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SMOOTH FORMAL EMBEDDINGS
AND THE RESIDUE COMPLEX

AMNON YEKUTIELI

ABSTRACT. Let m: X — Sbe afinite type morphism of noetherian schemes. A
smooth formal embedding of X (over S is a bijective closed immersion X C X, where
X is a noetherian formal scheme, formally smooth over S An example of such an
embedding is the formal completion X =Y where X C Y is an algebraic embedding.
Smooth formal embeddings can be used to cal culate algebraic De Rham (co)homol ogy.

Our main application is an explicit construction of the Grothendieck residue com-
plex when S is a regular scheme. By definition the residue complex is the Cousin
complex of 7'Qg, asin [RD]. We start with I-C. Huang's theory of pseudofunctors on
moduleswith O-dimensional support, which provides agraded sheaf K Q /s Wethen

use smooth formal embeddings to obtain the coboundary operator §: KQ /s K)T/é-

We exhibit a canonical isomorphism between the complex (K)'< /s 6) and the residue

complex of [RD]. When 7 is equidimensional of dimension n and generically smooth
we show that H"K ;(/S iscanonically isomorphic to to the sheaf of regular differentials

of Kunz-Waldi [KW].
Another issue we discuss is Grothendieck Duality on a noetherian formal scheme
X. Our results on duality are used in the construction of K;(/S.

0. Introduction. It is sometimes the case in algebraic geometry, that in order to
define an object associated to asingular variety X, one first embeds X into a nonsingular
variety Y. One such instance is algebraic De Rham cohomology Hpr(X) = H'(Y, Q),
whereQ' isthe completionalong X of the De Rham complex Q;, /k (relativeto abasefield

k of characteristic 0; cf. [Ha]). Now Q coincides with the complete De Rham complex
ﬁ}e/w where X is the formal scheme Y x. It is therefore reasonable to ask what sort of
embedding X C X into aformal scheme would give rise to the same cohomology.

The answer we providein this paper is that any smooth formal embedding works. Let
us define this notion. Suppose Sis a noetherian base scheme and 7: X — Sis afinite
type morphism. A smooth formal embedding of X consists of morphisms X — ¥ — S
where X — X isaclosed immersion of X into a noetherian formal scheme X, whichisa
homeomorphism of the underlying topological spaces; and ¥ — Sis aformally smooth
morphism. A smooth formal embedding X C X = Y x like in the previous paragraph is
said to be algebraizable. But in general X C X will not be algebraizable.

Smooth formal embeddings enjoy afew advantagesover algebraic embeddings. First
consider an embedding X C X and an étale morphism U — X. Thenit ispretty clear (cf.
Proposition 2.4) that thereis an &tale morphism of formal schemes I — X and asmooth
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formal embeddingU C U, sit. U =~ U xx X. Next suppose X C X.?) are two smooth
formal embeddings, and we are given either a closed immersion X — ?) or a formally
smooth morphism) — X, which restrict to the identity on X. Then locally on X,

(0.2) 9 =~ ¥ x Spf Z[[tr. ... . t]]

(Theorem 2.6).

As mentioned above, De Rham cohomology can be calculated by smooth formal
embeddings. Indeed, when charS = 0, H3,(X/S) = Rw*fzg/s, where X C X is any
smooth formal embedding (Corollary 2.8). Moreover, in [Ye3] it is proved that De Rham
homology HPR(X) can also be calculated by smooth formal embeddings, when S =
Speck, k afield. According to the preceding paragraph, given an étae morphismg: U —
X there is a homomorphism g*: HPR(X) — HPR(U), and we conclude that homology is
contravariant w.r.t. &ale morphisms. See Remark 2.11 for an application to D-modules
on singular varieties.

The main application of smooth formal embeddings in the present paper is for an
explicit construction of the Grothendieck residue complex Ky, /s when Sis any regular
scheme. By definition K, /s is the Cousin complex En'Os, in the notation of [RD]
Sections V.3 and VII.3.

Recall that Grothendieck Duality, as developed by Hartshornein [RD], is an abstract
theory, stated in the language of derived categories. Even though this abstraction is
suitable for many important applications, often one wants more explicit information. In
particular asignificant amount of work was directed at finding an explicit presentation of
duality in terms of differential forms and residues. Mostly thefocuswas on the dualizing
sheaf wy, in various circumstances. The structure of wx as a coherent Ox-module and
its variance properties are thoroughly understood by now, thanks to an extended effort
including [KW], [Li], [HK1], [HK2], [LS1] and [HS]. Regarding an explicit presentation
of thefull duality theory of dualizing complexes, there have been someadvancesin recent
years, notably in the papers [Yel], [SY], [Hu], [Hg1] [Sa] and [Ye3]. The later papers
[Hg2], [Hg3] and [LS2] somewhat overlap our present paper in their results, but their
methods are quite distinct; specifically, they do not use formal schemes.

We base our construction of K /s on I-C. Huang's theory of pseudofunctors on
modules with zero dimensional support (see [Hgl]). Suppose ¢: A — B isaresidualy
finitely generated homomorphism between complete noetherian local rings, and M is
adiscrete A-module (i.e. dimsuppM = 0). Then according to [Hgl] there is a discrete
B-module ¢xM, equipped with certain variance properties (cf. Theorem6.2). In particular
when ¢ is residually finite thereis amap Tr,: ¢sM — M. Huang's theory is developed
using only methods of commutative algebra.

Now given a point x € X with s:= ©(X) € S consider the local homomorphism
¢:Ogs — Oxx. Define Ky (x) := ¢4H% Oss, where d := dim Ogs, ms is the maximal
ideal and H?ns is local cohomology. Then K /s(X) is an injective hull of k(x) as Oy x-
module. As a graded Ox-module we take K /s = Bxex Kx/s(X), with the obvious
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grading. Then for any scheme morphism f: X — Y, we deduce from Huang's theory a
homomorphism of graded sheaves Try: f,Ky s — Ky s

The problem is to exhibit a coboundary operator 6: K § s —K Q}'; and to determine
that the complex we obtain isindeed isomorphic to Ex' Os. For thiswe use smooth formal
embeddings, as explained below.

In Section 5 we discuss Grothendieck Duality on formal schemes, extending the
theory of [RD]. We propose a definition of dualizing complex R * on anoetherian formal
scheme (Definition 5.2), and prove its uniqueness (Theorem 5.6). It is important to
note that the cohomology sheaves H9R " are discrete quasi-coherent O ;-modules, and
in general not coherent. We define the Cousin functor E associated to R *, and show
that ER " =~ R " in the derived category, and ER " is a residual complex. On a regular
formal scheme X the (surprising) fact is that Rl ;O is a dualizing complex, and not
Oy (Theorem 5.14).

Now let U C X be an affine open set and suppose U C U is a smooth formal
embedding. Say n = rankQu/S, S0 Q'f[/s is a locally free O;-module of rank 1,

and erlsc iy Jn] is a dualizing complex. Since the Cousin complex is a sum
of loca cohomol ogy modul% there is a natural identification of graded Ou
modules EREd.chu/s[”] o~ u/s This makes K”/S into a complex. Since K
Hom ;(Oy, K 11/s) We come up with an operator § on KU <= x/s|U-

Given another smooth formal embeddingU C 23 we haveto compare the complexes
Kl'j/sand Kia/s- Thisisrather easy to do using the following trick. Choosing a sequence
aof generators of some defining ideal of I, and letting K (a) be the associated K oszul
complex, we obtain an explicit presentation of the dualizing complex, namely

u/s =

erlsc LI/S[n] K. (a)®Qn/s[n]

(cf. Lemma 4.5). By the structure of smooth formal embeddings we may assume there
isamorphismf: I — 2 which is either formally smooth or a closed immersion. Then
choosingrelative coordi nates(cf. formul a0.1) and using K oszul complexeswe produce a
morphism erlsc 4! /S[n] — Rl'dISC S[m] Applying the Cousin functor E we recover
Tr: K, ns— K, 3/ 8amap of complex&s' We concludethat 6 isindependent of U and
henceit gluesto a global operator (Theorem 6.14).

If f: X — Y is afinite morphism, then the trace map Tr;:f, KX s— KY/S, which is
provided by Huang's theory, is actually a homomorphism of complexes (Theorem 7.1).
We show this by employing the same trick as above of going from Koszul complexes
to Cousin complexes, this time inserting a “ Tate residue map” into the picture. We use
Theorem 7.1 to prove directly that if m: X — Sis equidimensional of dimension n and
generically smooth, then H™"K ;¢ coincideswith the sheaf of regular differentials & /s
of Kunz-Waldi [KW] (Theorem 7.10).

Finally in Theorem 8.1 we exhibit a canonical isomorphism (x between the complex
Ky /s constructed here and the complex 7°0s = Ex'Os of [RD]. Given a morphism of
schemesf: X — Y the isomorphisms (x and ¢y send Huang's trace map Tt;: f. KX/S
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K v/stothetrace TrRP: f.EmOs — Em,Os of [RD] Section V1.4. In particular it follows
that for f proper, Tr; is ahomomorphism of complexes (Corollary 8.3).

Sections 1 and 3 of the paper contain the necessary supplementsto [EGA]. Perhaps
the most noteworthy result there is Theorem 1.22, which states that formally finite type
morphisms are stable under base change. Thiswas also proved in [AJL2)].

ACKNOWLEDGMENTS. The author wishesto thank L. Alonso, I-C. Huang, R. Hubl,
A. Jeremias, J. Lipman and P. Sastry for helpful discussions, some of which took place
during a meeting in Oberwolfach in May 1996.

1. Formally finite type morphisms. In this section we define formally finite type
morphisms between noetherian formal schemes. This mild generalization of the finite
type morphism of [EGA] | Section 10 has the advantage that it includes the completion
morphism ¥ — X sz (cf. Proposition 1.21), and still is preserved under base change
(Theorem 1.22).

We follow the conventions of [EGA] 0, Section 7 on adic rings. Thus an adic ring
is a commutative ring A which is complete and separated in the a-adic topology, for
some ideal a C A. As for formal schemes, we follow the conventions of [EGA] |
Section 10. Throughout the paper all formal schemes are by default noetherian (adic)
formal schemes.

Wewrite Alt] = Alty, ..., t,] for the polynomial algebrawith variablest;, . .., t, over
aring A. The easy lemmabelow is taken from [AJL2].

LEMMA 1.1. Let A — B be a continuous homomor phism between noetherian adic
rings, and let b C B be a defining ideal. Then the following are equivalent:

(i) A— B/l isafinite type homomorphism.

(i) For some homomorphismf:Alt] — B extending A — B onehasb = B - f~1(0)
and Alt] — B/b issurjective.

PrROCF. (i) = (ii): Say by,..., by generate b as a B-module, and the images of
o ST bn generate B/ b as an A-algebra. Then the homomorphism Alt] — B, t — by
has the required properties.
(i) = (i): Trivial. ]
DerINITION 1.2. Let A — B beacontinuoushomomorphism between adic noetherian
rings. We say that A — B is of formally finite type (f.f.t.) if the equivalent conditions of
Lemma 1.1 hold. We shall also say that B is aformally finite type A-algebra.

EXAMPLE 1.3. Let| C Abeany openided, and let B := lim_j A/I'. Then A— Bis
f.f.t

Recall that if A’ and B are adic A-algebras, with definingideals a’ and b, the complete
tensor product A’©aB is the completion of A’ @ B w.r.t. the topology defined by the
image of (a’ @a B) & (A’ @4 b).

ProOPOSITION 1.4. Let A, A’ and B be noetherianadicrings, A — B af.f.t. homomor-
phism, and A — A’ any continuous homomorphism. Then B’ := A'©aB is a noetherian
adicring, and A’ — B’ isaf.f.t. homomorphism.
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PrOOF. Chooseahomomorphismf: Alt] — B satisfying condition (ii) of Lemmal.1.
Letb ¢ Band a’ C A’ be defining ideals. Write C := A’ @aBandc¢ :=a’-C+C- b,
so B’ = lim_; C/¢/. Consider the homomorphism f’: A'[t] — C, and let ¢/ := f/7*(¢)
and A'[t] = lim A’[L]/c’i. Since ¢ = C- ¢/, it follows from [CA] Section 111.2.11
Proposition 14 that A/’[\L] — B’ is surjective. Hence B is a noetherian adic ring with the
b’-adic topology, where b’ = B’ - ¢. Furthermore A'[t] — B'/b’ is surjective, and we
concludethat A’ — B’ isf.f.t. "

In the next three examples A is an adic ring with defining ideal a.

EXAMPLE 1.5. Recall that for a € A, the complete ring of fractions A,y is the com-
pletion of the localized ring Aq w.r.t. the as-adic topology. Then A, = A®Z[I]Z[t. t1],
which provesthat A — A, isf.f.t.

ExAMPLE 1.6. Given indeterminates ti, ... . t,, the ring of restricted formal power
series A{t} = A{ts, ..., ta} is the completion of the polynomial ring Alt] w.r.t. the
(A[t] - a)-adic topology. Hence A{t} =~ A%, Z[t], which demonstrates that A — A{t} is

f.f.t.
EXAMPLE 1.7. Consider the adic ring A®; Z[[t]], where Z[[t]] = Z[[t1. .. .. t,]] isthe

ring of formal power series, with the (t)-adic topology. Since inverse limits ycommute,
we see that AQ; Z[[t]] = A[[t]], the ring of formal power series over A, endowed with

the (A[[t]] - (a +1))-adic topology. By Proposition 1.4, A— A[[t]] isf f.t.

Let A — B be af.f.t homomorphism between adic rings. Choose a defining ideal
b C B, and set B; := B/b™*X. For n > 0 define

QE/A = ILrpQgi/A = ILrT] Bi @8 Qg/a

(cf. [EGA] Oy 20.7.14). Let Oy, /A= Bz ol /aWhichisatopological DGA (differential
graded algebra), with fzg/A = B. Thisdefinitionisindependent of theideal b. Sincngi/A

is finite over B; it follows that Q"

B/A isfinite over B.

REMARK 1.8. If A — Bisf.f.t. then Qg , = Q %, where Q%P is the separated
algebraof differentials defined in [Yel] Section 1.5 for semi-topological algebras. Also

Q'B/A isthe universally finite differential algebrain the sense of [Ku].

ProPOSITION 1.9. LetL — A — Bbef.f.t. homomor phismsbetween adic noetherian
rings.
1. A— Bisformally smooth relative to L iff the sequence

is split exact.
2. A— Bisformally étale relativeto L iff B®@a Q}\/L — QE/L is bijective.
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PROOF. Use the results of [EGA] O,y Section 20.7, together the fact that these are
finite B-modules. ]

ProPOSITION 1.10. Letf:A— B beaformallygnooth, f.f.t. homomor phismbetween
noetherian adic rings. Then B is flat over A and Qg/A is a projective finitely generated
B-module.

ProoOF. For flatness it suffices to show that if n is amaximal ideal of B and m =
f=1(n), then A, — B, isflat (B, isthecompletion of B, with the n-adiic topology). Now
nis open, and hence so is m. Both A — A,, and B — B, are formally étale, therefore
A, — B, isformally smooth. Because A — B is f.f.t. it follows that A/m — B/nis
finite type, and hencefinite (and m isamaximal ideal). By [EGA] O,y Theorem 19.7.1,
B, isflat over A,,.

The second assertion follows from [EGA] O,y Theorem 20.4.9. ]

ProPOSITION 1.11. Let f:A — B be a f.f.t., formally smooth homomorphism of
noetherian adic rings, and let ¢ € Spf B. SJpposeranle Ba= N Then:
1. For someb € B — g thereisaformally étale homomorphismf:A[L] =
A[tl ..... tn] — B{b} extendlngf
2. Foranyq’ € Spf By, letx :=f-1(q"). Then A[t]r — B » isfinite étale.
3. Letp :=f"Y(q). AssumeA, isregular of dimension m, and tr deg,, k(a) = I. Then
B isregular of dimensionn+m—|.

PrROOF. 1. By Proposition 1.10 we can find b s.t. QB A = =~ By, @8 QB/A is free,
say with basis dby, ... . db,. Then we get a homomorph|sm Alt] — By, ti — bi. In
order to stay inside the category of adic rings we may replace A[t] with its completion
A{t} (cf. Examples 1.5-1.7 for the notation). According to Proposition 1.9 we see that
Alt] — By, isformally etale relative to A. But since A — By, isformally smooth, this
implies that Alt] — By, is actually (absolutely) formally étale.

2. Consider the formally éae homomorphism k(r) — Bq /rB Since ¢’ is an
open prime idedl it follows that A — B/q’ is afinite type homomorphism, so the field
extension k(r) — k(q’) is finitely generated. By [Hgl] Lemma 3.9 we see that in fact
By /B, = k(q), so k(r) — k(¢) isfinite separable. HenceA/[\jl — B, isfinite étale.

3. Take g’ := q. Under the assumptlon the ring A[jr is regular and according to
[Ma] Section 14.c Theorem 23, dlmA[t]r =m+n—|. By part 2, B isaso regular, and
dlmB —dlmA[t]r L]

Let us now passto formal schemes.

Given anoetherian formal scheme X, choose adefiningideal | c Oy, and set

(1.12) Xn = (X, 0z /1™h.

X isanoetherian (usual) scheme, and X =~ lim,,_, X, in the category of formal schemes.
One possible choice for | isthe largest defining ideal, in which case one has Xg = X e,
the reduced closed subscheme (cf. [EGA] | Section 10.5).
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LEMMA 1.13. Supposef: X — ¥) isa morphism between noetherian formal schemes.
Thereare definingideals | ¢ Oz andJ c Oy st. f~1J - Oz c I. Letting X, and Y,, be
the corresponding schemes (cf. (1.12)), we get mor phisms of schemesf,: X, — Yy, with
f =lim_ fn.

PrOOF. See [EGA] | Section 10.6. For instance, one could take | to be the largest
defining ideal and J arbitrary. "

DEFINITION 1.14. Letf: X — ?) beamorphism of noetherian (adic) formal schemes.
We say that f is of formally finite type (or that X isaformally finite type formal scheme
over ) if the morphism fo: Xo — Yo in Lemma 1.13 is finite type, for some choice of
defining ideals of X and ).

Observe that if the morphism fy isfinite type then so are al the f,, and the definition
doesn’'t depend on the defining ideal s chosen.

REMARK 1.15. The definition of f.f.t. morphism we gavein an earlier version of the
paper was more cumbersome, though equivalent. The present Definition 1.14 is taken
from [AJL2], where the name is “ pseudo-finite type morphism”, and | wish to thank
A. Jeremiasfor bringing it to my attention.

Here are a couple of examples of f.f.t. morphisms:

ExAMPLE 1.16. A finite type morphism ¥ — ) (in the sense of [EGA] | Sec-
tion 10.13) isf.f.t.

ExAMPLE 1.17. Let X be a scheme of finite type over a noetherian scheme S, and
let Xo C X be alocaly closed subset. Then the completion X = X%, (see [EGA] |
Section 10.8) is of f.f.t. over S. Such aformal schemeis called algebraizable.

DerINITION 1.18. A f.f.t. morphismf: X — ?) iscalled formally finite (resp. formally
proper) if the morphism fo: Xo — Yp in Lemma 1.4 is finite (resp. proper), for some
choice of defining ideals.

ExamMPLE 1.19. If in Example 1.17 the subset X, C X is closed, then ¥ — X is
formally finite. If Xo — Sis proper, then X — Sisformally proper.

ProPosiTION 1.20. 1. Animmersion ¥ — ?) isf.f.t.

2. If X - and) — Jaref.ft., thensoisX — 3.

3. Let I = SpfBand 3 = Spf A. Then a morphism U — L3 is f.f.t. iff the ring
homomorphismA — Bisf.f.t.

PrROOF. Consider morphisms of schemes Xy — Yy €tc. asin Lemma 1.13. For part 3
use condition (i) of Lemma 1.1. ]

ProPosITION 1.21. Let X be a noetherianformal schemeandZ C X alocally closed
subset. Then thereis a noetherian formal scheme X /z» With underlying topological space
Z, and the natural morphism& ; — X isf.f.t.
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PrOOF. Pick anopensubset I C X s.t. Z C U isclosed, and choose a defining ideal
| of Z. Let Oy == lim_; Oy /I'. According to [EGA] | Section 10.6, X,7:=(2,0y)isa
noetherian formal scheme. Clearly X ,; — X isf.f.t. "

In [EGA] | Section 10.3 it is shown that finite type morphisms between noetherian
formal schemes are preserved by base change. Thisis true also for f.f.t. morphisms:

THEOREM 1.22. Suppose X, ?) and )’ are noetherian formal schemes, ¥ — ?) isa
f.f.t. morphism, and )’ — ) is an arbitrary morphism. Then X' := X xy )’ is also
noetherian, and the morphism X’ — 2)’ isf.f.t.

PROOF. First notethat theformal scheme X’ = X xy)?)’ exists ([EGA] | Section 10.7).
For any affineopensets Il = SpfB C X, W = Spf A’ € ?) and 18 = Spf A C @) such
that I — 23 and B’ — 23, onehas I’ = Il xy W’ = Spf B&AA, and 11’ C X’ is open.
By Propositions 1.4 and 1.20, 11’ is a noetherian formal scheme, and 11’ — 23’ isf.f.t.
But finitely many such 11’ cover X'. ]

CoRoOLLARY 1.23. If X1, X, and?) are noetherianand X; — ) aref.f.t. morphisms,
then X3 := X1 xy X isalso noetherian, and X3 — ) isf.f.t.

REMARK 1.24. | do not know an example of af.f.t. formal scheme X over ascheme
S which is not locally algebraizable. (Locally algebraizable means there is an open
covering X = [J I;, with U; — Salgebraizable, in the sense of Example 1.17.)

DEFINITION 1.25. A morphism of formal schemes ¥ — ¥) is said to be formally
smooth (resp. formally étale) if, given a (usual) affine scheme Z, a morphism Z — ¥)
and a closed subscheme Zy C Z defined by a nilpotent ideal, the map Homy)(Z, X) —
Homy)(Zo, X) is surjective (resp. bijective).

This is the definition of formal smoothnessused in [EGA] IV Section 17.1. We shall
also require the next notion.

DEFINITION 1.26. A morphism g: X — ?) between noetherian formal schemes is
called &taleif it is of finite type (see [EGA] | Section 10.13) and formally étale.

Notethat if ?) isausual scheme, then sois X, and g is an étale morphism of schemes.
According to [EGA] | Proposition 10.13.5 and by the obvious properties of formally
étale morphisms, if I — X and 3 — X areétale, then sois Il xx 18 — X. Hencefor
fixed X, the category of al éale morphisms Il — X forms a site (cf. [Mi] Chapter |1
Section 1). We call this site the small étale site on X, and denoteit by X .

2. Smooth formal embeddingsand De Rham cohomology. Fix anoetherian base
scheme Sand afinite type S-scheme X.

DerINITION 2.1. A smooth formal embedding (s.f.e.) of X (over S is the following
data:
(i) A noetherian formal scheme X.
(i) A formally finite type, formally smooth morphismX¥ — S.
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(iii) An Smorphism X — X, which is a closed immersion and a homeomorphism
between the underlying topological spaces.
We shall refer to this by writing “X C X isas.f.e.”

ExXAMPLE 2.2. SupposeY is asmooth S-scheme, X C Y alocally closed subset, and
X =Y x thecompletion. ThenX C X isasmoothformal embedding. Such anembedding
is called an algebraizable embedding (cf. Remark 1.24).

The smooth formal embeddings of X form a category, in which a morphism of em-
beddingsis an S-morphism of formal schemesf: X — ) inducing theidentity on X. Note
that any morphism of embeddingsf: X — ?) is affine (cf. [EGA] | Proposition 10.6.12),
and the functor f,: Mod (X) — Mod (?)) is exact. Let X and ?) be two smooth formal
embeddingsof X. Consider theformal scheme X xs?). Thenthe diagonal A: X — X xs?)
is an immersion (we do not assume our formal schemes are separated!).

PROPOSITION 2.3. The completion (X xs?))/x of X xs?) along A(X) is a smooth
formal embedding of X, and moreover it is a product of X and ) in the category of
smooth formal embeddings.

PrOOF. By Theorem 1.22 and Proposition 1.21 it followsthat (X xs?)) /x isformally
finite type over S so in particular it is noetherian. Clearly (¥ Xs?))/x — Sisformally
smooth. ]

The benefit of using formal rather than algebraic embeddingsisin:

PrOPOSITION 2.4. Let X C X be a smooth formal embedding (over S) and g:U —
X an étale morphism. Then there exists a noetherian formal scheme U and an &tale
morphism@: I — X s.it. U ~ U xx X. §: U — X isunique (up to a uniqueisomor phism),
and moreover U — U is a smooth formal embedding.

PROCF. This is essentially the “topological invariance of éae morphisms’, (cf.
[EGA] IV Section 18.1 or [Mi] Chapter | Theorem 3.23). Let | := Ker(Ox — Ox)
and X = (X.0%/1™1); so X = Xo. For every i there is a unique étale morphism
gi: U — X st. U =~ U; xx X. Identifying the underlying topological spaces of U; and
U we get an inverse system of sheaves {Oy, } on U. Setting O}, := lim._; Oy, we get a
noetherian formal scheme 1l having the proclaimed properties(cf. [EGA] | Section 10.6).
|

Thuswe can consider X asa“smooth formal embedding” of Xg. If M isasheaf on
Xa and U — X isan étale morphism, we denote by M | the restriction of M to Uz,

COROLLARY 2.5. Let X C X be a smooth formal embedding over S. Then there is
a sheaf of DGAs é%a/s on X, With the property that for each g:U — X in X and

corresponding@: I — X in X«, one hasfzga/sm o Qij/s.
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PROOF. By Proposition 1.9, fz’fl/s ~ A*ﬁg/s. Now QQ/S is coherent, so we can use
[Mi] Chapter Il Corollary 1.6 (which appliesto our étale site X ). L]

For smooth formal embeddings, closed immersions and smooth morphismsarelocally
trivial, in the following sense. Recall that for an adic algebra A, the ring of formal power

series A[[t]] = Al[tg, . ... tn]] is adic (cf. Example 1.7).

THEOREM 2.6. Letf: X — @) be a morphism of smooth formal embeddings of X over
S Assumef is a closed immersion (resp. formally smooth). Then, given a point x € X,
there are affine open setsU ¢ X and W C S with x € U and U — W, satisfying
condition (x) below.

(*) Let W = SpecL, and let Spf A C 2) and Spf B C X be the affine formal schemes
supported on U. Then there is an isomorphism of topological L-algebras A ~ BJ[t]]
(resp. B =~ A[[t]]) such that f*: A — B is projection modulo (t) (resp. the inclusion).

ProoF. 1. Assumef isaclosedimmersion. Accordingto [EGA] O,y Theorem 19.5.3
and Corollary 20.7.9, by choosing U = Spec C small enough, and setting | := Ker(f* :
A — B), we obtain an exact sequence

0—1/1?—=B@aQs, — Qg — 0

of free B-modules. Choose &, . . . . @, by, ....bm € Ast. {a} isaB-basisof I /12, and
{dbi} isaB-basisof Qf , .

By the proof of Proposition 1.11 the homomorphisms L[g] — B, L[s.t] — A and
L[s.t] — B[[t]], sending s — b;j andt; — a&;, are all formally étale. Take a := Ker(A —
C), whichisadefiningideal of A, containing A- (t) = 1. Let b := a- B, whichisadefining
ideal of B. Hence the ideal ¢ = BJ[[t]] - (b.t) is a defining ideal of B[[t]]. By formal
étalenessof L[s.t] — AandL[s.t] — BJ[[t]], theisomorphism A/a =~ BJ[[t]] /¢ =~ Clifts
uniquely to an isomorphism A >~ BJ[t]].

2. Now assumef isformally smooth. Let b := Ker(B — C), whichisadefining ideal
of B. Since A — B/ b is surjective it follows that (B/b) @z fzg/A is generated by d(b).
By Nakayama's Lemma we see that ﬁé/A =B - d(b). After shrinking U sufficiently we
get QL /a = ®L, B db with by € b, and the homomorphism A[[t] — B, t — by, is
formally étale. Continuing like in part 1 of the proof we concludethat thisis actually an
isomorphism. ]

THEOREM 2.7. Suppose Sis a noetherian scheme of characteristic 0, and X isafinite
type S-scheme. Let f: X — @) be a mor phismof smooth formal embeddingsof X. Thenthe
DGA homomor phismf*: fzs;)/s — fzj%./s is a quasi-isomorphism. Moreover, if g: ¥ — 9)
is any other morphism, then H(f*) = H(g*).

PROOF. Theassertions of the theorem are both local, and they will be proved in three
steps.
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Step 1. Assumef is a closed immersion. By Theorem 2.6 it suffices to check the
casef:Spf B = U — SpfA = W with A =~ BJ[[t]] as topological L-algebras. We must
show that f)A/L — fz'B/L isaquasi-isomorphism. But since@ C L, thisisthewell known
Poincaré Lemma for formal power series (cf. [Ha] Chapter Il Proposition 1.1, or [Ye3]
Lemma7.5).

STeEP 2. Suppose fy, fz: ¥ — ) are two morphisms. We wish to show that H(f;) =
H(f5). First consider
diag P
Y= Q) xkx =)
Sincethe diagonal immersionisclosed, we can apply theresult of the previous paragraph
to it. We concludethat H(p;) = H(p}), and that these are isomorphisms. But looking at

di N . i xf i
B @ ) = @ xdx =Y
we see that our claim is proved.

Step 3. Consider an arbitrary morphismf: X — ). Teke any affine openset U C X,
with corresponding affine formal schemes SpfB = I C X and SpfA = 18 C ?).
The definition of formal smoothness implies there is some morphism of embeddings
g: 88 — U. This morphism will not necessarily be an inverse of f|y;, but nonetheless,
accordingto Step 2, H(g*) and H(f |7, ) will beisomorphismsbetween HQ;, jsand HO;, /s
inverse to each other. L]

In [Ha] the relative De Rham cohomology Hpr(X/S) was defined. In the situation of
Example 2.2, where X C Y isasmooth algebraic embedding of S-schemes, X = Y,x and
m: X — Sisthe structural morphism, the definition isHyg(X/S) = H'Rﬂ*ﬁ}e/s- Evenif
Xisnot globally embeddable, Hpr(X/S) can still be defined, by taking a system of local
embeddings{U; c Vi}, X = J U;, and putting together a“ Cech-De Rham” complex (cf.
[Ha] pp. 28-29; it seems one should also assume X separated and the U; are affine).

COROLLARY 2.8. Suppose S has characteristic 0. Let X C X be any smooth formal
embedding (not necessarily algebraizable). Then Hyr(X/9S) = H'RW*Q;Q/S as graded
Os-algebras.

ProOF. Assume for simplicity that a global smooth algebraic embedding exists.
The general case, involving a system of embeddings, only requires more bookkeeping.
Say X C Y is the given algebraic embedding, and let ?) := Y, x. Now the two formal
embeddings X and ?) are comparable: their product (X xs¥)) /x maps to both. By the
theorem we get quasi-isomorphic DGAs on X. ]

REMARK 2.9. From Corollaries 2.5 and 2.8 we see that there is a sheaf of DGAs
Q}ea/s on X, with the property that f(3r any U — X étale, Hpr(U /9 =HT (U, Q}ea/s)-
Aswill be shownin[Yed], the DGA Q% s has an adelic resolution A_;(./S, where A‘g‘fs =
A?ed(f)g, o), Beilinson's sheaf of adeles. The adeles calculate cohomology: Hpr(X/S) =
H'T(X. A} /9)- Furthermore the adeles extend to an étale sheaf A .
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REMARK 2.10. Suppose S = Speck, a field of characteristic 0. In [Ye3] a complex
F . called the De Rham-residue complex, is defined. One has H' (X, F ;) = HPR(X), the
De Rhamhomology. Moreover thereis asheaf F&ia on X, which directly impliesthat the
De Rham homology is contravariant for &tale morphisms. Furthermore F ;. is naturally a
DG A -module,

REMARK 2.11. Smooth formal embeddings can be also used to define the category
of D-modules on a singular scheme X (in characteristic 0). Say X C X is such an
embedding. Then aformal version of Kashiwara's Theorem (cf. [Bo] Theorem V1.7.11)
implies that Mod gis:(D#), the category of discrete modules over the ring of differential
operators Dy is, as an abelian category, independent of X.

3. Quasi-coherent sheaveson formal schemes. Let X beanoetherian (adic) formal
scheme. By definition, a quasi-coherent sheaf on X is an Ox-module M, such that on
sufficiently small open sets Il C ¥ there are exact sequencesOY) — Of) — M |, — 0,
for some indexing sets 1. J (cf. [EGA] O Section 5.1). We shall denote by Mod (X)
(resp. Coh (¥), resp. QCo (X)) the category of Ox-modules (resp. the full subcategory of
coherent, resp. quasi-coherent, modules). It seemsthat the only important quasi-coherent
sheaves are the coherent and the discrete ones (Definition 3.7). Nevertheless we shall
consider all quasi-coherent sheaves, at the price of alittle extra effort.

REMARK 3.1. There is some overlap between results in this section and [AJLZ2].

Let A beanoetherian adicring, and let 11 := Spf A be the affineformal scheme. Then
there is an exact functor M — M? from the category Mod ¢(A) of finitely generated
A-modulesto Mod (11). It is an equivalence between Mod ¢ (A) and Coh (11) (see[EGA] |
Section 10.10).

PROPOSITION 3.2. The functor M — M% extends uniquely to a functor Mod (A) —
Mod (1), which is exact and commutes with direct limits. The O;-module M% is quasi-
coherent. For any O;;-module M the following are equivalent:

(i) M =~ M for some A-module M.

(i) M = lim,_, M, for some directed system {M,, } of coherent O ;-modules.
(i) For every affine openset 23 = Spf B C U, onehas(B¥, M) =~ B@a F(II,M).

PROCF. Take any A-module M and write it asM = lim,_, M,, with finitely generated
modules M,,. Define apresheaf M on 11 by I'(23, M%) :=lim,_, [(¥, M%), for 3 c Ul
open. Since 11 is a noetherian topological space it follows that M* is actually a sheaf.
By construction M — M% commutes with direct limits. Since the functor is exact on
Mod ¢ (A), it's also exact on Mod (A).

Theimplication (i) = (ii) is because M2 is coherent. (ii) = (iii): for such B one has
r(R’.M,) =~ B@a (U1, M,); now apply lim,_.. (iii) = (i): set M := [(1I,M). Then
for every affine 15 we have (3. M) =B@a M =T (%. M%), soM = M2,

Finally the module M has a presentation A") — AY) — M — 0. By exactnesswe get
apresentation for M2, .

It will be convenient to write O, ®a M instead of M.
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ReEMARK 3.3. | do not know whether Serre's Theorem holds, namely whether every
quasi-coherent O;;-module M is of the form M =~ O, ®a M. Thus it may be that
QCo (1) is not closed under direct limits in Mod (1) (cf. Lemma4.1).

COROLLARY 3.4. Let M be a quasi-coherent Ox-module and x € X a point. Then
thereis an open neighborhood Il = Spf Aof xs.t. M |, = Oy @A T (11, M). For such U1
onehasHY(lI,M) =0.

PrOOF. Choose Ul affinesuchthat M |, hasapresentation O 2, oY LM, —o.

Define M := Coker(¢: AV — A®). Applying the exact functor O, @4 to AV % AQ —
M — Oweget M |, = O, ®a M. By the proposition M = (11, M). Asfor H}(lI, ),
use the fact that it vanishes on coherent sheaves. ]

ProPOSITION 3.5. Let M be coherent and N quasi-coherent (resp. coherent). Then
Homo, (M. N ) is quasi-coherent (resp. coherent).

ProOF. For small enough Il = Spf AwegetM |, = O, @aMandN |; =~ O, @aN.
Now for any 23 = Spf B C U, A — Bisflat; so
Hom B(B RaM,B ®a N) ~ B®a HomA(M, N)
Hence

Homo, (M. N )|y =~ Oy ®a Homa(M. N). .

Recall that a subcategory B of an abelian category A is called a thick abelian subcat-
egory if for any exact sequenceM; — My — N — M3z — My in A with M; € B, also
N € B.

ProPosITION 3.6. The category QCo (X) is a thick abelian subcategory of Mod (X).

PrROOF. First observe that the kernel and cokernel of a homomorphism M — N
between quasi-coherent sheaves is also quasi-coherent. This is immediate from Corol-
lary 3.4 and Proposition 3.2. So it sufficesto prove:0 — M’ — M — M” — 0 exact,
M’.M" quasi-coherent = M quasi-coherent. For a sufficiently small affine open for-
mal subscheme 11 = Spf A we will get, by Corollary 3.4, that HX(1I. M ") = 0. Hence the
sequence

0—T(U.M)—M=rU.M)=ru.M" -0
isexact. Thisimpliesthat M |; = O, @a M. "

DerINITION 3.7. Let M be an Ox-module. Define
CgeM = lim Hom 0,(0x/1""M)cM

where | Oy isany definingideal. M iscalled discreteif [ ;M =M.

PROPOSITION 3.8. Let M be a quasi-coherent Ox-module. Then ;M is quasi-
coherent, and in fact is a direct limit of discrete coherent Ox-modules.
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PROOF. Let X, be asin formula (1.12) and M, := Homo, (Ox,.M), so [4eM =
lim,_. M. If M is quasi-coherent, then M, is a quasi-coherent Ox_-module (by Propo-
sition 3.5), and henceis adirect limit of coherent modules. ]

4, Some derived functors of Ox-modules. Denote by Mod gs(X) (resp.
QCo gis:(%)) the full subcategory of Mod (X) consisting of discrete modules (resp. dis-
crete quasi-coherent modules). These are thick abelian subcategories. In this section we
study injective objects in the category QCo gi.(X), and introduce the discrete Cousin
functor ERL .

LEMMA 4.1. Mod ¢i(X) is a locally noetherian category, with enough injectives.

Proor. A family of noetherian generators consists of the sheaves Oy, where X C X
is a closed subscheme, U C X is an open set, and Oy is extended by 0 to all of X (cf.
[RD] Theorem 11.7.8). If J € Mod (X) isinjectivethen I ;.J isinjectivein Mod gis(X).
|

Given a point x € X let J(x) be an injective hull of the residue field k(x) over the
local ring O, and let J(x) be the corresponding Ox-module. Then J(x) is a discrete

quasi-coherent sheaf, constant on {x}, and it isinjective in Mod (¥).

PROPOSITION 4.2. 1. QCo g« (X) isalocally noetherian category with enough injec-
tives.

2. LetJ € QCo g (X) be aninjective object. Then J isinjective in Mod gis:(X) and
injective on Coh (X). For any M & Mod gi:(X) or M € Coh (¥) the sheaf Hom (M , J)
is flasque.

ProoF. 1. Let N € QCog(X). Choose a defining ideal | of X and let Xo be
the scheme (X, 0z /1). Define No := Hom x(Ox,. N'), which is a quasi-coherent Ox,-
module. Then the injective hull of Ng in Mod (Xo) is isomorphic to @&, Jo(X.) for some
Xo € Xo. According to Proposition 3.8, QCo 4ix(X) islocally noetherian, and thisimplies
that @, J (x) isaninjective object init. Now Ng € N and Ng C @, J(x,) are essential
submodules, so there is some homomorphism N — @, J(X,), which is necessarily
injective and essential.

2. If N =J isinjectivein QCo g (%), it follows that J — @, J(X,) is an isomor-
phism. Since Mod gis-(X) is locally noetherian it follows that J is injective in it. Given
M € Mod gis(X) and open sets 23 C I C X consider the sheavesM |, c M|, ¢ M
(extension by 0). Then Hom (M |;;,J) — Hom x(M |y, J) is surjective.

The category Coh (X) is noetherian, and therefore the functor Hom x(—., J) isexact on
it. Given M € Coh (X) we have Hom (M . J) =~ @ Hom (M, J(x,)) which is clearly

flasgque. ]

COROLLARY 4.3. LetJ" € D*(QCo gie(X)) bea complex of injectives. Then for any
M € D~(Mod gi(¥)) or M € D~(Coh (X)) onehas

RHom (M ",J") 2~ Hom (M ", J")
RHgm(M ) Hgm(M J) 2 T(X.Homx(M".J")).
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PrROOF. Thefirst equality follows from Proposition 4.2 (cf. [RD] Section |.6). Since
each sheaf Hom x(M P, J9) is flasgue we obtain the second equality. "
The functor I 4.: Mod (¥) — Mod gi(X) has aderived functor

R giso: D (Mod (X)) — D*(Mod gisc(X)).

which is calculated by injective resolutions.

Thereisanother way to compute cohomology with supports. Let t beanindeterminate.
Define K'(t) to be the Koszul complex Z]t] N Z[t], in dimensions 0 and 1, and let
K. () = lim_ K'(t). Given asequencet = (ty, ..., ty) defineK (1) =K () ®---®
K . (tn), a complex of flat Z[t]-modules (in fact it's a commutative DGA). If Ais a
noetherian commutativeringanda = (ay, - - - an) € A", then wewrite K _(a) instead of

Ko () @719 A Now supposea C Alisanideal, and a are generators of a. Then for any
M’ € D*(Mod (A)) thereis anatural isomorphism

(4.9) RIEM =K @@M
in D(Mod (A)). We refer to [LS1], [Hgl] and [AJL1] for full details and proofs. For
sheavesone has:

LEMMA 4.5. Supposea € I'(11, Oy)" generatesa defining ideal of the formal scheme
1. Then for any M * € D*(Mod (1)) thereis a natural isomorphism

RCGeM ™ =K (@@ M.
Proor. Letl :=0,-a Thenl4s =, andwe may use[AJL1] Lemma3.1.1. =

PROPOSITION 4.6. Let X be a noetherian scheme, Xo C X a closed subset, X = X%
and g: ¥ — X the completion morphism. Then for any M " € D;C(Mod (X)) there is
a natural isomorphism g'RCy M~ = R[4.g*M ". In particular for a single quasi-
coherent sheaf M onehasg*T'y M =~ [;.0*M.

Proor. Let M — J' bearesolution by quasi-coherent injectives. Sincegisflat we
get

¢:g'ROM " =g Ty )" — Cied" ) — RLgg™J = RGeg'M .
Locally on any affine open U C X, with Up = UNXp and U = U ,, we can find
a in (U, Oy) which define Uo. It's known that ', (J"|u) — K (@) ® (J'[u) is a
quasi-isomorphism. Since g is flat we obtain quasi-isomorphisms

olu: gLy, ) = ¢ (K@ @ () 2 K@ ©¢°0 ) = RLaeg (" Ju)-

It follows that ¢ is an isomorphism. ]
Denote by D§ (Mod (X )) the subcategory of complexeswith discrete cohomologies.

LEMMA 4.7. 1. If M € D§(Mod (X)) then RC4:M — M is anisomorphism.
2. IfM" € D{(Mod (X)) then RL4:M € D¢ (Mod isc(X)).
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PrROOF. From Lemma 4.5 we see that the functor R[4 has finite cohomological
dimension. By way-out reasons (cf. [RD] Section 1.7) we may assume M * is a single
discrete (resp. quasi-coherent) sheaf. Then the claims are obvious (use Proposition 3.8
for 2). ]

THEOREM 4.8. Theidentity functor D*(QCo gise(¥)) — Diiye(Mod (X)) is an equiva-
lence of categories. In particular anyM " € ngc(Mod (3&')) is isomorphic to a complex
of injectives J* € D*(QCo gie(¥)).

PROOF. According to Lemma 4.7 we see that D(Mod gise(X)) — Dgjye(Mod (X))
is an equivalence with quasi-inverse R ;4. Next, by Proposition 4.2 and by [RD]
Proposition |.4.8, the functor D*(QCo gs(X)) — De(Mod gise(¥)) is an equivalence. m

REMARK 4.9. In [AJL2] it is proved that D(QCo gise(¥)) — Duge(Mod (X)) is an
equivalence, using the quasi-coherator functor.

Suppose there is a codimension function d: X — Z, i.e. a function satisfying d(y) =
d(x) + 1 whenever (x,y) is an immediate specialization pair. Then there is a filtration

D ZP D7 o ... of X, with ZP .= {F Cc ¥ | Fclosed,d(F) > p}. Here
d(F) := min{d(x) | x € F}. Thisfiltration determines a Cousin functor

(4.10) E:D*(Ab (X)) — C*(Ab (X))

where C* denotes the abelian category of bounded below complexes (cf. [RD] Sec-
tion 1V.1).

Given apoint x € X and asheaf M € Ab (X) welet 'yM = (Lgl\/l x C My. The
derived functor RT",: D*(Ab (¥)) — D(Ab) is calculated by flasque sheaves. L et uswrite
HIM := HIRI M, the local cohomology, and let ix: {x} — X betheinclusion.

According to [RD] Section IV.1 Motif F one has a natural isomorphism
@) EM =Hp .M = @ iHIM .

v /z71t
d(X=p

Observe that if M € D*(Mod (X)) then EM" € C*(Mod (X)) and RIM €
D*(Mod (Oz ).

Unlike an ordinary scheme, on a formal scheme the topological support of a quasi-
coherent sheaf does not coincide with its algebraic support. But for discrete sheaves
these two notions of support do coincide. This suggests:

DEFINITION 4.12. Given M € D*(Mod (%)) its discrete Cousin complex is
ERCyoM "

THEOREM 4.13. For any M ™ € Dac(Mod (36)) the complex ERI ;.M * consists of
discrete quasi-coherent sheaves. So we get a functor

ERL jio: Dge(Mod (X)) — C*(QCo dise(X)).
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PrROOF. According to Theorem 4.8 we may assume N = R[4;M " is in
D*(QCo gie(¥)). On any open formal subscheme 11 = Spf Aweget N* = Oy @a N,
where N9 = " (11, N9) (cf. Propositions 3.8 and 3.2). Then for x € U,

RMRCgeM " = RI\N " = RT,N;

where p C Alis the prime ideal of x. Hence HIR[ ;M * = H]IN; is p-torsion. So the
sheaf corresponding to x in (4.11) is quasi-coherent and discrete. ]

5. Dualizing complexes on formal schemes. In this section we propose a theory
of duality on noetherian formal schemes. Thereisafundamental difference between this
theory and the duality theory on schemes, as developed in [RD]. A dualizing complex
R " on ascheme X has coherent cohomology sheaves; this will not be true on a general
formal scheme X, where HYR * are discrete quasi-coherent sheaves (Definition 5.2). We
prove uniqueness of dualizing complexes (Theorem 5.6), and existence in some cases
(Proposition 5.11 and Theorem 5.14).

Before we begin hereis an instructive example due to J. Lipman.

ExaMpLE 5.1. Consider the ring A = K[[t]] of formal power series over a field k.
Let X := Spf A, which has a single point. The modules A and J = H{A both have
finite injective dimension and satisfy Homa(A, A) = Homa(J,J) = A. Which one is a
dualizing complex on X? We will seethat J is the correct answer (Definition 5.2), and
Aisa“fake” dualizing complex (Theorem 5.14). The relevant relation between themis:
J= eriscA[l]-

SupposeN * € D*(Mod (¥)). Wesay N * hasfiniteinjectivedimensionon QCo gise(¥)
if thereisaninteger go s.t. forall g > goand M € QCo gise(X), HIRHom (M . N ) = 0.

DEFINITION 5.2. A dualizing complex on X isacomplexR ™ € ngc(Mod (%)) satis-
fying:
(i) R " hasfiniteinjective dimension on QCo gis:(X).
(i) The adjunction morphism O3 — RHom ¢(R ", R ) is an isomorphism.
(iii) For some defining ideal | of X, RHom x(Ox/1.R *) has coherent cohomology
sheaves.

LEmmA 5.3. Let N * € D, (Mod (%)). Then N * has finite injective dimension on
QCo gic(X) iff it isisomorphic to a bounded complex of injectivesin QCo g (X).

PrOOF. Because of Theorem 4.8 and Corollary 4.3, the proof is just like [RD]
Proposition 1.7.6. ]

In light of this, we can, when convenient, assume the dualizing complex R " is a
bounded complex of discrete quasi-coherent injectives.

ProOPOSITION 5.4. Let R be a dualizing complex on X. Then for any M" €
D2(Mod (X)) the morphism of adjunction

M — RHom & (RHom (M ".R").R ")

is an isomor phism.
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PrROOF. We can assume X is affine, and so replace M * with a complex of coherent
sheaves. By “way-out” arguments (cf. [RD] Section |.7) wereduceto thecaseM * = Oy,
to which property (ii) applies. ]

LEMMA 5.5. SupposeR " isadualizing complexon X. Let | be any definingideal of
X, and let Xp be the scheme (X. Oz /1). Then RHom % (Ox,, R ) is a dualizing complex
on Xg.

PrOOF. We can assume R " is a bounded complex of injectives in QCo gisc(X), SO
Ry = Hom £(Ox,, R *) is a complex of injectives on Xo. Property (iii) implies that R,
has coherent cohomology sheaves. Now

Homx,(R - Rg) 22 Hom & (Hom #(Ox,. R "),R *) = Ox,.
so R, isdualizing. n

THEOREM 5.6 (UNIQUENESS). Suppose R andR " are dualizing complexes and X
is connected. Then R " = R @ L[n] in D(Mod (X)), for some invertible sheaf L and
integer n.

PROOF. We can assume both R * and R * are bounded complexes of injectives in
QCo gise(X). Choose a defining ideal | and let X, be the scheme (X, Ox /1 ™?). Define

acomplex R, := Hom x(Ox_. R ) and likewise R ;. These are dualizing complexes on
Xm, SO by [RD] Theorem IV.3.1 there is an isomorphism

Om: Rm ® Lm[nm] - RNm

in D(Mod (Xm)), for some invertible sheaf L, and integer n,. Writing M., :=
Homx,, (R, Ryy) we have My, & Lin[ny] in D(Mod (Xin) ). Now

M, = Hom .., (Hom x,,., (Ox,s Rine1): Rined)) @ Linea[nmaa]

as complexes of Ox,,,-modules, so by the dualizing property of R, we deduce an
isomorphism M., =~ Oy ® Liea[me1] in D(Mod (Xm+1))- We conclude that Ny = Ny
and Lm 2> Oy, ® Lmwt. Setn:=npand L :=lim_y L.

Next,sinceR, c R 9, andR %, isinjectivein Mod (Xm1), weseethat M %,, — M
is surjective for all g.m. Furthermore, H'M ., — HIM,, is also surjective, since
HIM,, = L, or 0. Define

M :=Homx(R .R )~ lim M.

According to [Ha] Corollary 1.4.3 and Proposition 1.4.4 it follows that HIM *~ =
lim_m HIM.. This implies that Hom (R~ @ L[n].R ")) =~ Oy in D(Mod (3€)), so by
Corollary 4.3
H°Hom (R " @ L[n].R ") = (%X, 0%).

Choose a homomorphism of complexes ¢:R "~ @ L[n] — R " corresponding to 1
(X, Og%). Backtracking we see that for every m, ¢ induces a homomorphism R, ©
Lin] — R, which represents ¢p, in D(Mod (Xm)). S0 ¢ = limy_. ¢ is a quasi-
isomorphism. ]
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PrROBLEM 5.7. LetR " beadualizing complex. Isit true that the following conditions
onN * € Df.(Mod (X)) are equivalent?
(i) N =~ RHom;(M".R ") for someM " € D2(Mod (¥)).

(i) Forany M discrete coherent, RHom (M, N *) € D(Mod (X)).

Recall that for a point x € X¥ we denote by J(X) an injective hull of k(x) over O,
and J (x) is the corresponding quasi-coherent sheaf.

LEMMA 5.8. Suppose R * is a dualizing complex on X. For any x € X thereis a
unique integer d(x) s.t.
R~ [JX) ifg=d(x)
HR "= { 0 otherwise.

Furthermored is a codimension function.

ProoF. We can assumeR  is abounded complex of injectivesin QCo gi:(X). Then
asseenbefore HIR * = HIR *. Define schemes Xy, and complexesR,;, like in the proof
of Theorem 5.6. Since R, is dualizing it determines a codimension function dy, on X,
(cf. [RD] Chapter V Section 7). But the arguments used before show that dy, = die.
Finally HIM,R * = limm_ HITKR,,, and HIMKR ;= Jm(X), an injective hull of k(x) over
Oxx.

DEFINITION 5.9. A residual complex onthenoetherianformal scheme X isadualizing
complex K * which isisomorphic, as Oz-module, to @,z J (X).

ProPosITION 5.10. Say R is a dualizing complex on X. Let d be the codimen-
sion function above, and let E be the associated Cousin functor. Then R~ ~ ER " in
D(Mod (X)), and ER " isa residual complex.

ProOF. By Lemma 5.8 R * is a Cohen-Macaulay complex, in the sense of [RD]
p. 247, Definition. So there exists someisomorphismR * — ER " in D°(Mod (X)). =

To conclude this section we consider some situations where a dualizing complex
exists. If f: ¥ — ) isamorphism then (). f,0) isaringed space, and f: ¥ — @).1.0%)
is amorphism of ringed spaces.

PROPOSITION 5.11. Letf: X — ) beaformally finite morphism, and assumeK " isa
residual complex ony). Then f*Hom;U(f*O_:g. K ") isaresidual complexon X.

Proor. Let fi: Xy, — Y, be morphism_s as in Lemma 1.13, and let K, :=
Homy)(Oy, . K ). Sincefj, isafinitemorphism, fyHomy, (fn.Ox, . K ) isaresidual complex
on X,. Asin the proof of Theorem 5.6,

f*Homy(f.0x. K ') = Irimf_,;‘Hom v.(fnsOx.. K1)

isresidual. -
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EXAMPLE 5.12. SupposeXo C Xisclosed, X = X, andg: ¥ — Xisthe completion
morphism. Let K * bearesidual complex on X. Inthiscaseg = @, and by Proposition 4.6

g"Homx(9. 0. K ") = Uﬂ?g*Kr} = Ty K = [iegK'

isaresidual complex. Weseethat if R " isany dualizing complex on X then ER[ 4..g*R -
isdualizing on X.

We call aformal scheme X regular of all itslocal rings O , are regular.

LEMMA 5.13. Suppose X is a regular formal scheme. Then d(x) := dimOx, isa
bounded codimension function on X.

ProoOF. Let Il = Spf A C X be a connected affine open set. If x € 11 is the point
corresponding to an open prime ideal p, then Ap o~ O‘{X. Therefore A, isaregular local
ring. Now in the adic noetherian ring A any maximal ideal m is open. Hence, by [Ma]
Section 18 Lemmab5(I11), Aisaregular ring, of finite global dimension equal to itsKrull
dimension.

Now let U := SpecA, so as atopological space, I C U is the closed set defined by
any defining ideal | C A. Since U is aregular scheme, Oy is a dualizing complex on
it. The codimension function d’ corresponding to Oy satisfies d’(y) = dimOyy. Thus
0 < d'(y) < dimU. But clearly d|; = d’|;;. By covering X with finitely many such Ul
thisimplies that d is a bounded codimension function. ]

THEOREM 5.14. Suppose X isaregular formal scheme. Then Rl 4. Ox isadualizing
complexon X.

PrROCF. By the proof of Theorem 4.13 and known properties of regular local rings,
foranyx € X

HIRT 4O = H3, O (09 119009
where my C Oz, is the maximal ideal, and J(X) is an injective hull of k(x). Since
d is bounded it follows that K - := ERI 44.Ox is a bounded complex of injectives in
QCo gise(¥). Likein the proof of Proposition 5.10, Rl 4.0z = K in D(Mod (¥)).

To complete the proof it sufficesto show that for any affineopenset Il = Spf A C X
the complex K °|,; isresidual on 11. Let U := SpecA and let g: I — U be the canonical
morphism. Let Up C U be the closed set g(11), so that Ul =~ U . Define K, := EQy,
which isaresidual complex on U. Then according to Proposition 4.6

RC 4Oy = g°RLy,0u = 9Ty, K.

As in Example 5.12 this is a dualizing complex, so K '|;, = ERI 440y, is a residua
complex. ]

REMARK 5.15. According to [RD] Theorem VI1.3.1, if f: X — Y is afinite type mor-
phism between finite dimensional noetherian schemes, and if K ™ is a residual complex
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on'Y, then there is a residual complex 2K~ on X. Now suppose f: ¥ — @) isaf.f.t.
morphism and f,: Xp — Y, are like in Lemma 1.13. In the same fashion asin Proposi-
tion5.11weset f2K " :=lim,_, f2K ;. Thisisaresidua complex on X. If f isformally
proper then Try = limy_, Tr¢, induces a duality

Rf.M ~ — RHomy (Rf.RHom (M ", 2K "), K ")

forevery M € Db(Coh (X )) . The proofs are standard, given the results of this section.

6. Construction of the complex K)'(/S. In this section we work over a regular
noetherian base scheme S. We construct the relative residue complex K i, /sonany finite
type S-scheme X. The construction is explicit and does not rely on [RD].

Let A, B be complete local rings, with maximal ideals m, n. Recal that a local
homomorphism ¢: A — B is called residually finitely generated if the field extension
A/m — B/n is finitely generated. Denote by Mod gis:(A) the category of m-torsion
A-modules (equivalently, modules with O-dimensional support).

Suppose Alt] = Alty, ..., t] isapolynomia algebraand p C A[t] is some maximal
ideal. Then A — B = A/[\L]p is formally smooth of relative dimension n and residually
finite. Let by € B/n betheimage of t and g € (A/m)[by...., bi—1][t] the monic
irreducible polynomial of by, of degreed;. Chooseamoniclifting g € Alty, ..., t]. Then
for adiscrete A-module M one has

R ti.. . tndty .- d
HI@L oAM= @ @ i gy,

i i
1<i; 0<ji<dq, qll SO

Asin [Hgl] Section 7 definethe Tate residue
(6.1) reS,....tyA8: Hp(QR/a @A M) — M

by the rule
b thdty - dty {m ifij=1,j=d —1
qi -y 0 otherwise

(cf. [Ta]). Observe that any residualy finite homomorphism A — C factors into some
A—B=A[t], —C.

THEOREM 6.2 (HUANG). Consider the category Loc of complete noetherian local
rings and residually finitely generated local homomorphisms. Then:
1. For any morphism¢: A — BinLoc thereisa functor

¢d#: Mod gsc(A) — Mod gic(B).

For composable morphisms A 2. B Cthereisan isomorphism (V¢)s =~ uds, and
(1p)y =~ 1M0dd.sc(A)' These data form a pseudofunctor on Loc (cf. [Hgl] Definition 4.1).
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2. If : A — B isformally smooth of relative dimension g, and n = rank Qé/A, then
thereis an isomorphism, functorial in M € Mod gis:(A),

$sM = HI(Q ) ©a M).

3. If 9: A— Bisresidually finite then thereis an A-linear homomor phism, functorial
inM € Mod gis:(A),
Try: ¢uM — M,
whichinducesanisomorphism¢sM =~ Hom®™(B, M). For composablehomomor phisms

A% B Conehas Try, = Trg Try, under the isomor phismof part 1.
4. 1fB=Alt], then Tr, =res,_ .. t,:ap under theisomorphismof part 2.

PROCOF. Parts 1 and 2 are [Hgl] Theorem 6.12. Parts 3 and 4 follow from [Hgl]
Section 7. n

DEFINITION 6.3. SupposeL isaregular local ring of dimension g, with maximal ideal
r. Given ahomomorphism ¢: L — A'in Loc, define

K (A/L) := ¢4HIL,
the dual module of A relativeto L.

Since HIL isaninjective hull of thefield L/ x, it follows that K (A/L) is an injective
hull of A/ m (cf. [Hgl] Corollary 3.10).

COROLLARY 6.4. If : A— B is aresidually finite homomorphism, then there is an
A-linear homomor phism
Try, =Trg)a: K(B/L)— K(A/L).
Given another such homomorphismB — C, onehas Trc s = Trg a Trcg.

REMARK 6.5. One can show that when L is a perfect field, there is a functorial
isomorphism between K (A/L) = ¢4L above and the dual module K (A) of [Ye2], which
was defined via Beilinson completion algebras.

Suppose m: ¥ — Sis a formally finite type (f.f.t.) formaly smooth morphism.
Acco[ding to Proposition 1.11, X is a regular formal scheme. When we write n =
rank Q}WS we mean that nis alocally constant functionn: X — N.

LEMMA 6.6. Givenaf.f.t. morphismm: X — Sandapointx € X, let s := 7(x), and
define
ds(x) := dim Ogs — tr degy g k(x).

Then:
1. dsisacodimension function.
2. If 7 isformally smooth then

ds(x) = dim O, — rank Q% /s

https://doi.org/10.4153/CJM-1998-046-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-046-1

SMOOTH FORMAL EMBEDDINGS 885

PROOF. We shall prove 2 first. Let L := Ogs and A := Oy .. By Proposition 1.11,
n:=rankQz, =dimA—dimL +trdeg, ;. A/m.

We see that ds is the codimension function associated with the dualizing complex
R 4i:Ozx[N] (see Theorem 5.14).
Asfor 1, the property of being a codimension function is local. But locally there is
awaysaclosedimmersion X C ) with?) — Sformally smooth. "
We shall use the codimension function ds by default.

DEFINITION 6.7. Let m: X — Sbe a formally finite type morphism. Given a point
x € ¥, consider ¢: L = Og,9 — A = Oz, which is amorphism in Loc. Since L is a
regular local ring, thedual moduleK (A/L) isdefined. Let K 3 5(x) be the quasi-coherent
sheaf which is constant on m with group of sectionsK (A/L), and define

K‘g/s = P Kgs(.
ds(X)=q
In Theorem 6.14 we are going to prove that on the graded sheaf K>'( /s there is a
canonical coboundary operator 6 which makesit into residual complex.

DEFINITION 6.8. Let f: X — 2) be amorphism of formal schemes over S Define a
homomorphism of graded Oy-modules Trf:f*K(;é/S — Ktﬁ/s as follows. If x € X is
closed iniitsfiber andy = f(x), then A = Oy, — B = Oz, isaresidualy finite L-algebra
homomorphism. The homomorphism Trg a: K (B/L) — K (A/L) of Corollary 6.4 gives
amap of sheaves

Tre:f.K g s(¥) — Ky sy)-
If xisnot closed in its fiber, we let Tr; vanish on f*K;g/S(x).

PROPOSITION 6.9. 1. Tr; isfunctorial: if g:) — 3 is another morphism, then Try =
Trg Trs.

2. If f is formally finite (see Definition 1.18), then Tr¢ induces an isomor phism of
graded sheaves

3. If g: I — X isan open immersion, then thereis a natural isomorphism Kil/s o
oK /s

PrROOF. Part 3istrivial. Part 1 is aconsequence of Corollary 6.4. Asfor part 2, f is
an affine morphism, and fibers of f are all finite, so all points of X are closed in their
fibers. ]

Suppose a = (a, . .. . an) is a sequence of elements in the noetherian ring A. Let us

write IZ"OO(Q) for the subcomplex K =1(a), so we get an exact sequence

(6.10) 0—K, (@ —K, (@ —A—0.
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For any M" € D*(Mod (A)) let M be the complex of sheavesOx @ M" on X := SpecA,
andlet U C X bethe openset | J{a # 0}. Then

RMAU.M")~K. (@[l ®M

inD(Mod (A)). Infact K, (a) ® Ox isashift by 1 of the Cech complex corresponding to
the open cover of U.

LEMMA 6.11. Let A be an adic noetherian ring and M € D*(Mod (A)). Define
n:=SpfAandM =0, @ M".
1. Let x € U with corresponding open primeideal p C A. Suppose the sequence a
generatesp. Then
RMORCGeM " > RMLM, > K (@) @ M,

in D*(Mod (Ay)).
2. Supposey € U isan immediate specialization of x, and itsideal g has generators
a.b. Then
RMRLgeM ™ = K (@) @ KL, (D[1] @ M;
in D*(Mod (A,;)).
3. Assumed isa codimension function on 11 Then in the Cousin complex ERI M -
the map

Hg(X)REdiscM = Hs(y) REdiscM .
is given by applying Hi® to
(K@ @K (b) — K (a.b) @M.

PrROCF. Part 1followsimmediately from formula(4.4). Parts 2 and 3 aretrue because
Spec(A/p)q = {p.q}. .

Asawarm up for Theorem 6.14, hereis:

PrOPOSITION 6.12. If 7: X — Sisformally smooth, with n = rank QL . thenthereis

x/s
a canonical isomor phismof graded sheaves
K?.c'/S = EREdichn%/s[n]-
ThismakesK /s into aresidual complex.
PROCF. Take any point X, and with the notation of Definition 6.7 let p := dimL and

g := dimA. Then by Lemma6.11 part 1 and [Hg1] Proposition 2.6 we have a canonical
isomorphism

HIWRE Q% o] & HL QR = HIP(QR L @ HEL) = K (A/L).

According to Theorem 5.14 and Proposition 5.10, ER[discflg /S[n] isaresidual complex.
]

In particular taking X = Swe get Ké/s =EQs.
LEMMA 6.13. SupposeX C X and X C §) ares.f.e’sandf: X — ) isa morphism of

embeddings. Then Tri: K ; — K@ is a homomor phism of complexes.
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ProoF. Factoring f through (X xs?)) /x We can assume that f is either a closed
immersion, or that it isformally smooth. At any rate f is an affine morphism, so we can
take X = Spf B, §) = Spf Aand S= SpecL. By Theorem 2.6 we can suppose one of the
following holds: (i) B =~ AJ[[t]] for a sequence of indeterminatest = (t1,....t), and
A — Bistheinclusion; or (ii) A =~ BJ[[t]] and A — B is the projection modulo t. We
shall treat each case separately.

(i) Choose generators a for a defining ideal of A. Let m := rankf)}VL and

n:= rankf)é/L, son = m+|. Define an Adinear map p: K ,(0) @ f)'B/A[I] — Aby
p(tCL-~Ddt) = 1and p(tidt) = 0if i # (—1.....—1). Extend p linearly to

K@) © QY In] — K@ © Q) [
This p shedfifiesto give amap of complexesin Ab (X)
PR (@) @ QF dn — K@) © QF .

By Lemma 6.11 and [Hgl] Section 5, for any point x € X, HI¥(5) recovers Try:
Kz/s(¥) — Ky,s(X). Thus Try = E(p) is ahomomorphism of complexes.
(ii) Now | = m—n. Takeato be generators of adefining ideal of B. Define a B-linear

PK L@ © Q) [N — Ko@) © QF) [m.

Againthisextendsto amap of complexes of sheavesp’in Ab (X), and checking punctually
we see that Tr; = E(p). n

THEOREM 6.14. Quppose X — Sisa finite type morphism. Thereisa unique operator
6: Ky s K ;‘;; satisfying the following local condition:
(LE) Suppose U C X is an open subset, and U C U is a smooth formal em-
bedding. By Proposition 6.9 thereis an inclusion of graded Oy -modules
Ky |/(S|U c Kl_} /s Thens lu is.c.ompatible with the coboundary operator
onK} /s coming from Proposition 6.12.

Moreover (K)'(/S. ) isaresidual complexon X.

Proor. Defined|y using (LE). Accordingto Lemma6.13, 6|y isindependentof 11, so
it glues. We get abounded complex of quasi-coherent injectiveson X. By Proposition 6.12
it followsthat it is residual. ]

REMARK 6.15. This construction of K X /s actually allows a computation of the oper-
ator 6, given the dataof alocal embedding. Theformulaisin part 3 of Lemma6.11, with
M= Q) /L[n] . Theformulafor changing the embedding can be extracted from the proof

of Lemma 6.13. Of course when rank Q1

/s is high these computations can be nasty.
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REMARK 6.16. The recent papers [Hg2], [Hg3] and [LS2] also use the local theory
of [Hgl] as a starting point for explicit constructions of Grothendieck Duality. Their
constructions are more general than ours: Huang constructs f'M * for a finite type
morphism f: X — Y and a residual complex complex M *; and Lipman-Sastry even
alow M " to be any Cousin complex.

7. Thetrace for finite morphisms. In this section we prove that Trs is a homo-
morphism of complexes when f is a finite morphism. The proof is by a self contained
calculation involving Koszul complexes and a comparison of global and local Tate
residue maps. In Theorem 7.10 we compare the complex K /s to the sheaf of regular
differentials of Kunz-Waldi. Throughout Sis aregular noetherian scheme.

THEOREM 7.1. Supposef:X — Yisfinite. Then Try: f.K s — K gisahomomor-
phism of complexes.

The proof appears after some preparatory work, based on and inspired by [Hgl]
Section 7.

REMARK 7.2. In Section 8 we prove a much stronger result, namely Corollary 8.3,
but its proof isindirect and relies on the Residue Theorem of [RD] Chapter VII. We have
decided to include Theorem 7.1 because of its direct algebraic proof.

Let A be an adic noetherian ring with defining ideal a. Suppose p € A[t] isamonic
polynomial of degreee > 0. Define an A-algebra

(7.3) B:=limA[] /AL P

Let b := Ba + Bp; then B =~ lim_; B/, so that B is an adic ring with the b-adic
topology. The homomorphism ¢: A — Bisf.f.t. and formally smooth, and Qé/A =B-dt.
Furthermore p € Bisanon-zero-divisor, and by long division we obtain anisomorphism

(7.4) HpB=H (K (D ©B) =P P A- v

1<i 0<j<e a
Define an A-linear homomorphism Ress H(lp)fzg/A — Aby

tjdt) ::{1 ifi=1,j=e—1

ReSs/ ( B 0 otherwise.

We call Resg) 5 the global Tate residue. It gives rise to a map of complexesin Mod (A):
(7.5) Resg/a: K., (P)[1] © OF o — A.

Note that both the algebra B and the map Resg /4 depend on't and p.
Suppose ¢ C B isan open prime idea and p = ¢~*(q) C A. Then the local homo-
morphism ¢,: A, — B, isformally smooth of relative dimension 1 and residually finite.
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Letg:=q mAp[g, and denote by ¢ theimage of G in k(p)[t], so k(p)[t] /a = k(q). For a
polynomial q € A,[t] let g beitsimagein k(p)[t]. Suppose q satisfies:

(7.6) gismonic, and theideal (q) C k(p)[t] is g-primary.

Thenéq q= \/éq ~(p.0) C Bq,and
B, > limA,[t] /&' =~ limA,[t] /A[t] - .
—l —1
Hence q is a non-zero-divisor in B, and B, /B, - q is a free A,-module with basis
1t,..., t4~1, where d = degq. We see that a decomposition like (7.4) exists for H{, B, .
Suppose we are given a discrete Ap—module M. Then one gets

. - tidt
1 1 ~ 1 1 ” ~ -
Hq(Qéq/Av @4, M) = (H(q)Qéq/;\‘) M= G — oM

1<i 0< j<d
(cf. [Hgl] pp. 41-42). Define the local Tate residue map
Resg /3, Hg(fzéq/;\‘ @3, M) =M
by .
. (tJdt®m) — {m ifi=1,j=d-1
WA g 0 otherwise.
Clearly Resy 5 isfunctorial in M, and it dependsont.

LEMMA 7.7. Resg 5 isindependentof q. It coincideswith theresiduemapres g 4,
of (6.1), i.e. of [Hgl] Definition 8.1.

PrROOF. Suppose the polynomials g;, gz € Ap[t] satisfy (7.6). Then so does gz :=
010p. Let degqh = dy, and let ReSéq/A“;qh be the residue map determined by gy. Pick any
1<iand0<j < di, andwrite g}, = =\ at', s0 ajq, = 1. By the rules for manipulating
generalized fractions (cf. [Hgl] Section 1) we have

tdt@my % tMdt ® am
(7.8) Reséq /At (Tl) ) ; Reséw/Ap;% ( q's )

Ifi >2o0rj <d;—2onehasl +j <ids — 2, and therefore each summand of the right
side of (7.8) is0. Wheni = 1 andj = d; — 1 the only possible nonzero residue there is
for | = dz, and this residueis m. We concludethat Ress 5 .o = Resg /4 .q,- Clearly also

Reséa//:\v?% = Reséq/Av?QZ' . L .
If wetake g suchthat (Q) = g, thisis by definition the residue map of (6.1). ]

LEMMA 7.9. Let F be the set of prime ideals in B/(p) lying over p. Then for any
M € Mod gisc(Ap) one has

(H(lp)fzé/A) AM =~ @FHé,(fzé /A, A, M),
qre q
and w.r.t. thisisomor phism,

Resg/a®1= 3 Ress, /a, -
q'eF
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ProoOF. The isomorphism of modules is not hard to see. Let p = I1y<r Py be the
primary decompositionin k(p)[t] (all the p,; monic). By Hensel’s Lemmathis decompo-
sition lifts to p = [Iyrer Py IN Ap[t]. Since each polynomial p, satisfies condition (7.6)
for the prime ideal ', we can useit to calculate Ress ,/a,- n

PrROOF OF THEOREM 7.1. Thisclaimislocal onY, sowe may assume X, Y and Sare
affine, say X = Speclg, Y = Spec,& and S = SpecL. By the functoriality of Tr we can
assumeB = K[b] for someelement b € B. Itwill sufficetofind suitables.f.e’sX ¢ ¥ and
Y c 2) with amorphism f: ¥ — 9) extending f, and to check that Tr;: ﬂK_%/S — K:‘;)/S
commutes with 4.

Pick any sf.e. Y C ) = Spf A, so a := Ker(A — A) isadefiningideal. Let Alt] — B
be the homomorphism t — b. Choose any monic polynomial p(t) € A[t] s.t. p(b) = 0,
and definethe adic ring B asin formula (7.3). So X := Spf B isthe s.f.e. of X we want.

Let (Yo. Y1) be an immediate specialization pair in Y, and let F; := f~1(y;) C X. Let
po C p1 C Abethe primeideals corresponding to (yo, y1). Pick asequence of generators
afor pg, and generators (a, &) for py. Let m:= rank fz}\/L.

Consider the commutative diagram of complexes

. S A Resg/a®l | S A
Ko(a P @ K@) @ (@3, —— Kio@ @ K@) @ Q) e,

J J

) N Resg/a @1 . N
Koa.pbe@rb, —— K.@a)e@ly,

gotten from tensoring the map Resg 4 of (7.5) with A, @ QQ/L and the various K ..
Applying H' to this diagram, wherei := dimAm, and using Lemmas 6.11 and 7.9 we
obtain a commutative diagram

~ P ZRes PP
Daocro H(}o(Qé‘lo/Avo ® Hlpolgglo/l_) H;?olQAmpo/L

~ A ZRes A
®©qyer, Hgl(Qéql i, OHLQR ) T HLQR

In this diagram Res = Resy /a,, ©C Using the definitions this is the same as

Tr,
Droer, 1K x/s0) —— Ky /s(¥0)

| |
Tr
@xleFlf*K.%‘/s(Xl) o K:J)/S(Yl)-
|
According to [KW], if m: X — Sis equidimensional of dimension n and generically
smooth, and X is integral, then the sheaf of regular differentials &y /s (relative to the

DGA Q) exists. It is a coherent subsheaf of Qo K"
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THEOREM 7.10. Supposer: X — Sisequidimensional of dimensionnandgenerically
smooth, and X isintegral. Then K7 = /5= k(x) K’ and

s =H "Ky/s
First we need:

LEMMA 7.11. Suppose Lo — Ay — Bg are finitely generated field extensions,
with Lo — Ag and Lo — Bo separable, Ap — By finite, and trdeg, Ao = n. Then
K (Ao/Lo) = RO/L s K (Bo/Lo) = ng/Lo' and TrBo/AO: K (Bo/Lo) — K (Ao/Lo) coin-

cideswith oB /Ao go/LO — QQO/LO of [Ku] Section 16.

PROOF. Sincely — Agisformally smooth, weget K (Ao/Lo) = ng/Lo' Thesamefor
Bo Consider thetrivial DGA Lg. Then the universal By-extension of Q'A0 Lo is Qéo Ly SO

BO /Ao makes sense. To check that aB /Ao = Trg,/a, WE MaY reduceto the cases Ag — Bg
separable, or purely inseparable of prime degree, and then use the properties of the trace.

PROOF OF THE THEOREM. Given any pointx € X thereisan open neighborhood U of
x which admits a factorization 7|y = hgf, with f: U — Y an openimmersion; g:Y — Z
finite; and h: Z — S smooth of relative dimension n (in fact one can take Z open in
A" x ). Thisfollowsfrom quasi-normalization ([Ku] Theorem B20) and Zariski’'sMain
Theorem ([EGA] 1V 8.12.3; cf. [Ku] Theorem B16). We can also assume Y,Z, S are
affine, say Y = SpecB, Z = Spec A and S= SpecL. Let uswrite & / =T(Y, wY/S) and
KB/L =T (Y, K, v/s)- Also let uswrite By := k(Y), Ao := k(Z) and Lo := k(S)

By [KW] Section 4,

gy = {8 € QgL | a 1a,(03) € Qp ) fordlb e B}
One has
B/L =K (Bo/Lo) = QAO/LO
and the same for A. According to Proposition 6.12 there is a quasi-isomorphism
Oplnl — K, . From the commutative diagram

A/L:
6 —n+
0 — HnKB/L - KB/nL - KB/nLl

l J L [

5 _
0 ’ QR/L ’ KA/L ’ KA/Tl

and the isomorphism
inducedby Tryweconcludethat & = H™"Kg, SmcewY sandH"K{ Sarecoherent
sheavesand f: U — Y is an openimmersion, thlsshowsthat wys=H" ((U/S
COROLLARY 7.12. If X isa Cohen-Macaulay scheme then the sequence

0— (:);/S—> K;/ns—> cee— K;(n/s—> 0

(m=dim9) isexact.
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PrROOF. X is Cohen-Macaulay iff any dualizing complex has a single nonzero coho-
mology sheaf. ]

ExXAMPLE 7.13. Suppose X is an (n + 1)-dimensional integral scheme and m: X —
SpecZ is afinite type dominant morphism (i.e. X has mixed characteristics). Then 7 is
flat, equidimensional of dimension n and generically smooth. So

g7 = anK)&/z C Qo
REMARK 7.14. In the situation of Theorem 7.10 there is a homomorphism
called the fundamental class of X/S According to [KW], when 7 is flat one has
CX(Q;‘(/S) - &;‘(/S; so Cy: Q;‘(/S[n] — K>'</S is a homomorphism of complexes.

REMARK 7.15. In [LS2] Theorem 11.2 we find a stronger statement than our Theo-
rem 7.10: Sisonly required to bean excellent equidimensional schemewithout embedded
points, satisfying Serre's condition S,; and = is finite type, equidimensional and generi-
cally smooth. Moreover, for 7 proper, the trace is compared to the integral of [HS] (cf.
Remark 8.4). The price of thisgenerality isthat the proofsin [L S2] are not self-contained
but rely on rather complicated results from other papers.

8. The isomorphism K>'</S ~ 7'Os. In this section we describe the canonical
isomorphism between the complex K /s constructed in Section 6, and the twisted

inverseimage 7' Os of [RD]. Recall that for residual complexesthereisan inverseimage
72, and K s /s = Ex'Os, where E is the Cousin functor corresponding to the dualizing

complex 7'Os. For an Smorphism f: X — Y denote by Tri° the homomorphism of
graded sheaves
Tt Ky s f*wa$Ké/S — 'Ky

of [RD] SectionV1.4.

THEOREM 8.1. Let m: X — Sbe a finite type morphism. Then there exists a unique
isomor phism of complexes

C)(: KX/S — WAKS/S

such that for every morphismf: X — Y the diagram

K. /K

X/S Y/S

8.2) e | & |

RD
Tr;

f*”)%Ké/s ’ ”eKé/s
is commutative.

The proof of Theorem 8.1 is given later in this section, after some preparation. Here
is one corollary:
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COROLLARY 8.3. If f: X — Y is proper then Tr; is a homomorphism of complexes,
and for any M " € Dg(Mod (X)) the induced morphism

f.Homx(M ", K)'(/S) — Hom y(Rf,M ", K{(/S)

is an isomor phism.
ProOF. Use[RD] Theorem VI1.2.1 and Corollary VI11.3.4. ]

REMARK 8.4. In[Hg3] and [LS2] the authors prove that in their respective construc-
tions the trace Tr;:f,f'N ~ — N * is a homomorphism of complexes for any proper
morphism f and residual (resp. Cousin) complex N * (cf. Remark 6.16).

Let Y = SpecA be an affine noetherian scheme, X := A" X Y = SpecAlt;, ..., tn]
and f: X — Y the projection. Fix apoint x € X, and lety := f(X), Zo := {X},. ASSume
Zo — Yisfinite.

LEMMA 8.5. Thereexistsan openset U C Y containing y and a flat finite morphism
gY — Ust:
(i) g~(y) isonepoint, sayy'.
(i) Define X' := A" x Y, and let f": X' — Y/, h:X’ — X. Then for every point
X' € h™1(x) thereis some section oy: Y — X’ of f’ with X' € gy (Y').

ProOF. Choose any finite normal field extension K of k(y) containing k(x). Define
recursively open sets U; = SpecA; C Y and finite flat morphisms g;: Y; = SpecA/ — U,
st. g 1(y) = {yi} and k(y;) C K, asfollows. Start with Ug = Yo := Y and Aj = A := A.
If k(yi) # K take some bekK-— k(y) and let p € k(y;)[t] be the monic irreducible
polynomial of b. Choose a monic polynomial p € Oy, y,[t] lifting p. There is some open
set Ujs1 = SpecAus C Ui st p € (A @ Aso)[t]. Define A, = (A @a Au)lt]/(p) and
Yis1 = SpecAl, ;. Fori = r this stops, and k(y;) = K.

For every point X' € Spec(K @ky) k(x)) and1 <i <nletay €k(X) = k(y;) bethe
imageoft;,andleta; v € OYr_yr bealifting. TakeanopensetU = SpecAr+1 C U, s.t. each
aw € A= (A ®a A1), and define Y’ := SpecA'. So for each X' the homomorphism
B = A'[t] — A, t — a;x givesthe desired section y: Y — X', n

Let Z; be the i-th infinitesimal neighborhood of Zp in X, so fi:Z; — Y is afinite
morphism. Suppose we are given a quasi-coherent Oy-module M which is supported on
{y}. One has

HZT)(Q;/Y @ f*M) =~ IiiLn Ext}(Oz, QQ/Y @ f*M)

and by [RD] Theorem V1.3.1
Extg‘((Oz,.Qg‘(/Y®f*M) =H%'M.

Note that we can also factor f; through P" x Y, so f; is projectively embeddable, and by
[RD] Theorem111.10.5 we have amap

(8.6) TrfRD:f*HZ';(QQ/Y @f*M)— M.
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Now defineA := Oy, andB := O&x,with n C Bthemaximal ideal and ¢ = f*: A — B.
Set M = My, which is a discrete A-module. We then have a natural isomorphism of
A-modules
(8.7) (f*HZ‘;(QQ/Y @ f*M ))y =~ H(Q 4 @A M) = ¢:M.

LEMMA 8.8. Under theisomorphism(8.7),
TrfP =Try: M — M.

PROCF. The proof isin two steps.

Step1l. Assumethereisasectiono:Y — Xtof with x € Wy = o(Y). The homomor-
phism o*: B = Alt] — A choosesa = o*(t;) € A, so after the linear change of variables
ti — t — & we may assumethat o is the O-section (i.e. Ow, = Ox/Ox - t). Let W; be
the i-th infinitesimal neighborhood of Wp. Sincef: W, — Y is projectively embeddable,
thereis atrace map

TriP: £ H G Q% v — O

For any a € Aone has

(8.9) Trfo(w):{a ifi=(1....1)

-t 0 otherwise.

This follows from properties R6 (normalization) and R7 (intersection) of the residue
symbol ([RD] Section 111.9). Alternatively this can be checked as follows. Note that

TrRP factorsthrough Rf, Q7, - Forthecasei = (1,.... 1) use [RD] Proposition [11.10.1.
Y

Fori#(4,..., 1) consider a change of coordinatest — Aitj, A\j € A. By [RD] Corol-
lary 111.10.2, TrRP isindependent of homogeneous coordinates, so it must be 0.
Now since Wp N f~1(y) = Zo we have

HA@Q} v © 1" M) = HJ () ¢ © M)

and so the formula for Tri® in (8.6) is given by (8.9). But the same formulais used in
[Hol] to define Tr,.

Step2. Thegeneral situation: takeg: Y — YasinLemma8.5,andset Z[) := ZyxvY'.
The flatness of g implies there is a natural isomorphism of Oy.-modules

gt HZ Q% vy @ T*M) = f*’HZ’g(Q”,/Y, @ f"M’)
(where M’ := g*M ) and by [RD] Theorem I11.10.5 property TRA4 we have
(8.10) g*(TrRP) = TrRP .
Let A :=Oyy > A @a A, s0A— A’ isfiniteflat. Therefore

(8.11) Ao, H’;(Qg/A @aM) = P Hg,(ﬁgn,/;\, @z M)).

! !
WezZj
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HereM’ := M > A’ @3 M and I,y B, isthe decomposition of A’ @a B tolocal rings.
Write ¢/,: A — B, Direct verification shows that under the isomorphism (8.11),
(8.12) 10T, = 3 Tr, .

n’ez! W
0

Since A — A is faithfully flat it follows that M — M’ is injective. In view of the
equalities (8.10) and (8.12), we conclude that it sufficesto check for each n’ = X' € Zy
that Try, = TriP on H?l/(Qg", i On M"). But thereis a section 0. Y — X, so we can
apply Step 1. ]

PROOF OF THEOREM 8.1.

STEP 1 (UNIQUENESS). Suppose ¢: K)'</S — wAKS'/S is another isomorphism sat-
isfying Tr, = TrR° 7.(¢). Then ¢ = alx for some a € I'(X, 0%), and by assumption
for any closed point x € X and o € KX/S(x) there is equality Tr.(«) = Tr.(aa). Now
writing s := m(X), it's known that

Hom OSS(KX/S(X)s KS/S(S))

isafree Oy x-module with basis Tr,.. Thereforea = 1 in Ox . Becausethis is true for all
closed pointswe seethat a = 1.

SteP2. AssumeX = A" x Sandf = . Inthis casethereisa canonical isomorphism
of complexes
Kyss 2 EQY dn] o Er'Os = 7Kg
(cf. [RD] Theorem V1.3.1 and our Proposition 6.12), which we useto define(x: Ky s

K¢ Considerx € X, Z = {X}eq» S := 7(x) and assume x is closed in 7~1(s). By
replacing Swith a suitable open neighborhood of s we can assume Z — Sisfinite. Then
we are allowed to apply Lemma 8.8 with Y = § M = Kg/g(9). It follows that (8.2)

commuteson . Ky s(x) € m.Ky /s
Step 3. Let X be any finite type S.scheme. For every affine open subscheme U C X
we can find a closed immersion h:U — Ad. Write Y := Al and let 7y and 7y be the

structural morphisms. Now Try, induces an isomorphism
Ky/s = Homy(Ou. Ky 9.
and TrRP induces an isomorphism
K52 Homy(Ou, 74 Kg)9).

So the isomorphism ¢y of Step 2 induces an isomorphism (y: K(J/s — wﬁKé/S, which
satisfies Trr, = Tri> my.(u). According to Step 1 the local isomorphisms ¢y can be

Ty

glued to aglobal isomorphism (x.

https://doi.org/10.4153/CJM-1998-046-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-046-1

896 AMNON YEKUTIELI

Sterp4. Letf: X — Ybeany Smorphism. To check (8.2) we may assume Xand Y are
affine, andinview of Step3wemay infactassumeY = AMxSand X = A"xY ~ A™Mx S,
Now apply Lemma8.8 withx € X closedinitsfiberand M := Ky g(y). "
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