cases A0 ! B0

separable, or purely inseparable of prime degree, and then use the properties of the trace.

PROOF OF THE THEOREM. Given any point x 2 X there is an open neighborhood U of
x which admits a factorization ôjU = hgf , with f : U ! Y an open immersion; g: Y ! Z
finite; and h: Z ! S smooth of relative dimension n (in fact one can take Z open in
AnðS). This follows from quasi-normalization ([Ku] Theorem B20) and Zariski’s Main
Theorem ([EGA] IV 8.12.3; cf. [Ku] Theorem B16). We can also assume YÒZÒ S are
affine, say Y = Spec B, Z = Spec A and S = Spec L. Let us write °̃n

BÛL := Γ(YÒ °̃n
YÛS) and

K Ð
BÛL := Γ(YÒK Ð

YÛS). Also let us write B0 := k(Y), A0 := k(Z) and L0 := k(S).
By [KW] Section 4,

°̃
n
BÛL = få 2 Ωn

B0ÛL0
j õ

L0

B0ÛA0
(bå) 2 Ωn

AÛL for all b 2 Bg

One has
K �n

BÛL = K (B0ÛL0) = Ωn
A0ÛL0

and the same for A. According to Proposition 6.12 there is a quasi-isomorphism
Ωn

AÛL[n] ! K Ð
AÛL. From the commutative diagram

0 ��! H�nK Ð
BÛL ��! K �n

BÛL
é

��! K �n+1
BÛL???y

???y
???yTrg

???yTrg

0 ��! Ωn
AÛL ��! K �n

AÛL
é

��! K �n+1
AÛL

and the isomorphism
K �n+1

BÛL ≤ Hom A(BÒK �n+1
AÛL )

induced by Trg we conclude that °̃n
BÛL = H�nK Ð

BÛL. Since °̃n
YÛS and H�nK Ð

YÛS are coherent
sheaves and f : U ! Y is an open immersion, this shows that °̃UÛS = H�nK Ð

UÛS.

COROLLARY 7.12. If X is a Cohen-Macaulay scheme then the sequence

0 ! °̃
n
XÛS ! K �n

XÛS ! Ð Ð Ð ! K m
XÛS ! 0

(m = dim S) is exact.
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PROOF. X is Cohen-Macaulay iff any dualizing complex has a single nonzero coho-
mology sheaf.

EXAMPLE 7.13. Suppose X is an (n + 1)-dimensional integral scheme and ô: X !

SpecZ is a finite type dominant morphism (i.e. X has mixed characteristics). Then ô is
flat, equidimensional of dimension n and generically smooth. So

°̃
n
XÛZ = H�nK Ð

XÛZ ² Ωn
k(X)ÛQ

REMARK 7.14. In the situation of Theorem 7.10 there is a homomorphism

CX: Ωn
XÛS ! K �n

XÛS

called the fundamental class of XÛS. According to [KW], when ô is flat one has
CX(Ωn

XÛS) ² °̃n
XÛS; so CX: Ωn

XÛS[n] ! K Ð
XÛS is a homomorphism of complexes.

REMARK 7.15. In [LS2] Theorem 11.2 we find a stronger statement than our Theo-
rem 7.10: S is only required to be an excellent equidimensional scheme without embedded
points, satisfying Serre’s condition S2; and ô is finite type, equidimensional and generi-
cally smooth. Moreover, for ô proper, the trace is compared to the integral of [HS] (cf.
Remark 8.4). The price of this generality is that the proofs in [LS2] are not self-contained
but rely on rather complicated results from other papers.

8. The isomorphism K Ð
XÛS ≤ ô!OS. In this section we describe the canonical

isomorphism between the complex K Ð
XÛS constructed in Section 6, and the twisted

inverse image ô!OS of [RD]. Recall that for residual complexes there is an inverse image
ô4, and ô4K Ð

SÛS = Eô!OS, where E is the Cousin functor corresponding to the dualizing

complex ô!OS. For an S-morphism f : X ! Y denote by TrRD
f the homomorphism of

graded sheaves
TrRD

f : fŁô4X K Ð
SÛS ≤ fŁf4ô4Y K Ð

SÛS ! ô4Y K Ð
SÛS

of [RD] Section VI.4.

THEOREM 8.1. Let ô: X ! S be a finite type morphism. Then there exists a unique
isomorphism of complexes

êX: K Ð
XÛS ! ô

4K Ð
SÛS

such that for every morphism f : X ! Y the diagram

fŁK Ð
XÛS

Trf
��! K Ð

YÛS

fŁ(êX )

???y êY

???y
fŁô4X K Ð

SÛS

TrRD
f

��! ô4Y K Ð
SÛS

(8.2)

is commutative.

The proof of Theorem 8.1 is given later in this section, after some preparation. Here
is one corollary:
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COROLLARY 8.3. If f : X ! Y is proper then Trf is a homomorphism of complexes,
and for any M Ð 2 D�qc

�
Mod (X)

�
the induced morphism

fŁHom X(M ÐÒK Ð
XÛS) ! Hom Y(RfŁM ÐÒK Ð

YÛS)

is an isomorphism.

PROOF. Use [RD] Theorem VII.2.1 and Corollary VII.3.4.

REMARK 8.4. In [Hg3] and [LS2] the authors prove that in their respective construc-
tions the trace Trf : fŁf !N Ð ! N Ð is a homomorphism of complexes for any proper
morphism f and residual (resp. Cousin) complex N Ð (cf. Remark 6.16).

Let Y = Spec A be an affine noetherian scheme, X := An ð Y = Spec A[t1Ò    Ò tn]
and f : X ! Y the projection. Fix a point x 2 X, and let y := f (x), Z0 := fxgred. Assume
Z0 ! Y is finite.

LEMMA 8.5. There exists an open set U ² Y containing y and a flat finite morphism
g: Y0 ! U st:

(i) g�1(y) is one point, say y0.
(ii) Define X0 := An ð Y0, and let f 0: X0 ! Y0, h: X0 ! X. Then for every point

x0 2 h�1(x) there is some section õx0 : Y0 ! X0 of f 0 with x0 2 õx0 (Y0).

PROOF. Choose any finite normal field extension K of k(y) containing k(x). Define
recursively open sets Ui = Spec Ai ² Y and finite flat morphisms gi: Yi = Spec A0i ! Ui

st g�1
i (y) = fyig and k(yi) ² K, as follows. Start with U0 = Y0 := Y and A00 = A0 := A.

If k(yi) 6= K take some b̄ 2 K � k(yi) and let p̄ 2 k(yi)[t] be the monic irreducible
polynomial of b̄. Choose a monic polynomial p 2 OYiÒyi [t] lifting p̄. There is some open
set Ui+1 = Spec Ai+1 ² Ui st p 2 (A0i 
Ai Ai+1)[t]. Define A0i+1 := (A0i 
Ai Ai+1)[t]Û(p) and
Yi+1 = Spec A0i+1. For i = r this stops, and k(yr) = K.

For every point x0 2 Spec
�
K 
k(y) k(x)

�
and 1 � i � n let āiÒx0 2 k(x0) ≤ k(yr) be the

image of ti, and let aiÒx0 2 OYrÒyr be a lifting. Take an open set U = Spec Ar+1 ² Ur st each
aiÒx0 2 A0 = (A0r 
Ar Ar+1), and define Y0 := Spec A0. So for each x0 the homomorphism
B0 = A0[t] ! A0, ti 7! aiÒx0 gives the desired section õx0 : Y0 ! X0.

Let Zi be the i-th infinitesimal neighborhood of Z0 in X, so fi: Zi ! Y is a finite
morphism. Suppose we are given a quasi-coherent OY-module M which is supported on
fyg. One has

H n
Z0

(Ωn
XÛY 
 f ŁM ) ≤ lim

i!
Extn

X(OZi ÒΩ
n
XÛY 
 f ŁM )

and by [RD] Theorem VI.3.1

Extn
X(OZi ÒΩ

n
XÛY 
 f ŁM ) = H 0f !

i M 

Note that we can also factor fi through Pn ð Y, so fi is projectively embeddable, and by
[RD] Theorem III.10.5 we have a map

TrRD
f : fŁH n

Z0
(Ωn

XÛY 
 f ŁM ) ! M (8.6)
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Now define Â := ÔYÒy and B̂ := ÔXÒx, with¬ ² B̂ the maximal ideal andû = f Ł: Â ! B̂.
Set M := My, which is a discrete Â-module. We then have a natural isomorphism of
Â-modules �

fŁH n
Z0

(Ωn
XÛY 
 f ŁM )

�
y
≤ Hn

¬(Ω̂n
B̂ÛÂ 
Â M) ≤ û#M(8.7)

LEMMA 8.8. Under the isomorphism (8.7),

TrRD
f = Trû:û#M ! M

PROOF. The proof is in two steps.

STEP 1. Assume there is a section õ: Y ! X to f with x 2 W0 = õ(Y). The homomor-
phism õŁ: B = A[t] ! A chooses ai = õŁ(ti) 2 A, so after the linear change of variables
ti 7! ti � ai we may assume that õ is the 0-section (i.e. OW0 = OXÛOX Ð t). Let Wi be
the i-th infinitesimal neighborhood of W0. Since f : Wi ! Y is projectively embeddable,
there is a trace map

TrRD
f : fŁH n

W0
Ωn

XÛY ! OY

For any a 2 A one has

TrRD
f

�adt1 ^ Ð Ð Ð ^ dtn
ti1
1 Ð Ð Ð tinn

�
=
²

a if i = (1Ò    Ò 1)
0 otherwise.

(8.9)

This follows from properties R6 (normalization) and R7 (intersection) of the residue
symbol ([RD] Section III.9). Alternatively this can be checked as follows. Note that
TrRD

f factors through RfŁΩn
Pn

YÛY . For the case i = (1Ò    Ò 1) use [RD] Proposition III.10.1.

For i 6= (1Ò    Ò 1) consider a change of coordinates ti 7! ïiti, ïi 2 A. By [RD] Corol-
lary III.10.2, TrRD

f is independent of homogeneous coordinates, so it must be 0.
Now since W0 \ f�1(y) = Z0 we have

H n
Z0

(Ωn
XÛY 
 f ŁM ) ≤ H n

W0
(Ωn

XÛY 
 f ŁM )

and so the formula for TrRD
f in (8.6) is given by (8.9). But the same formula is used in

[Hg1] to define Trû.

STEP 2. The general situation: take g: Y0 ! Y as in Lemma 8.5, and set Z00 := Z0ðY Y0.
The flatness of g implies there is a natural isomorphism of OY0-modules

gŁfŁH n
Z0

(Ωn
XÛY 
 f ŁM ) ≤ f 0ŁH n

Z0
0
(Ωn

X0ÛY0 
 f 0ŁM 0)

(where M 0 := gŁM ) and by [RD] Theorem III.10.5 property TRA4 we have

gŁ(TrRD
f ) = TrRD

f 0 (8.10)

Let Â0 := ÔY0Òy0 ≤ A0 
A Â, so Â ! Â0 is finite flat. Therefore

Â0 
Â Hn
¬(Ω̂n

B̂ÛÂ 
Â M) ≤
M
¬02Z0

0

Hn
¬0(Ω̂

n
B̂¬0ÛÂ0 
Â0 M0)(8.11)
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Here M0 := M 0
y0 ≤ Â0
Â M and

Q
¬02Z0

0
B̂¬0 is the decomposition of A0
A B̂ to local rings.

Write û0¬0 : Â0 ! B̂¬0 . Direct verification shows that under the isomorphism (8.11),

1
 Trû =
X
¬02Z0

0

Trû0
¬0
(8.12)

Since Â ! Â0 is faithfully flat it follows that M ! M0 is injective. In view of the
equalities (8.10) and (8.12), we conclude that it suffices to check for each ¬0 = x0 2 Z0

that Trû0
¬0

= TrRD
f 0 on Hn

¬0(Ω̂n
B̂¬0ÛÂ0 
Â0 M0). But there is a section õx0 : Y0 ! X0, so we can

apply Step 1.

PROOF OF THEOREM 8.1.

STEP 1 (UNIQUENESS). Suppose ê0X: K Ð
XÛS ! ô4K Ð

SÛS is another isomorphism sat-

isfying Trô = TrRD
ô ôŁ(ê0X). Then ê0X = aêX for some a 2 Γ(XÒOŁX), and by assumption

for any closed point x 2 X and ã 2 KXÛS(x) there is equality Trô(ã) = Trô(aã). Now
writing s := ô(x), it’s known that

Hom OSÒs

�
KXÛS(x)ÒKSÛS(s)

�

is a free ÔXÒx-module with basis Trô. Therefore a = 1 in ÔXÒx. Because this is true for all
closed points we see that a = 1.

STEP 2. Assume X = An ð S and f = ô. In this case there is a canonical isomorphism
of complexes

K Ð
XÛS ≤ EΩn

XÛS[n] ≤ Eô!OS ≤ ô4K Ð
SÛS

(cf. [RD] Theorem VI.3.1 and our Proposition 6.12), which we use to define êX: K Ð
XÛS !

ô4K Ð
SÛS. Consider x 2 X, Z := fxgred, s := ô(x) and assume x is closed in ô�1(s). By

replacing S with a suitable open neighborhood of s we can assume Z ! S is finite. Then
we are allowed to apply Lemma 8.8 with Y = S, M = K SÛS(s). It follows that (8.2)
commutes on ôŁKXÛS(x) ² ôŁK Ð

XÛS.

STEP 3. Let X be any finite type S-scheme. For every affine open subscheme U ² X
we can find a closed immersion h: U ! An

S. Write Y := An
S and let ôU and ôY be the

structural morphisms. Now Trh induces an isomorphism

K Ð
UÛS ≤ Hom Y(OUÒK Ð

YÛS)Ò

and TrRD
h induces an isomorphism

ô
4
U K Ð

SÛS ≤ Hom Y(OUÒ ô
4
Y K Ð

SÛS)

So the isomorphism êY of Step 2 induces an isomorphism êU: K Ð
UÛS ! ô4U K Ð

SÛS, which

satisfies TrôU = TrRD
ôU
ôUŁ(êU). According to Step 1 the local isomorphisms êU can be

glued to a global isomorphism êX.
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STEP 4. Let f : X ! Y be any S-morphism. To check (8.2) we may assume X and Y are
affine, and in view of Step 3 we may in fact assume Y = AmðS and X = AnðY ≤ An+mðS.
Now apply Lemma 8.8 with x 2 X closed in its fiber and M := KYÛS(y).
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