ON POINT-SYMMETRIC TOURNAMENTS

BY
BRIAN ALSPACH ${ }^{1}$)

1. Introduction. A tournament is a directed graph in which there is exactly one arc between any two distinct vertices. Let $a(T)$ denote the automorphism group of T. A tournament T is said to be point-symmetric if $a(T)$ acts transitively on the vertices of T. Let $g(n)$ be the maximum value of $|a(T)|$ taken over all tournaments of order n. In [3] Goldberg and Moon conjectured that $g(n) \leq \sqrt{3}{ }^{n-1}$ with equality holding if and only if n is a power of 3 . The case of point-symmetric tournaments is what prevented them from proving their conjecture. In [2] the conjecture was proved through the use of a lengthy combinatorial argument involving the structure of point-symmetric tournaments. The results in this paper are an outgrowth of an attempt to characterize point-symmetric tournaments so as to simplify the proof employed in [2].

The construction discussed in $\S 2$ was used in [1] as a means of producing regular tournaments. The analogous construction for graphs was employed by J. Turner in [6] independent of any knowledge of [1]. There is an obvious generalization to directed graphs.

We list some of the terminology used in this paper. If there is an arc from the vertex u to the vertex v in T, we write $(u, v) \in T$. If S is a subset of the vertex set of T, then $\langle S\rangle$ denotes the subtournament whose vertex set is S. We use the symbol " \simeq " to denote isomorphism between tournaments. The sets $\mathcal{O}(u)=\{v \in T:(u, v) \in T\}$ and $\mathscr{I}(u)=\{v \in T:(v, u) \in T\}$ are called the outset and inset of u, respectively. The score $s(u)$ of the vertex u is given by $s(u)=|\mathcal{O}(u)|$. The score sequence of T is the sequence $\left(s_{1}, s_{2}, \ldots, s_{|T|}\right)$ of scores of the respective vertices of T written so that $s_{1} \leq s_{2} \leq \cdots \leq s_{|T|}$. Throughout this paper all subscripts are understood modulo $2 n+1$.
2. Main results. Consider a fixed integer of the form $2 n+1, n \geq 1$. Let $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of n distinct integers chosen from $1,2, \ldots, 2 n$ with the property that $\alpha_{i}+\alpha_{j} \neq 2 n+1$ for any two α_{i}, α_{j} in S. Construct a directed graph T with vertices $v_{0}, v_{1}, \ldots, v_{2 n}$ as follows: There is an arc from v_{i} to v_{j} if and only if $j-i \equiv \alpha_{k}(\bmod 2 n+1)$ for some $\alpha_{k} \in S$. It is not difficult to see that T is a regular tournament of degree n. Any tournament that is constructible in the above manner is called a rotation tournament and S is called the symbol of the rotation tournament.

Received by the editors June 27, 1969.
$\left.{ }^{1}\right)$ This research was supported by the National Research Council.

It is easy to see that the permutation $\left(v_{0} v_{1} \ldots v_{2 n}\right)$ is an automorphism of T and this proves the following result.

Proposition 1. A rotation tournament is a point-symmetric tournament.

Moreover, if T is a tournament of order m and the automorphism group of T possesses an m-cycle ($v_{0} v_{1} \ldots v_{m-1}$), then T is a rotation tournament with symbol $S=\left\{j:\left(v_{0}, v_{j}\right) \in T\right\}$. The following proposition has been proved.

Proposition 2. A tournament T of order m is a rotation tournament if and only if $a(T)$ possesses an m-cycle.

We are interested in the question of whether or not the construction given above produces all the point-symmetric tournaments. By Propositions 1 and 2 an equivalent question is the following: If T is a point-symmetric tournament of order $2 n+1$, does $a(T)$ possess a $(2 n+1)$-cycle? In the case that $2 n+1$ is a prime the latter question is easy to answer. For if $2 n+1$ is a prime and $a(T)$ acts transitively on the vertices of T, then $2 n+1$ divides $|a(T)|$ and, thus, $a(T)$ contains a ($2 n+1$)-cycle [6, Theorem 3.2 and Exercise 3.12]. We have proved the following result.

Theorem 1. A tournament T of prime order is point-symmetric if and only if it is a rotation tournament.

The first non-prime case to consider is $2 n+1=9$. There are 15 regular tournaments of order 9 of which three are point-symmetric. It can be verified directly that all three of them are also rotation tournaments. However, we shall give a proof that every point-symmetric tournament of order 9 is a rotation tournament as it employs a technique that is useful for point-symmetric tournaments of larger composite order.

Let T be a point-symmetric tournament of order 9 . Let u_{0} be a fixed vertex of T and let $a_{u_{0}}$ denote the stabilizer of u_{0}, i.e., $a_{u_{0}}=\left\{\sigma \in a(T): \sigma\left(u_{0}\right)=u_{0}\right\}$. Notice that $a_{u_{0}}$ is, in a very natural way, the automorphism group of $\left\langle T-u_{0}\right\rangle$. Since $\mathcal{O}\left(u_{0}\right)$ contains four elements and the orbits of the automorphism group of any tournament have odd cardinality because every permutation in an odd order permutation group is a product of disjoint cycles of odd length and any automorphism group of a tournament has odd order by [4], $a_{u_{0}}$ must fix at least one element of $\mathcal{O}\left(u_{0}\right)$. Let u_{1} be a vertex of $\mathcal{O}\left(u_{0}\right)$ fixed by $a_{u_{0}}$. Therefore, if $H=\left\{\sigma \in a(T): \sigma\left(u_{0}\right)=u^{\prime}, u^{\prime}\right.$ a fixed vertex of $T\}$, then each $\sigma \in H$ maps u_{1} to the same vertex of T. In particular, every $\sigma \in a(T)$ that maps u_{0} to u_{1} maps u_{1} to the same vertex of T, call it u_{2}. Since $\left\langle T-u_{0}\right\rangle \simeq\left\langle T-u_{1}\right\rangle$, each $\sigma \in a(T)$ that maps u_{1} to u_{2} maps u_{2} to the same vertex of T, call it u_{3}. Either $u_{3}=u_{0}$ or we can continue this process until we obtain a sequence $u_{0}, u_{1}, \ldots, u_{j}$ of distinct vertices of T such that every $\sigma \in a(T)$ for which $\sigma\left(u_{0}\right)=u_{1}$ also satisfies $\sigma\left(u_{1}\right)=u_{2}, \sigma\left(u_{2}\right)=u_{3}, \ldots, \sigma\left(u_{j-1}\right)=u_{j}$, and $\sigma\left(u_{j}\right)=u_{0}$. If $u_{0}, u_{1}, \ldots, u_{j}$ does not exhaust all the vertices of T, pick a $u_{0}^{\prime} \in T$ not appearing in the sequence. For every $\tau \in a(T)$ such that $\tau\left(u_{0}\right)=u_{0}^{\prime}$ we also have $\tau\left(u_{1}\right)=u_{1}^{\prime}, \ldots$,
$\tau\left(u_{j}\right)=u_{j}^{\prime}$ with $\left\{u_{0}, u_{1}, \ldots, u_{j}\right\} \cap\left\{u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{j}^{\prime}\right\}=\varnothing$. Hence, either $u_{0}, u_{1}, \ldots, u_{j}$ exhausts all the vertices of T or the vertices of T can be decomposed into mutually disjoint sequences of vertices of T having the same property as $u_{0}, u_{1}, \ldots, u_{j}$ with respect to automorphisms and such that $\left\langle\left\{u_{0}, u_{1}, \ldots, u_{j}\right\}\right\rangle \simeq\left\langle\left\{v_{0}, v_{1}, \ldots, v_{j}\right\}\right\rangle$ via the isomorphism $u_{0} \rightarrow v_{0}, \ldots, u_{j} \rightarrow v_{j}$, where $v_{0}, v_{1}, \ldots, v_{j}$ denotes any of the other sequences.

If $u_{0}, u_{1}, \ldots, u_{8}$ exhausts all nine vertices of T, then $\sigma=\left(u_{0} u_{1} \ldots u_{8}\right)$ is an automorphism of T. There is only one possibility remaining, namely, $a(T)$ is imprimitive with three blocks (see [7]), say $\left\{u_{0}, u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}, u_{5}\right\}$, and $\left\{u_{6}, u_{7}, u_{8}\right\}$. Every $\sigma \in a_{u_{0}}$, the stabilizer of u_{0}, fixes u_{0}, u_{1}, and u_{2}. Suppose some $\sigma \in a_{u_{0}}$ moves one of the other vertices. Without loss of generality assume $\sigma\left(u_{3}\right) \neq u_{3}$. Then either $\sigma\left(u_{3}\right)=u_{4}$ or $\sigma\left(u_{3}\right)=u_{5}$ for otherwise σ would contain an even cycle in its disjoint cycle decomposition which cannot happen.

By considering what happens to the remaining vertices of T under any automorphism containing the 3 -cycle (u_{0}, u_{1}, u_{2}), we see that all arcs between two distinct 3-blocks must have the same orientation. Therefore, $\left(u_{0} u_{3} u_{6} u_{1} u_{4} u_{7} u_{2} u_{5} u_{8}\right)$ $\in a(T)$ and T is a rotation tournament.

We may assume every $\sigma \in a_{u_{0}}$ fixes every vertex of T, that is, $\left|a_{u_{0}}\right|=1$ which implies $|a(T)|=9$. To within isomorphism there are two transitive permutation groups of order nine in S_{9}. One is cyclic and generated by a 9 -cycle and, hence, corresponds to a rotation tournament. The other is generated by two permutations σ_{1}, σ_{2}, of the form $\sigma_{1}=(123)(456)(789)$ and $\sigma_{2}=(147)(258)(369)$. By using the process described in the addendum to [3] it can be shown that the latter permutation group is not the automorphism group of a tournament of order nine. Therefore, every point-symmetric tournament of order nine is a rotation tournament.

We now consider the point-symmetric tournaments of order fifteen. Let a_{u} denote the stabilizer of the vertex u in a point-symmetric tournament T of order fifteen. If the orbits of a_{u} are $\{u\}, \mathcal{O}(u)$, and $\mathscr{I}(u)$, then the transitive constituents of a_{u} [see 7] in $\mathcal{O}(u)$ and $\mathscr{I}(u)$ must each contain a 7 -cycle. Therefore, $\langle\mathcal{O}(u)\rangle$ and $\langle\mathscr{I}(u)\rangle$ are both rotation tournaments of order seven of which there are two to within isomorphism. By considering the four possible cases for $\langle\mathcal{O}(u)\rangle$ and $\langle\mathscr{I}(u)\rangle$ it can be shown through a tedious argument that it is impossible for the orbits of a_{u} to be $\{u\}, \mathcal{O}(u)$, and $\mathscr{I}(u)$. Therefore, a_{u} fixes a point of either $\mathcal{O}(u)$ or $\mathscr{I}(u)$. We assume without loss of generality that a_{u} fixes a point of $\mathcal{O}(u)$ since T and T^{*} have the same automorphism group where T^{*} denotes the converse tournament of T.

We proceed as before via some fixed point of $\mathcal{O}(u)$ under a_{u}. If $a(T)$ is primitive, then T must be a rotation tournament. Otherwise there are three 5 -blocks or five 3-blocks. Suppose we have the blocks $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\},\left\{u_{6}, u_{7}, u_{8}, u_{9}, u_{10}\right\}$, and $\left\{u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\right\}$. Let $B_{1}=\left\langle\left\{u_{1}, u_{2}, \ldots, u_{5}\right\}\right\rangle, B_{2}=\left\langle\left\{u_{6}, u_{7}, \ldots, u_{1 n}\right\}\right\rangle$, and $B_{3}=\left\langle\left\{u_{11}, u_{12}, \ldots, u_{15}\right\}\right\rangle$. If any automorphism $\sigma \in a_{u_{1}}$, the stabilizer of u_{1}, moves some vertex in B_{1} or B_{2}, then following the argument used in the order nine case
we see that all arcs between two distinct B_{i} 's must have the same orientation and, therefore, the permutation $\left(u_{1} u_{6} u_{11} u_{2} u_{7} u_{12} \ldots u_{5} u_{10} u_{15}\right) \in a(T)$. Now suppose we have the decomposition $\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{4}, u_{5}, u_{6}\right\},\left\{u_{7}, u_{8}, u_{9}\right\},\left\{u_{10}, u_{11}, u_{12}\right\}$, and $\left\{u_{13}, u_{14}, u_{15}\right\}$ where each set of three vertices forms a 3-block in T. Notice that $a(T)$ induces an odd order transitive permutation group on the five 3-blocks as the object set. Since no odd order transitive subgroup of S_{5} contains a 3-cycle, there is no $\sigma \in a(T)$ that maps exactly three of the 3-blocks onto different 3-blocks. If any $\sigma \in a_{u_{1}}$ moves some vertex in another 3-block, say $\sigma\left(u_{4}\right) \neq u_{4}$, then by the preceding remark and the fact there are no even cycles appearing in the cycle decomposition of σ, we have that $\sigma\left(u_{4}\right)=u_{5}$ or u_{6} and all the arcs between $\left\langle\left\{u_{1}, u_{2}\right.\right.$, $\left.\left.u_{3}\right\}\right\rangle$ and $\left\langle\left\{u_{4}, u_{5}, u_{6}\right\}\right\rangle$ have the same orientation. By examining σ 's action on the remaining three 3-blocks we see that all the arcs between two distinct 3-blocks have the same orientation. Thus there is a 15 -cycle in $a(T)$. Therefore, we are left with the case that $\left|a_{u_{1}}\right|=1$, i.e., $|a(T)|=15$. However, to within isomorphism there is only one transitive permutation group in S_{15} of order fifteen and it is generated by a 15 -cycle. Therefore, every point-symmetric tournament of order fifteen is a rotation tournament.

Consider the following three 7×7 matrices:

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \\
A_{3}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Let T be the tournament of order twenty-one whose incidence matrix is given by
$\left(\begin{array}{c|c|c}A_{1} & A_{2} & A_{3} \\ \hline A_{3} & A_{1} & A_{2} \\ \hline A_{2} & A_{3} & A_{1}\end{array}\right)$.

The score sequence of $\left\langle\mathcal{O}\left(u_{1}\right)\right\rangle$ is $(3,3 \quad 4,4,4,5,5,6,7)$ and the four vertices
with score four form a transitive quadruple implying the automorphism group of $\left\langle\mathcal{O}\left(u_{1}\right)\right\rangle$ is the identity group. Similarly, the score sequence of $\left\langle\mathscr{I}\left(u_{1}\right)\right\rangle$ is $(2,3,4,4$, $5,5,5,5,6,6$) and the four vertices with score five form a strongly connected quadruple implying the automorphism group of $\left\langle\mathscr{I}\left(u_{1}\right)\right\rangle$ is the identity group. In particular, $\left|a_{u_{1}}\right|=1$.

It is easy to check that the two permutations

$$
\sigma=\left(u_{1} u_{8} u_{15}\right)\left(u_{2} u_{9} u_{18}\right) \ldots\left(u_{7} u_{14} u_{21}\right)
$$

and

$$
\tau=\left(u_{1} u_{7} u_{6} u_{5} u_{4} u_{3} u_{2}\right)\left(u_{8} u_{13} u_{11} u_{9} u_{14} u_{12} u_{10}\right)\left(u_{15} u_{18} u_{21} u_{17} u_{20} u_{16} u_{19}\right)
$$

are in $a(T)$. Since $A_{u_{1}}=\{1\}$, the given permutations σ and τ, with $\tau^{7}=\sigma^{3}=1$, generate a group of order 21 . Observing that $(\sigma \tau)\left(u_{1}\right)=u_{14}$ while $(\tau \sigma)\left(u_{1}\right)=u_{13}$, we see that the group is non-abelian, hence non-cyclic, and, therefore, contains no element of order 21 . Hence, T is an example of a point-symmetric tournament that is not a rotation tournament.

An anti-automorphism of a tournament T is a mapping σ of the vertex set of T onto itself satisfying $(u, v) \in T$ if and only if $(\sigma(u), \sigma(v)) \notin T$ for every pair of distinct vertices u and v belonging to T. A tournament T is said to be self-converse if it has an anti-automorphism, that is, if $T \simeq T^{*}$.

Proposition 3. A rotation tournament is self-converse.

Proof. Let T be a rotation tournament with vertices $u_{0}, u_{1}, \ldots, u_{2 n}$. The permutation σ defined by $\sigma\left(u_{i}\right)=u_{2 n-i+1}$ is easily seen to be an anti-automorphism of T. Thus $T \simeq T^{*}$.
An anti-automorphism of a tournament T composed with an automorphism of T results in an anti-automorphism of T. Therefore, if T is point-symmetric and self-converse, there exists an anti-automorphism of T that fixes any vertex one chooses. Let T denote the order twenty-one tournament exhibited above. If T is self-converse, there exists an anti-automorphism of T that maps $\mathcal{O}(u)$ onto $\mathscr{I}(u)$ with the four vertices of score four in $\langle\mathcal{O}(u)\rangle$ going onto the four vertices of score five in $\langle\mathscr{I}(u)\rangle$. But since one quadruple is transitive and the other is strongly connected we see that no such anti-automorphism exists. Therefore, T is not selfconverse.
This suggests the following question: If T is a self-converse point-symmetric tournament, is T a rotation tournament?
3. Enumeration of rotation tournaments. We now consider the problem of enumerating the rotation tournaments of a given order. Let C_{n} denote the set of all symbols of the rotation tournaments of order $2 n+1$ so that $\left|C_{n}\right|=2^{n}$. For each integer m satisfying $1 \leq m<2 n+1$ with m and $2 n+1$ relatively prime define $P_{n, m}$ by $P_{n, m}(S)=m S=\left\{x_{i} \equiv m \alpha_{i}(\bmod 2 n+1): 1 \leq x_{i} \leq 2_{n}\right\}$ where $S \in C_{n}$. It is easy to see $P_{n, m}$ is a permutation on C_{n}. The set of all such $P_{n, m}$ form a permutation group,
call it G_{n}, acting on C_{n}. The number of orbits in C_{n} under the group G_{n} is given by the result [5, Theorem 3.21]

$$
\frac{1}{\varphi(2 n+1)} \sum_{G_{n}} F\left(P_{n, m}\right)
$$

where $F\left(P_{n, m}\right)$ is the number of symbols fixed by $P_{n, m}$ and φ denotes the Euler φ-function. Denote the number of orbits by $g(n)$.

If $S^{\prime}=m S=P_{n, m}(S)$, then the mapping π defined on $\left(u_{0}, u_{1}, \ldots, u_{2 n}\right)$ by $\pi\left(u_{i}\right)=u_{m i}^{\prime}$ is an isomorphism between the tournaments corresponding to S and S^{\prime}. Thus, $g(n)$ gives us an upper bound for the number of non-isomorphic rotation tournaments of order $2 n+1$. The results obtained in [6] apply equally well to circulant tournament matrices so that in case $2 n+1$ is a prime we have that two rotation tournaments are isomorphic if and only if their corresponding symbols are in the same orbit. Theorem 1 then proves the following result.

Theorem 2. If $2 n+1$ is a prime, then the number of non-isomorphic point-symmetric tournaments of order $2 n+1$ is

$$
g(2 n+1)=\frac{1}{2 n} \sum_{G_{n}} F\left(P_{n, m}\right)
$$

Letting $r(n)$ denote the number of non-isomorphic rotation tournaments of order $2 n+1$ and $t(n)$ denote the number of non-isomorphic point-symmetric tournaments of order $2 n+1$ we have the following table.

n	$g(n)$	$r(n)$	$t(n)$
1	1	1	1
2	1	1	1
3	2	2	2
4	4	3	3
5	4	4	4
6	6	6	6
7	16	16	16
8	16	16	16
9	30	30	30
10	88		

References

1. B. Alspach, A class of tournaments, unpublished doctoral dissertation, University of California, Santa Barbara, 1966.
2. -, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 11 (1968), 655-661.
3. M. Goldberg and J. W. Moon, On the maximum order of the group of a tournament, Canad. Math. Bull. 9 (1966), 563-569.
4. J. W. Moon, Tournaments with a given automorphism group, Canad. J. Math. 16 (1964) 485-489.
5. J. Rotman, The theory of groups: An introduction, Allyn and Bacon, Boston, 1966.
6. J. Turner, Point-symmetric graphs with a prime number of points, J. Comb. Theory 3 (1967), 136-145.
7. H. Wiclandt, Finite permutation groups, Trans. R. Bercov, Academic Press, New York, 1964.

Simon Fraser University, Burnaby, British Columbia

