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Abstract

Lazard showed in his seminal work (Groupes analytiques p-adiques, Publ. Math. Inst.
Hautes Études Sci. 26 (1965), 389–603) that for rational coefficients, continuous group
cohomology of p-adic Lie groups is isomorphic to Lie algebra cohomology. We refine this
result in two directions: first, we extend Lazard’s isomorphism to integral coefficients
under certain conditions; and second, we show that for algebraic groups over finite
extensions K/Qp, his isomorphism can be generalized to K-analytic cochains and
K-Lie algebra cohomology.
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1. Introduction

One of the main results of Lazard’s magnum opus [Laz65] on p-adic Lie groups is a comparison
isomorphism between continuous group cohomology, analytic group cohomology and Lie algebra
cohomology. This comparison isomorphism is an important tool in the cohomological study of
Galois representations in arithmetic geometry. It has also appeared more recently in topology
and homotopy theory in connection with the formal groups associated to cohomology
theories and, in particular, with topological modular forms.

Lazard’s comparison theorem holds for Qp-vector spaces, and the isomorphism between
continuous cohomology and Lie algebra cohomology is obtained from a difficult isomorphism
between the saturated group ring and the saturated universal enveloping algebra. For some
applications (e.g. the connection with the Bloch–Kato exponential map in [HK06]), it is
important to have a version for integral coefficients and a better understanding of the map
between the cohomology theories.

In this paper we extend and complement the comparison isomorphism in two directions.

Our first result is an integral version of the isomorphism, assuming some technical conditions
(Theorem 3.1.1). For uniform pro-p-groups one gets a clean result with only a mild condition
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on the module (Theorem 3.3.3). To our knowledge, and with the notable exception of Totaro’s
work [Tot99], this has been the first progress made on a problem which Lazard described as
‘reste à faire’ more than forty years ago [Laz65, Introduction, § 7, paragraph C)].

Our second result concerns the definition of the isomorphism in the case of smooth group
schemes. Here one can directly define a map from analytic group cohomology to Lie algebra
cohomology with constant coefficients by differentiating cochains (see Definition 4.2.1). We
showed in [HK06] (see Proposition 4.2.4) that the resulting map is Lazard’s comparison
isomorphism modulo the identification of continuous cohomology with analytic cohomology. Serre
mentioned to us that this was clear to him at the time Lazard’s paper was written; however, it
was not included in the published results. Unfortunately, so far we have not been able to use
this simple map to obtain an independent proof of Lazard’s comparison result.

The advantage of this description of the map is not only its simplicity but also that it carries
over to K-Lie groups for finite extensions K/Qp. In Theorem 4.3.1, we prove that this map is also
an isomorphism in the case of K-Lie groups attached to smooth group schemes with connected
generic fiber over the integers of K. This theorem generalizes the results in [HK06] for GLn and
complements the result of Lazard, who dealt only with Qp-analytic groups.

The paper is organized as follows. In § 2 we give a quick tour of the concepts from [Laz65]
that we need. It is our hope that this section will also prove to be a useful overview of the central
notions and results in [Laz65]. In § 3 we prove our integral refinement of Lazard’s isomorphism.
Finally, § 4 considers the isomorphism over a general base in the case of group schemes.

2. Review of some results of Lazard

In this section we recall the basic notions about groups and group rings that we need to formulate
our main results. As we proceed, we shall illustrate the main concepts with the example of
separated smooth group schemes. We hope that this section can serve as a guide through the
long and difficult paper by Lazard.

2.1 Saturated groups

Definition 2.1.1 [Laz65, ch. II, §§ 1.1 and 1.2.10, ch. III, Definition 2.1.2]. A filtration on a
group G is a map

ω :G→ R∗+ ∪ {∞}
such that:

(i) for all x, y ∈G, ω(xy−1) > inf{ω(x), ω(y)};
(ii) for all x, y ∈G, ω(x−1y−1xy) > ω(x) + ω(y).

The group G is said to be p-filtered if, in addition,

ω(xp) > inf{ω(x) + 1, pω(x)} for all x ∈G.

The group G is said to be p-valued if ω satisfies:

(iii) ω(x)<∞ for x 6= e;

(iv) ω(x)> (p− 1)−1 for all x ∈G;

(v) ω(xp) = ω(x) + 1 for all x ∈G.
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The group G is said to be p-divisible if it is p-valued and has the property that:

(vi) for all x ∈G with ω(x)> 1 + 1/(p− 1) there exists y ∈G with yp = x.

Finally, a p-divisible group G is said to be saturated if:

(vii) G is complete for the topology defined by the filtration.

Note that a filtration satisfying the conditions for being a p-valuation is automatically
p-filtered.

Recall that a pro-p-group is the inverse limit of finite p-groups. This is the case that we are
going to work with.

Proposition 2.1.2 [Laz65, ch. II, Proposition 2.1.3]. A p-filtered group is a pro-p-group if and
only if it is compact.

We denote by Fp[ε] the polynomial ring with generator ε in degree one.

Definition and Lemma 2.1.3 [Laz65, ch. II, § 1.1, ch. III, § 2.1.1 and Definition 2.1.3]. Suppose
that (G, ω) is filtered.

(i) For every ν ∈ R∗+,

Gν := {x ∈G | ω(x) > ν} and G+
ν := {x ∈G | ω(x)> ν} ⊆G

are normal subgroups.

(ii) Let

gr(G) :=
⊕
ν∈R∗+

Gν/G
+
ν .

Then gr(G) is a graded Lie algebra over Fp, with the Lie bracket being induced by the
commutator in G.

(iii) If (G, ω) is p-valued, then gr(G) is even a graded Fp[ε]-Lie algebra, with the action of ε
being induced by x 7→ xp (where x ∈Gν and xp ∈Gν+1).

(iv) In this case, gr(G) is free as a graded Fp[ε]-module. The rank of G is, by definition, the rank
of the Fp[ε]-module gr(G).

Example 2.1.4 [Laz65, ch. V, § 2.2.1]. Let (G, ω) be a complete p-valued group of finite rank d.
If {xi}i=1,...,d ⊆G are representatives of an ordered basis of the Fp[ε]-module gr(G), then every
y ∈G can be expressed uniquely as an ordered product y =

∏d
i=1 x

λi
i with λi ∈ Zp, and we have

ω(y) = inf
i

(ω(xi) + v(λi))

where the valuation on Zp is normalized by v(p) = 1; (G, ω) has rank d.

Definition 2.1.5 [Laz65, ch. V, §§ 2.2.1 and 2.2.7].

(i) The family {xi}i=1,...,d in the above example is called an ordered basis of G.

(ii) The p-valued group (G, ω) is said to be equi-p-valued if there exists an ordered basis {xi}
as above such that

ω(xi) = ω(xj) for all 1 6 i, j 6 d.
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2.2 Serre’s standard groups as examples
Let E be a finite extension of Qp with ring of integers R. Let m be the maximal ideal of R. Then
E is a discretely valued field. We normalize its valuation v by v(p) = 1. Let e be the ramification
index of E/Qp.

Any formal group law F (X, Y ) in n variables over R defines a group structure G on mn.
These are the standard groups as defined by Serre.

For (x1, . . . , xn) ∈mn, define

ω(x1, . . . , xn) := inf
i
{v(xi)}.

Then, for λ> 0, we have

Gλ := {x ∈G : ω(x) > λ}.

Proposition 2.2.1 [Ser65, Part II: Lie Groups, § 4.23, Theorem 1 and Corollary, § 4.25,
Corollary 2 of Theorem 2]. Let G be a standard group. Then G is a pro-p-group and for all
λ> 0 the group Gλ is a normal subgroup of G. Moreover, the map ω defines a filtration on G in
the sense of Definition 2.1.1(i)–(iii).

One can show that a suitable open subgroup of the standard group G is saturated.
Let ρ denote the smallest integer that is larger than e/(p− 1).

Lemma 2.2.2. Let E and G be as above. Then the subgroup (H, ω), where

H :=
{
x ∈G : ω(x)>

1
p− 1

}
=Gρ/e,

is saturated and of finite rank. It is equi-p-valued if and only if e= 1.

Proof. Note first that, according to [Ser65, Part II: Lie Groups, § 4.21, Corollary], the power
series fp which defines the p-power map is of the form

fp(X) = p(X + ϕ(X)) + ψ(X)

with ord(ϕ) > 2 and ord(ψ) > p. It follows that

ω(xp) > inf{ω(x) + 1, pω(x)} for x ∈G,

because if x has coordinates xi, then xp has coordinates

fp,i(x1, . . . , xn) = pxi + pϕi(x) + ψi(x)

and the valuations of the summands are bounded below by 1 + ω(x), 1 + 2ω(x)> 1 + ω(x) and
pω(x), respectively.

Since ω(x)> 1/(p− 1) is equivalent to ω(x) + 1< pω(x), this implies that on H,

ω(xp) > ω(x) + 1.

On the other hand, let xi be a coordinate of x such that ω(x) = v(xi). Then

ω(xp) 6 v(pxi + pφi(x) + ψi(x)) = 1 + ω(xi) = 1 + ω(x),

and hence

ω(xp) = ω(x) + 1
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for all x ∈H. This shows that (H, ω) is p-valued. To see that H is saturated, we observe that
by [Ser65, Part II: Lie Groups, § 4.26, Theorem 4] the p-power map induces an isomorphism

Hλ

∼=−→Hλ+1

for all λ ∈ (1/(p− 1),∞) ∩ v(m). Since H is complete, this implies that the group is saturated.
The valuation on R takes values in (1/e)Z, where e is the ramification index. By definition,

H =Hρ/e. We get

gr(H)∼=
⊕

λ∈(1/e)N, λ>ρ/e

kn.

As an Fp[ε]-module, gr(H) is freely generated by an Fp-basis of⊕
λ∈(1/e)N, 1+ρ/e>λ>ρ/e

kn.

This is finite because [k : Fp]<∞.
If e= 1, then only a single λ occurs in the sum, namely ρ. If e > 1, then 1 + ρ/e > (ρ+ 1)/e

and the sum has generators in more than one degree. 2

An important example of the above construction arises from separated smooth group schemes
G/R. The formal completion Ĝ of G along its unit section is a formal group over R, and the
associated standard group G is isomorphic, via g 7→ 1 + g, to

G∼= ker(G(R)→G(k)).

Example 2.2.3. As an even more concrete example, consider G = GLn over R. Let π be the
uniformizer. Then

πρR=
{
x ∈R

∣∣∣ v(x)>
1

p− 1

}
.

It follows from Lemma 2.2.2 that

H := 1 + πρMn(R)⊂GLn(R)

is a saturated subgroup with respect to the filtration ω(1 + (xi,j)) = infi,j(v(xi,j)). Since

gr(H)∼=
⊕

λ>ρ/e, λ∈(1/e)N

Mn(k),

the rank of H is n2[R : Zp]. Note that this is not equi-p-valued for e > 1.
However, we can view GLn(R) as the group of Zp-valued points of the Weil restriction

G′ = ResR/Zp
GLn, which is a separated smooth group scheme over Zp (see [BLR90, § 7.6,

Proposition 5]). This point of view yields a different valuation on the corresponding standard
group,

G′ = Ĝ′(Zp) = 1 + pMn(R)⊆GLn(R).

By Lemma 2.2.2, (G′, ω′) is saturated and equi-p-valued if p > 2.
As an explicit example, choose R= Zp[π] with π2 = p (hence e= 2) and n= 1. Take p > 3 for

simplicity. Then G= 1 + πR is of rank two with ordered basis {x1 = 1 + π, x2 = 1 + π2} such
that

ω(x1) = 1
2 and ω(x2) = 1.
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On the other hand, G′ = 1 + pR also has rank two, with {x′1 := 1 + p, x′2 := 1 + π3} as an ordered
basis such that

ω′(x′1) = ω′(x′2) = 1

Thus G′ is saturated and equi-p-valued. Compare this with

ω(x′1) = 1 and ω(x′2) = 3
2

under the inclusion G′ ⊂G.

2.3 Valued rings, modules and the functor Sat
Definition 2.3.1 [Laz65, ch. I, Definitions 2.1.1 and 2.2.1]. A filtered ring Ω is a ring together
with a map

v : Ω→ R+ ∪ {∞}
such that for any λ, µ ∈ Ω:

(i) v(λ− µ) > min(v(λ), v(µ));

(ii) v(λµ) > v(λ) + v(µ);

(iii) v(1) = 0.

Put

Ων := {λ ∈ Ω | v(λ) > ν}.
A filtered ring Ω is said to be valued if, in addition to the above conditions, the following
hold:

(ii′) v(λµ) = v(λ) + v(µ);

(iv) the topology defined on Ω by the filtration Ων is separated.

Definition 2.3.2 [Laz65, ch. I, §§ 2.1.3 and 2.2.2]. A filtered module M over a filtered ring Ω
is an Ω-module M together with a map

w :M → R+ ∪ {∞}

such that for any x, y ∈M and λ ∈ Ω:

(i) w(x− y) > min(w(x), w(y));

(ii) w(λx) > v(λ) + w(x).

Put

Mν := {x ∈M | w(x) > ν}.
A filtered module over a valued ring Ω is said to be valued if, in addition to the above conditions,
the following hold:

(ii′) w(λx) = v(λ) + w(x);

(iii) the topology defined on M by the filtration Mν is separated.

Let Ω be a commutative valued ring and let A be an Ω-algebra (for instance, a Lie algebra).

Definition 2.3.3 [Laz65, ch. I, § 2.2.4]. An Ω-algebra A over a commutative valued ring Ω is
valued if it is valued as a ring and (with the same valuation map) valued as an Ω-module.

The following definition is an important technical tool in Lazard’s work.
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Definition 2.3.4 [Laz65, ch. I, § 2.2.7]. A valued module M over a commutative valued ring Ω
is said to be divisible if for all λ ∈ Ω and x ∈M with v(λ) 6 w(x) there exists y ∈M such that
λy = x. The module M is saturated if it is divisible and complete.

Lazard showed in [Laz65, ch. I, § 2.2.10] that the completion of a divisible module is saturated.

Definition 2.3.5 [Laz65, ch. I, § 2.2.11]. The saturation SatM of a valued module M over a
commutative valued ring Ω is the completion of

div M := {y ∈K ⊗Ω M | w̃(y) > 0}.

Here, K is the fraction field of Ω and the valuation w on M is extended to a map w̃ on K ⊗Ω M
by w̃(λ−1 ⊗m) := w(m)− v(λ) (which is well-defined; see [Laz65, ch. I, § 2.2.8]).

The saturation SatM satisfies the following universal property [Laz65, ch. I, § 2.2.11]: for
any morphism f :M →N of M into a saturated Ω-module N , there is a unique extension to a
map SatM →N .

2.4 Group rings
In this section we fix Ω = Zp with the standard valuation. All algebras are over Zp.

For any group G, let Zp[G] be the group ring with coefficients in Zp.

Definition 2.4.1 [Laz65, ch. II, Definition 2.2.1]. Let G be a pro-p-group. The completed group
ring Zp[[G]] is the projective limit

Zp[[G]] := lim←− Zp[G/U ],

where U runs through all open normal subgroups of G and every Zp[G/U ] carries the p-adic
topology.

In [Laz65] this ring is denoted by AlG.

Definition 2.4.2 [Laz65, ch. III, Definition 2.3.1.2]. Let G be a p-filtered group. The induced
filtration w on Zp[G] is the lower bound for all filtrations (as a Zp-algebra) such that

w(x− 1) > ω(x) for all x ∈G.

Proposition 2.4.3 [Laz65, ch. III, Theorem 2.3.3]. Let G be p-valued. Then the induced
filtration w on Zp[G] is a valuation (as a Zp-module). If G is compact (or, equivalently, pro-p),
then Zp[[G]] is the completion of Zp[G] with respect to the valuation topology.

Example 2.4.4 [Laz65, ch. V, § 2.2.1]. Let G be p-valued, complete and of finite rank d. Let
{xi}i=1,...,d ⊂G be an ordered basis of G. Then Zp[[G]] admits {zα | α ∈ Nd} ⊆ Zp[[G]],

zα :=
d∏
i=1

(xi − 1)αi ,

as a topological Zp-basis satisfying

w(zα) =
d∑
i=1

αiω(xi).

The associated graded is UFp[ε]gr(G), the universal enveloping algebra of the Fp[ε]-Lie algebra
gr(G).
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Remark 2.4.5. Note that if (G, ω) is saturated and non-trivial, then Zp[[G]] is never saturated.
Indeed, since gr(G) 6= 0 is a free Fp[ε]-module, we have grνG 6= 0 for arbitrarily large ν; in
particular, there exists g ∈G with ω(g) > 1. Then x := g − 1 ∈ Zp[[G]] satisfies w(x) > 1 = v(p),
but x is not divisible by p in Zp[[G]].

Lemma 2.4.6. The inclusion Zp[G]→ Zp[[G]] induces an isomorphism

Sat Zp[G]∼= Sat Zp[[G]].

Proof. By [Laz65, ch. I, § 2.2.2], the natural map Zp[G]→ Zp[[G]] is injective; it extends to

Sat Zp[G]→ Sat Zp[[G]].

On the other hand, Sat Zp[G] is complete, hence there is a natural map Zp[[G]]→ Sat Zp[G]. As
the right-hand side is saturated, it extends to

Sat Zp[[G]]→ Sat Zp[G].

The two maps are inverses of each other. 2

2.5 Enveloping algebras

Let L be a valued Zp-Lie algebra and let UL be its enveloping algebra over Zp.

Definition 2.5.1 [Laz65, ch. IV, § 2.2.1]. The canonical filtration

w : UL→ R+ ∪ {∞}

is the lowest bound for all filtrations on UL, turning it into a valued Zp-algebra such that the
canonical map L→ UL is a morphism of valued modules.

Lemma 2.5.2 [Laz65, ch. IV, Corollary 2.2.5]. The enveloping algebra UL equipped with the
canonical filtration is a valued Zp-algebra, and the natural morphism

Ugr(L)→ gr(UL)

is an isomorphism.

2.6 Group-like and Lie-algebra-like elements

Everything in this section applies to A= Sat Zp[[G]] where G is a p-valued pro-p-group. We fix
Ω = Zp with its standard valuation.

Definition 2.6.1 [Laz65, ch. IV, Definition 1.3.1]. Let A be a valued Zp-algebra with diagonal

∆ :A→ Sat(A⊗Zp A)

(see [Laz65, ch. IV, Definition 1.2.3]) and augmentation ε. Then G, L, G∗ and L∗ are defined by:

(i) G = {x ∈A | ε(x) = 1,∆(x) = x⊗ x};
(ii) G∗ = {x ∈ G | w(x)> (p− 1)−1};
(iii) L= {x ∈A |∆(x) = x⊗ 1 + 1⊗ x};
(iv) L∗ = {x ∈ L | w(x)> (p− 1)−1}.

These subsets have the following structures.
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Lemma 2.6.2 [Laz65, ch. IV, paragraphs 1.3.2.1 and 1.3.2.2]. The subsets G and G∗ are monoids
with respect to the multiplication of A. If A is complete, then G∗ is a group and L and L∗ are
Lie algebras. Moreover, L= div L∗.

When A is a saturated Zp-algebra, much more is known.

Theorem 2.6.3 [Laz65, ch. IV, Theorem 1.3.5]. Let A be a saturated Zp-algebra with diagonal.

(i) The exponential maps G∗ to L∗, and the logarithm maps L∗ to G∗; they are inverse
homeomorphisms.

(ii) The Lie algebra L is saturated; it is the saturation of L∗.
(iii) The subset G∗ is a saturated group for the filtration ω(x) = w(x− 1).

(iv) The associated graded gr L∗ and gr G∗ are canonically isomorphic via the logarithm map.

(v) The subsets L∗ and G∗ generate the same saturated associative subalgebra of A.

This theorem has the following consequence for the universal enveloping algebra UL of a
valued Lie algebra L.

Theorem 2.6.4 [Laz65, ch. IV, Lemma 3.1.2 and Theorem 3.1.3]. Let L be a valued Lie algebra
over Zp and UL its universal enveloping algebra. Then

Sat UL= Sat U Sat L, (1)
L Sat UL= Sat L, (2)
G Sat UL= G∗ Sat UL. (3)

The next result concerns the saturation of the group ring Zp[G] (or, equivalently, of Zp[[G]],
owing to Lemma 2.4.6).

Theorem 2.6.5 [Laz65, ch. IV, Theorem 3.2.5]. Let G be a saturated group and let A=
Sat Zp[G]; then

G∗ =G.

Let UL be the universal enveloping algebra of L; then the canonical map

Sat UL→ Sat Zp[G]

is an isomorphism.

We introduce some new terminology.

Definition 2.6.6. Let G be a saturated group. We shall call

L∗(G) = L∗ ⊂ Sat Zp[G]

the integral Lazard Lie algebra of G.

The preceding theorem then reads

Sat UL∗(G)∼= Sat Zp[G].

Example 2.6.7. Consider the saturated group H = 1 + πρMn(R) from Example 2.2.3 and the
algebra Sat Zp[H]. We claim that the Lie algebra L∗ = L∗(H) is πρMn(R) and that L=Mn(R).
To see this, note that by Theorem 2.6.5 we have H = G∗ and, by Theorem 2.6.3, L∗ consists of
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the logarithms of G∗. By [Laz65, ch. III, §§ 1.1.4 and 1.1.5], the maps

Log : 1 + πρMn(R)→ πρMn(R), 1 + x 7→
∑
n>1

(−1)n+1x
n

n
(4)

and

exp : πρMn(R)→ 1 + πρMn(R), x 7→
∑
n>0

xn

n!
(5)

are both convergent and are inverses of each other. By Theorem 2.6.3, L is the saturation of L∗
and is, by Definition 2.3.5,

L= {x ∈K ⊗R πρMn(R) | w(x) > 0}=Mn(R).

Example 2.6.8. In general, the Lazard Lie algebra does not coincide with the algebraic Lie
algebra. Let G be a separated smooth group scheme over Zp and Lie(G) its Zp-Lie algebra.
If t1, . . . , tn are formal coordinates of G around e, then ∂/∂t1, . . . , ∂/∂tn constitute a Zp-basis
for Lie(G).

Let G be the associated standard group over Zp, as in § 2.2. Let H be the saturated subgroup
of G; see Lemma 2.2.2. We have H =G= (pZp)n if p 6= 2 and H = (4Z2)n if p= 2. Let x1, . . . , xn
be the standard ordered basis of H. We put

δi = log xi ∈ Sat Zp[[H]].

By [Laz65, ch. IV, Lemma 3.3.6], the δi form a Zp-basis of L∗(H). As explained in [HK06, §§ 4.2
and 4.3], they can be viewed as derivations on Zp[[t1, . . . , tn]], the coordinate ring of Ĝ. Note,
however, that the coordinate λi in [HK06] takes values in all of Zp on G. Hence λi = pti for p 6= 2.
This implies

δi = p
∂

∂ti

∣∣∣∣
t=0

.

Hence, under the identification of [HK06, Proposition 4.3.1], we have

L∗(H) = p Lie(G).

For p= 2, the argument gives

L∗(H) = 4 Lie(G).

2.7 Resolutions and cohomology
Definition 2.7.1 [Laz65, ch. I, §§ 2.1.16 and 2.1.17]. Let A be a filtered Zp-algebra and M a
filtered A-module.

(i) A family of A-linearly independent elements (xi)i∈I of M is said to be filtered free if for
every family (λi)i∈I of elements of A that are almost all zero, we have

w

(∑
i∈I

λixi

)
= inf

i
(w(xi) + v(λi)).

We say that M is filtered free if it is generated by a filtered free family.

(ii) Suppose that A is complete. We say that M is complete free if it is the completion of the
submodule generated by a filtered free family.

If A is complete and M is filtered free of finite rank, then M is also complete free.
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Definition 2.7.2 [Laz65, ch. V, §§ 1.1.3, 1.1.4 and 1.1.7]. Let A be a filtered augmented Zp-
algebra and M a filtered A-module.

(i) A filtered acyclic resolution X• is a chain complex of filtered A-modules together with
an augmentation ε :X•→M such that for all ν ∈ R+, the morphism εν :X•ν →Mν is a
quasi-isomorphism.

(ii) A split filtered resolution X• of M is a morphism ε :X•→M of chain complexes of filtered
A-modules together with filtered morphisms

η :M →X0, sn :Xn→Xn+1

of Zp-modules (sic, not A-linear!) which define a homotopy between id and 0 on the extended
complex X•

ε→M and are such that s0η = 0. Note that a split filtered resolution is a filtered
acyclic resolution.

(iii) Let A be complete. A filtered acyclic resolution X• by complete free modules will be called
a complete free acyclic resolution of M .

(iv) Let X• be a complete free acyclic resolution of the trivial A-module Zp, and let M be a
complete A-module with linear topology. We call

Hn
c (A,M) =Hn(Homc(X•, M))

(with Homc denoting continuous A-linear maps) the nth continuous cohomology of A with
coefficients in M .

(v) Let A be an augmented Zp-algebra and M an A-module. We call

Hn(A,M) = ExtnA(Zp, M)

the nth cohomology of A with coefficients in M .

3. An integral version of the Lazard isomorphism

The purpose of this section is to establish that continuous group cohomology and Lie algebra
cohomology agree with integral coefficients, at least under certain technical assumptions. This
generalizes Lazard’s result for coefficients in Qp-vector spaces.

3.1 Results
We fix a saturated and compact group (G, ω) of finite rank d. In particular, G is a pro-p-group
by Proposition 2.1.2. We assume that:

• (G, ω) is equi-p-valued;
• ω takes values in (1/e)Z.

Recall that the integral Lazard Lie algebra

L∗(G) = L∗ Sat Zp[[G]]

is a finite free Zp-Lie algebra.
For technical reasons, we fix a totally ramified extension Qp ⊆K of degree e with ring of

integers O ⊆K and uniformizer π ∈ O. The valuation on O is normalized by v(p) = 1.
Let M be a linearly topologized complete Zp-module with a continuous, Zp-linear action of G.

Then M is a Zp[[G]]-module [Laz65, ch. II, Theorem 2.2.6]. We assume that:

• the Zp[[G]]-module structure on M extends to a Sat Zp[[G]]-module structure.

Thus, M is canonically an L∗(G)-module.
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In § 3.4 we will prove the following result.

Theorem 3.1.1. Let (G, ω) and M be as above. Then the following hold.

(i) There is an isomorphism

φG(M) :H∗c (G,M)⊗Zp O 'H∗(L∗(G), M)⊗Zp O

of graded O-modules; it is natural in M .

(ii) If, in addition, M is a Qp-vector space, then the above isomorphism agrees with the one
in [Laz65, ch. V, Theorem 2.4.9].

(iii) Let H be another group satisfying the assumptions of the theorem, and let f :G→H be a
group homomorphism filtered for the chosen filtrations. In addition, assume that gr(H) is
generated in degree 1/e. Then the isomorphism is natural with respect to f .

(iv) If gr(G) has generators in degree 1/e, then the isomorphism is compatible with cup-products
as follows. Assume that M ′ and M ′′ satisfy the same assumptions as M does and that

α :M ⊗̂Zp M
′→M ′′

is Sat Zp[[G]]-linear. Then the diagram

(H∗c (G,M)⊗Zp H
∗
c (G,M ′))⊗O //

φG(M)⊗φG(M ′)
��

H∗c (G,M ′′)⊗O

φG(M ′′)

��
(H∗(L∗(G), M)⊗Zp H

∗(L∗(G), M ′))⊗O // H∗c (L∗(G), M ′′)⊗O

commutes. Here, the horizontal maps are the O-linear extensions of the cup-product defined
by α.

Remark 3.1.2.

(i) If H∗(L∗(G), M) is a finitely generated Zp-module, e.g. when M is of finite type, then by
the structure of finitely generated modules over principal ideal domains this implies the
existence of an isomorphism of graded Zp-modules

H∗c (G,M)'H∗(L∗(G), M).

However, it is not clear whether this isomorphism is natural or compatible with cup-
products.

(ii) According to [Laz65, ch. V, §§ 2.2.6.3 and 2.2.7.2], the mod-p cohomology of an equi-p-valued
group G is simply an exterior algebra

H∗c (G, Fp) = Λ∗Fp
(H1

c (G, Fp)).

The cohomology with torsion-free coefficients is, however, more interesting; for example, if G
is not abelian, then the Qp-Betti numbers of G are different from the Fp-Betti numbers,
showing that H∗c (G, Zp) contains non-trivial torsion.

It is not obvious which groups satisfy the assumptions of Theorem 3.1.1. We discuss in § 3.3
standard groups and uniform pro-p-groups which satisfy the assumptions of Theorem 3.1.1.
Section 3.2 discusses the assumptions by means of some examples.

3.2 Some examples illustrating the assumptions of Theorem 3.1.1
In this section we illustrate the assumptions of Theorem 3.1.1 by a series of remarks and examples.
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The integral Lazard isomorphism may not hold for all topologically finitely generated pro-p-
groups without p-torsion. However, the assumptions of the theorem are actually too restrictive.

Example 3.2.1. Assume p> 5, and let D/Qp be the quaternion algebra, O ⊆D its maximal
order and Π ∈ O a prime element. Using [Laz65, ch. II, § 1.1.9], one can check that

G := 1 + ΠO ⊆O∗

is p-saturated. From [Rav86, Theorem 6.3.22] or [Hen07, Proposition 7], we know that

dimFp H
i
c(G, Fp) = 1, 3, 4, 3, 1 for i= 0, 1, 2, 3, 4, respectively.

In particular, H∗c (G, Fp) 6= Λ∗H1
c (G, Fp) and G does not admit an equi-p-valuation by [Laz65,

ch. V, §§ 2.2.6.3 and 2.2.7.2]. However, by direct arguments one can establish an isomorphism

H∗c (G, Fp)'H∗(L∗(G), Fp)

of graded Fp-algebras; see Remark 3.4.10. The proof of [Hen07, Proposition 7] shows that the
same result holds for coefficients in Zp.

In fact, not even saturatedness is necessary.

Example 3.2.2. Let G= 1 + p2Zp for p 6= 2. This group is not saturated for the obvious filtration;
rather, we have

Sat(G) = 1 + pZp.
Put

L∗(G)⊂ L∗(Sat(G)),

the image of G under the logarithm map. We still get an isomorphism

H∗(G, Zp)→H∗(L∗(G), Zp)

induced by the logarithm; it is compatible with the one for Sat(G).

Remark 3.2.3.

(i) We are unaware of a group-theoretic characterization of those pro-p-groups that satisfy the
assumptions of Theorem 3.1.1, but [ST03, Remark on p. 163] suggests that they are closely
related to uniform pro-p-groups.

(ii) In general, it is difficult to decide whether a given Zp[[G]]-module structure extends over
Sat Zp[[G]]; we refer to [Tot99, p. 200], and especially to the proof of [Tot99, Corollary 9.3],
for further discussion and useful sufficient conditions.

(iii) In Theorem 3.3.3 we establish a sufficient condition for both problems to be addressed here.

There are examples of groups that are saturated with respect to one filtration but not with
respect to another. It can also happen that the group is saturated with respect to two filtrations
but equi-p-valued for only one of them.

Example 3.2.4. Let K/Qp be a finite extension with ramification index e. Let O be its ring of
integers with uniformizer π. As discussed in Example 2.2.3, the group

1 + pMn(O)

carries two natural filtrations ω and ω′. Recall that ρ is the smallest integer bigger than e/(p− 1).
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(i) If p= 5 and e= 2, then ρ= 1 and hence πρ 6= 5. This implies that 1 + 5Mn(O) is saturated
with respect to ω′ but not with respect to ω.

(ii) If p= 3 and e= 2, then ρ= 2 and hence πρ = 3. The group 1 + 3Mn(O) is saturated with
respect to both ω and ω′ but equi-3-valued only with respect to ω′.

3.3 Standard groups and uniform pro-p-groups
We now discuss two examples in which the assumptions of Theorem 3.1.1 are satisfied. We
consider first standard groups and then uniform pro-p-groups.

Example 3.3.1. Let G/Zp be a separated smooth group scheme and G= ker(G(Zp)→G(Fp))
the associated standard group (see § 2.2); its filtration takes values in Z. By Lemma 2.2.2, there
is an open subgroup H of G which is saturated and equi-p-valued. If p 6= 2, then H =G and
the generators have degree one. If p= 2, then the generators have degree two. So H satisfies the
assumptions of the theorem with e= 1.

Let M = Zp with the trivial operation of H; then it also satisfies the assumptions of the
theorem. Hence there is a natural isomorphism of graded Zp-modules,

H∗c (H, Zp)'H∗(L∗(H), Zp).

For p 6= 2 this is compatible with cup-products.

This example generalizes to a larger class of groups. First, let us recall the notion of a uniform
or uniformly powerful pro-p-group from [DdMS91, Definitions 3.1 and 4.1].

Definition 3.3.2. A pro-p-group G is uniform if:

(i) G is topologically finitely generated;

(ii) for p 6= 2 (respectively, p= 2), G/Gp (respectively, G/G4) is abelian;

(iii) writing G=G1 ⊇G2 ⊇ · · · for the lower p-series of G, we have [Gi :Gi+1] = [G1 :G2] for
all i> 2.

To understand what is special about p= 2 here, note that the pro-2-group Z∗2 = 1 + 2Z2 is
not uniform while 1 + 4Z2 is.

The Lie algebra g of a uniform pro-p-groupG was constructed in [DdMS91, § 8.2] and coincides
with the integral Lazard Lie algebra L∗(G) by [DdMS91, Lemma 8.14].

Theorem 3.3.3. Take a prime p 6= 2 (respectively, p= 2), and let G be a uniform pro-p-group
and M a finite free Zp-module with a continuous action of G such that the resulting group
homomorphism

% :G−→AutZp(M)

has image in 1 + p EndZp(M) (respectively, in 1 + 4EndZ2(M)). Then M is canonically a module
for the Lie algebra g of G and there is an isomorphism

H∗c (G,M)'H∗(g, M) (6)

of graded Zp-modules which, in the case of p 6= 2, is compatible with cup-products whenever
these are defined.

Remark 3.3.4. If G is an arbitrary Qp-analytic group acting continuously on the finite free Zp-
module M , then there are arbitrarily small open subgroups U ⊆G such that the action of each
U on M satisfies the assumptions of Theorem 3.3.3.
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Proof. We have the following two claims for p 6= 2 (respectively, for p= 2).

(i) The group G admits a valuation ω for which it is p-saturated of finite rank and equi-p-valued
with an ordered basis consisting of elements of filtration 1 (respectively, of filtration 2).

(ii) The Zp-module M admits a valuation w for which it is saturated and such that for all g ∈G
and m ∈M , w((g − 1)m) > w(m) + ω(g).

Granting these claims, we see as in [Tot99, pp. 200–201] that the Zp[[G]]-module structure of M
extends over Sat Zp[[G]]; hence we obtain (6) by applying Theorem 3.1.1(i) with O = Zp and
observing that g = L∗((G, ω)). The proof of claim (i) is essentially given in [ST03, Remark on
p. 163], but we include the details here for the reader’s convenience. The lower p-series

G=G1 ⊇G2 ⊇ · · ·

(see [DdMS91, Definition 4.1]) consists of normal subgroups satisfying (Gn, Gm)⊆Gn+m and⋂
n>1 Gn = {e} (see [DdMS91, Proposition 1.16]); hence

ω(x) := sup{n ∈ N | x ∈Gn}, x ∈G,

defines a filtration of G by [Laz65, ch. II, Equation (1.1.2.4)]. Now, [DdMS91, Lemma 4.10]
states that for all n, k > 1 the pnth power map of G is a homeomorphism Gk

∼=→Gk+n and
induces bijections Gk/Gk+l

∼=→Gk+n/Gk+n+l for all l > 0.
When p 6= 2, we get from this all the properties of ω in Definition 2.1.1 that we need:

property (iv) is trivial since 1> 1/(p− 1); as regards property (v), if x ∈G has filtration
n= ω(x), then [xp] ∈Gn+1/Gn+2 is non-trivial, i.e. ω(xp) = ω(x) + 1; for property (vi), observe
that if x ∈G satisfies ω(x)> 1 + 1/(p− 1), then ω(x) > 2 and hence x ∈Gp.

As G is complete, we see that (G, ω) is p-saturated and, clearly, of finite rank. More precisely,
from the above we get that grG is Fp[ε]-free on gr1G, and thus G is equi-p-valued with an ordered
basis consisting of elements of filtration 1. This settles claim (i) in the case where p 6= 2.

In the p= 2 case, ω satisfies all the conditions in Definition 2.1.1 except (iv), so (G, ω) is, in
particular, 2-filtered and grG has the structure of a mixed Lie algebra over F2 (see [Laz65, ch. II,
Definition 1.2.5]). Note that the only ν ∈ R+ with ν 6 1/(p− 1) = 1 and grνG 6= 0 is gr1G. From
Definition 3.3.2(ii) we have [gr1G, gr1G] = 0, which easily implies that grG is abelian. Since ω
takes integer values, this means that

ω([x, y]) > ω(x) + ω(y) + 1 for x, y ∈G.

Using this, it is easy to see that in the case where p= 2, ω′ := ω + 1 is a filtration of G with
the properties stated in claim (i).

As for claim (ii), with p being arbitrary now, we choose a Zp-basis {ei} ⊆M and declare it
to be a filtered basis with w(ei) = 0; that is,

w

(∑
i

λiei

)
= inf

i
{v(λi)} for λi ∈ Zp.

Clearly, (M, w) is saturated. Assume p 6= 2.
We consider the continuous homomorphism of pro-p-groups

% :G−→ 1 + p EndZp(M) =:G′

and claim that the lower-p-series of G′ is given by G′n = 1 + pn EndZp(M), n> 1. Since G′

is powerful, [DdMS91, Lemma 2.4] gives G′n+1 = Φ(G′n), the Frattini subgroup, for all n> 1;
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therefore, arguing inductively, it suffices to show that

Φ(1 + pn EndZp(M)) = 1 + pn+1 EndZp(M).

Since the Frattini subgroup is generated by pth powers and commutators, we have the ‘⊇’ part;
[DdMS91, Proposition 1.16] then gives

Φ(1 + pn EndZp(M))/(1 + pn+1 EndZp(M))
= Φ((1 + pn EndZp(M)))/(1 + pn+1 EndZp(M))

= Φ((Fp,+)n
2
) = 0.

Since % respects the lower p-series, we conclude that

%(Gn)⊆ 1 + pn EndZp(M) for n> 1,

which implies that w((g − 1)m) > w(m) + ω(g) for all g ∈G and m ∈M .
This settles claim (ii) in the case where p 6= 2; the argument in the p= 2 case is an obvious

modification which we will leave to the reader.
Finally, to show compatibility with cup-products, we assume p 6= 2 and suppose that M ′

and M ′′ satisfy the same assumptions as M does and that

α :M ⊗Zp M
′→M ′′

is G-linear, defining cup-products in H∗c (G,−). Then both the source and the target of α
are canonically Sat Zp[[G]]-modules, as seen above, and α is Sat Zp[[G]]-linear. Hence (6) is
compatible with cup-products by Theorem 3.1.1(iv). 2

3.4 Proof of Theorem 3.1.1
We now describe the set-up for the rest of the section.

Fix a saturated group (G, ω) of finite rank d, and let

L∗(G) = L∗ Sat Zp[[G]]

be its integral Lazard Lie algebra; this is a finite free Zp-module.
We fix an ordered basis {x1, . . . , xd} ⊆G and put ωi := ω(xi). For every 0 6 k 6 n let

Ik := {(i1, . . . , ik) | 1 6 i1 < · · ·< ik 6 n},
and for I ∈ Ik write |I| :=

∑k
s=1 ωs. For I ∈ I0 = ∅, we put |I|= 0 with an abuse of notation.

By assumption there exists an integer e> 1 such that ω(G)⊆ (1/e)Z, and fix a totally
ramified extension Qp ⊆K of degree e with ring of integers O ⊆K and uniformizer π ∈ O. The
valuation on O is normalized by v(p) = 1. The artificial introduction of O is a trick invented by
Totaro in [Tot99]. In this section, all valued modules and algebras are over O. In particular, the
saturation functor is taken in the category of valued O-modules.

The inclusion Zp ⊆O induces

Fp[ε] = gr Zp ⊆ grO = Fp[εK ]

where ε (respectively, εK) is the leading term of p ∈ Zp (respectively, of π ∈ O). We have
εeK ∈ F∗p · ε; in particular, the degree of εK is 1/e.

If M is a valued O-module, then gr(M) is canonically an Fp[εK ]-module. As pointed out by
Totaro in [Tot99, p. 201], it follows directly from the definitions that

gr(Sat(M)) =
(
gr(M)⊗Fp[εK ] Fp[ε±1

K ]
)

degree>0
.
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Let

A :=O[[G]] := lim←−
U⊆G open normal

O[G/U ]

and

B := UO(L∗(G)⊗Zp O)∧ = UZp(L∗(G))∧ ⊗Zp O,
the completion of the universal enveloping algebra with respect to its canonical filtration. (This
filtration is easily seen, by using the Poincaré–Birkhoff–Witt theorem, to be the p-adic filtration;
the claimed equality follows because O is finite free as a Zp-module.) Finally, by virtue of
Theorem 2.6.5, we introduce

C := SatA∼= SatB.

Lemma 3.4.1. We have gr(A) = gr(B) inside gr(C).

Proof. On the one hand,

gr(A) = gr(Zp[[G]]⊗Zp O) = UFp[ε](grG)⊗Fp[ε] Fp[εK ] = UFp[εK ](grG⊗Fp[ε] Fp[εK ]);

on the other hand,

gr(B) = gr(UZp(L∗(G))⊗Zp O) = UFp[εK ](gr L∗(G)⊗Fp[ε] Fp[εK ]).

Since gr L∗(G) = grG by Theorem 2.6.5 and Theorem 2.6.3(iv), the claim follows. 2

Remark 3.4.2. Totaro showed in [Tot99, pp. 201–202] that, moreover, for

t := (grG⊗Fp[ε] Fp[ε±1
K ])degree>0,

a finite graded free Fp[εK ]-Lie algebra with generators in degree zero, we have gr(C) = UFp[εK ](t).

Lemma 3.4.3.

(i) Let X be a filtered free A-module with A-basis e1, . . . , er. Then SatX is a filtered free
C-module on generators

e′i = π−ew(ei)ei, i= 1, . . . , r.

(ii) Let Y be a filtered free B-module with B-basis f1, . . . , fs. Then Sat Y is a filtered free
C-module on generators

f ′j = π−ew(fj)fj , j = 1, . . . , s.

Proof. It suffices to consider the case of the algebra A; the argument for B is the same. Without
loss of generality, take r = 1. By construction (and because X is torsion-free), we have the
following embeddings.

div X

((PPPPPPPPPPPP

X

88qqqqqqqqqqq

%%LLLLLLLLLLL K ⊗O X

(div A)⊗A X

77oooooooooooo

By assumption, any element x of K ⊗X can be written in the form

x= πvae1 = πv+ew(e1)ae′1 ∈ Z with a ∈A.
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It is in div X if and only if

w(x) =
v

e
+ w(a) + w(e1) > 0.

The above is equivalent to πv+ew(e1)a ∈ div A and hence to x ∈ div(A)e′1. Therefore div X =
(div A)⊗A X.

Finally, apply the completion functor to the equality to finish the proof. 2

Remark 3.4.4. This is the step where we make use of the coefficient extension to O.

Both A and B are canonically subrings of C, and our first aim is to compare the cohomology
of the (abstract) rings A and B with that of C. Both A and B are augmented O-algebras, hence
we have an A-module and a B-module structure on O, both of which we will refer to as trivial.

Proposition 3.4.5.

(i) The trivial A-module O admits a resolution X• such that Xk is filtered free of rank
(
d
k

)
over

A on generators {eI | I ∈ Ik} of filtration w(eI) = |I|.
(ii) The trivial B-module O admits a resolution Y• such that Yk is filtered free of rank

(
d
k

)
over

B on generators {fI | I ∈ Ik} of filtration w(fI) = |I|.
(iii) Furthermore, X• and Y• can be chosen so that grX• = gr Y• as complexes of gr(A)- or

equivalently gr(B)-modules.

Proof.

(i) The base extension from Zp to O of the quasi-minimal complex of G has the desired
properties [Laz65, ch. V, Definition 2.2.2]. To see that the generators have the indicated
filtration, remember that the quasi-minimal complex is obtained by lifting the standard
complex X• of the Fp[ε]-Lie algebra gr(G) which has Xk = ΛkFp[ε](gr(G)) finite graded free on

{xi1G+
ω1
∧ · · · ∧ xikG

+
ωk
}.

(ii) The Lie algebra L∗(G) is Zp-free on generators Log(xi) of filtration ωi. Hence the standard
complex of L∗(G)⊗Zp O is as desired.

(iii) The equality grX• = gr Y• follows from gr(G)∼= gr L∗(G) by construction. 2

Example 3.4.6. If G is equi-p-valued, i.e. if ωi = ωj for all i and j, then X• and Y• are minimal
in the sense of [Laz65, ch. V, § 2.2.5], i.e. X• ⊗ Fp and Y• ⊗ Fp have zero differentials.

In the following, we fix complexes X• and Y• that satisfy the conclusion of Proposition 3.4.5.
Note that C is an augmented O-algebra with augmentation, which extends both the one of A
and the one of B.

Lemma 3.4.7. Both SatX• and Sat Y• are finite filtered resolutions of the trivial C-module O,
with the modules SatXk (respectively, Sat Yk) being filtered free on generators {π−e|I|eI | I ∈ Ik}
(respectively, {π−e|I|fI | I ∈ Ik}) of filtration zero over C.

Proof. Clearly, SatX• and Sat Y• are canonically complexes of C-modules. Since both X• and Y•
admit the structure of a split resolution, and this structure is preserved by the additive functor
Sat, both SatX• and Sat Y• are resolutions of SatO =O.

The statement on generators follows directly from Lemma 3.4.3. 2
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For 0 6 k 6 n and I ∈ Ik, denote by e′I ∈ SatXk and f ′I ∈ Sat Yk the C-generators found
above; that is, e′I := π−e|I|eI and f ′I := π−e|I|fI .

We see that the canonical morphisms of complexes over C,

C ⊗A X• ↪→ SatX•

and

C ⊗B Y• ↪→ Sat Y•,

are injective.
We pause to remark that, evidently, the above injections are isomorphisms rationally, a

key input in Lazard’s comparison isomorphism for rational coefficients. Similarly, an integral
version of this comparison isomorphism is essentially equivalent to C ⊗A X• being isomorphic
to C ⊗B Y•, and we proceed to prove this in a special case as follows.

Proposition 3.4.8. There exists an isomorphism

φ : SatX•→ Sat Y•

of filtered complexes over C such that gr φ= id and H0(φ) is the identity of O. Any two such φ
are chain homotopic where the homotopy h can be chosen so that gr(h) = 0.

Proof. In order to construct the isomorphism it suffices, upon invoking [Laz65, ch. V,
Lemma 2.1.5] (which is applicable by Lemma 3.4.7), to canonically identify the complexes
gr SatX• and gr Sat Y• of gr(C)-modules. Recall from Proposition 3.4.5 that

grX• = gr Y•.

This implies

gr SatX• = (grX• ⊗Fp[εK ] Fp[ε±1
K ])degree>0

= (gr Y• ⊗Fp[εK ] Fp[ε±1
K ])degree>0 = gr Sat Y•.

Now, H0(φ) is an O-linear automorphism of O and hence given by multiplication with a unit
α ∈ O∗. Using the fact that its associated graded map is the identity, one easily obtains α= 1,
as claimed.

We turn to the construction of the homotopy. Let φ and φ′ be isomorphisms as above. Let
e′I ∈ Sat(X0) be a basis element. We need to define h0(eI) ∈ Sat(Y0) such that

dh0(e′I) = (φ− φ′)(e′I) =: yI .

By assumption, gr(φ− φ′) = 0 and hence yI ∈ Sat(Y0)1/e. As φ and φ′ are isomorphisms of
resolution of O, we have ε(yI) = 0. Recall that SatX• and Sat Y• are filtered resolutions. Hence
yI has a preimage ỹI ∈ Sat(Y1)1/e. Put

h0(e′I) = ỹI .

By C-linearity, this defines h0, which then satisfies gr(h0) = 0. As usual, the same argument can
be used inductively to define hi for all i> 0. 2

Proposition 3.4.9. If, in the situation of Proposition 3.4.8, (G, ω) is assumed to be equi-p-
valued, then φ restricts to an isomorphism

ψ : C ⊗A X•→ C ⊗B Y•
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of complexes over C. If, moreover, gr(G) is generated in degree 1/e, then any two such
isomorphisms are homotopic.

Proof. We have the following solid diagram of complexes over C.

C ⊗A X• � � ι1 //

ψ

��

SatX•

φ'
��

C ⊗B Y• � � ι2 // Sat Y•

Since the horizontal maps are injective, φ factors as a chain-map if for every 0 6 k 6 n we have

φk(C ⊗A Xk)⊆ C ⊗B Yk. (∗)

If ψ exists, it is necessarily an isomorphism by completeness and the fact that its associated
graded map is the identity. Alternatively, observe that the following argument applies likewise
to φ−1 to produce an inverse of ψ.

To see what (∗) means, fix 0 6 k 6 n and recall the C-generators eI ∈ C ⊗A Xk, e
′
I ∈

SatXk, fI ∈ C ⊗B Yk and f ′I ∈ Sat Yk, where I ∈ Ik, which satisfy ι1(eI) = πe|I|e′I and ι2(fI) =
πe|I|f ′I . Upon making the expansion

φk(e′I) =
∑
J∈Ik

cI,Jf
′
J with cI,J ∈ C,

we see, by using the saturatedness of C, that (∗) for our fixed k is equivalent to the statement

w(cI,J) > |J | − |I| for all I, J ∈ Ik, (∗∗)

where w denotes the filtration of C. If (G, ω) is equi-p-valued, the difference on the right-hand
side of the inequality in (∗∗) is always zero, so that (∗∗) is trivially true.

By Proposition 3.4.8, any two such φ are chain homotopic via a homotopy h : SatX•→
Sat Y• such that gr(h) = 0. It remains to check that this homotopy restricts to a homotopy
h : C ⊗A X•→ C ⊗B Y•. We use the same generators as before. The additional assumption that
gr(G) is generated in degree 1/e implies that |I|= k/e for I ∈ Ik.

Consider e′I for I ∈ Ik. Then hk(e′I) ∈ Sat Yk+1, and it expands as

hk(e′I) =
∑

J∈Ik+1

dI,Jf
′
J with dI,J ∈ C.

Now gr(h) = 0, hence π|dI,J for all I and J . Since e′I = π−keI and f ′J = π−(k+1)fJ , this implies

hk(eI) =
∑

J∈Ik+1

dI,Jπ
−1fJ

with dI,Jπ
−1 ∈ C as required. 2

Remark 3.4.10. It seems difficult to directly relate the complexes C ⊗A X• and C ⊗B Y• using
the filtration techniques successfully employed, for example, in [ST03, Tot99]; this is essentially
because these complexes do not satisfy any reasonable exactness properties.

In fact, we have H∗(C ⊗A X•) = TorA∗ (C,O) and H∗(C ⊗B Y•) = TorB∗ (C,O), and one can
check that unless G= {e}, the algebra C is not flat over either A or B.
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We have examples of saturated but not equi-p-valued groups and an isomorphism φ as above
which does not restrict as in Proposition 3.4.9; however, in all these examples it was possible,
by inspection, to modify φ suitably.

It thus remains a tantalizing open problem to decide whether the assumption of ‘equi-p-
valued’ is superfluous in Proposition 3.4.9. Of course, a positive answer would greatly extend the
range of applicability of our integral Lazard comparison isomorphism.

Proof of Theorem 3.1.1. There is a filtration ω of G such that (G, ω) is p-saturated and equi-p-
valued of finite rank, with ω(G)⊆ (1/e)Z for some integer e> 1. We are therefore in the situation
studied in this subsection; in particular, recall O, A, B, C, X• and Y• from above. The continuous
group cohomology H∗c (G,M) is defined using continuous cochains and the Bar differential as
in [Laz65, ch. V, § 2.3.1.]. By [Laz65, ch. V, Proposition 1.2.6 and Equation (2.2.3.1)], we have

H∗c (G,M)'H∗c (Zp[[G]], M)' Ext∗Zp[[G]](Zp, M)

and, analogously,
H∗c (G,M ⊗Zp O)' Ext∗A(O, M ⊗Zp O)

by the flatness of O over Zp. Define N :=M ⊗Zp O. Since X• is a finite free resolution of O
over A, we obtain

Ext∗A(O, N) =H∗ HomA(X•, N) =H∗ HomC(C ⊗A X•, N),

by virtue of the fact that the A-module structure on N extends to a C-module structure, and
then

· · ·
Proposition 3.4.9

' H∗ HomC(C ⊗B Y•, N) =H∗ HomB(Y•, N)
' H∗(L∗(G)⊗Zp O, N)'H∗(L∗(G), M)⊗Zp O,

where the penultimate isomorphism is due to [Tot99, Lemma 9.2]. Summing up, we have the
isomorphism

H∗c (G,M)⊗Zp O 'H∗(L∗(G), M)⊗Zp O (7)
of O-modules.

We now turn to functoriality. Let f :G→H be a filtered group homomorphism. We write
A(G), C(G) and X•(G), Y•(G) (respectively, A(H), C(H) and X•(H), Y•(H)) for the rings A, C
and complexes X•, Y• corresponding to the group G (respectively, H). The group homomorphism
induces a commutative diagram as follows.

gr(G)
gr(f) //

∼=
��

gr(H)

∼=
��

gr(L∗(H)) // gr(L∗(H))

As in Proposition 3.4.8, this lifts to a diagram of filtered complexes of SatA(G)-modules

SatX•(G) //

∼=
��

SatX•(H)

∼=
��

Sat Y•(G) // Sat Y•(H)

which commutes up to homotopy and is such that taking gradeds gives back the previous diagram,
while taking gradeds of the homotopy yields 0. As in Proposition 3.4.9, the preceding diagram
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restricts to a diagram of filtered complexes of C(G)-modules

C(G)⊗X•(G) //

∼=
��

C(G)⊗X•(H)

∼=
��

C(G)⊗ Y•(G) // C(G)⊗ Y•(H)

which commutes up to homotopy.
Compatibility with cup-products is the case of ∆ :G→G×G. Note that the generators of

G×G are of the form (x, 1) and (1, y) for generators x and y of G. Their filtration is the same
as that of x and y. 2

4. The Lazard isomorphism for algebraic group schemes

In this section we give, in the case of p-adic Lie groups arising from algebraic groups, a direct
description of a map from analytic group cohomology to Lie algebra cohomology by differentiating
cochains. In Proposition 4.2.4 we recall that this map coincides with Lazard’s isomorphism. This
analytic description directly generalizes to K-Lie groups where K is a finite extension of Qp. In
Theorem 4.3.1 we show that the map is also an isomorphism in the case of K-Lie groups defined
by algebraic groups.

4.1 Group schemes
Let p be a prime number, let K be a finite extension of Qp and let R be its ring of integers with
prime element π. Throughout this section, G will be a separated smooth group scheme over R
and g its R-Lie algebra in the following sense:

g = Lie(G) = DerR(OG,e, R).

Then gK := g⊗R K = Lie(GK) is its Lie algebra as a K-manifold.
Note that this category is stable under base change and Weil restriction for finite flat ring

extensions R→ S. If A→B is a ring extension with B finite and locally free over A and X is
an A-scheme, we write XB =X ×A SpecB. If Y is a B-scheme, we write ResB/A X for the Weil
restriction, i.e. ResB/A X(T ) =X(TB) for all A-schemes T . See [BLR90, § 7.6] for properties of
the Weil restriction. In particular, if G is a group scheme over a discrete valuation ring R, then
G is quasi-projective by [BLR90, § 6.4, Theorem 1]. This suffices to guarantee that ResS/R(G)
exists for finite extensions S/R.

The following bit of algebraic geometry will be needed in the proofs.

Lemma 4.1.1. Let L/K be a finite extension and S the ring of integers of L. Consider a separated
smooth group scheme G over S. Then G is a direct factor of ResS/R(G)S .

Proof. Let X be an S-scheme. For all S-schemes T , we describe T -valued points of ResS/R(X)S
as follows:

MorS(T, ResS/R(X)S) = MorR(T, ResS/R(X)) = MorS(T ×R Spec S, X)
= MorS(T ×S Spec(S ⊗R S), X).

The natural map ι : S→ S ⊗R S, s 7→ s⊗ 1, induces the transformation of functors

MorS(T ×S Spec S, X) ι−→MorS(T ×S Spec(S ⊗R S), X) = MorS(T, ResS/R(X)S)

256

https://doi.org/10.1112/S0010437X10004884 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004884


Lazard isomorphism

and hence a morphism
ι :X → ResS/R(X)S .

This is none other than the adjunction morphism.
The multiplication µS : S ⊗R S→ S is a section of ι. This again induces a transformation of

functors

MorS(T, ResS/R(X)S) = MorS(T ×S Spec(S ⊗R S), X)
µS−−−→MorS(T ×S S, X)

and hence a morphism
µS : ResS/R(X)S →X.

(Put T = ResS/R(X)S and the identity on the left.) By construction, µS is a section of ι. Both
are natural in X; hence, as group schemes, G is a direct factor of ResS/R(G)S . 2

Remark 4.1.2. If L/K is Galois of degree d, then ResL/K(G)L ∼= Gd. This carries over to the
integral case if the extension is unramified. The assertion becomes false for ramified covers. Note,
however, that the weaker statement of the lemma remains true.

4.2 Analytic description of the Lazard morphism
Let G be a smooth connected group scheme over R with Lie algebra g. Let G ⊂G(R) be an open
sub-Lie-group.

We denote by Ola(G) (locally) analytic functions on G, i.e. those that can be locally written
as a convergent power series with coefficients in K. Let H i

la(G, K) denote (locally) analytic
group cohomology, i.e. cohomology of the bar complex Ola(Gn)n>0 with the usual differential.
We denote by H i(g, K) Lie algebra cohomology, i.e. cohomology of the complex Λ∗(g∨K) with
differential induced by the dual of the Lie bracket.

Definition 4.2.1. The Lazard morphism is the map

Φ :H i
la(G, K)→H i(g, K)

induced by the morphism of complexes

Ola(Gn)→ (gnK)∨→ Λng∨K ,
f 7→ dfe.

Remark 4.2.2. It is not completely obvious that Φ is a morphism of complexes. See [HK06,
§§ 4.6 and 4.7].

Remark 4.2.3. The map Φ is compatible with the multiplicative structure.

Recall from Lemma 2.2.2 that in the case where K = Qp, the kernel G of G(Zp)→G(Fp) is
filtered and has a subgroup G of finite index which is saturated and equi-p-valued. Indeed, for
p 6= 2 we have G= G.

Let L∗ = L∗(G) be its integral Lazard Lie algebra (see Definition 2.6.6). As reviewed in
Example 2.6.8, there is a natural isomorphism

g⊗Qp
∼= L∗ ⊗Qp.

Proposition 4.2.4 [HK06, Theorem 4.7.1]. For K = Qp and G saturated, the Lazard morphism
Φ (see Definition 4.2.1) agrees, under the identification of Lie algebras given in Example 2.6.8,
with the isomorphism defined by Lazard [Laz65, ch. V, Theorems 2.4.9 and 2.4.10].

In particular, Φ is an isomorphism in this case.
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Remark 4.2.5. This is a case to which our integral version of the result (Theorem 3.1.1) can be
applied. As shown there, this is again the same isomorphism.

4.3 The isomorphism over a general base
Theorem 4.3.1. Let G be a smooth group scheme over R with connected generic fiber and
let G ⊂G(R) be an open subgroup. Then the Lazard morphism Φ (see Definition 4.2.1) is an
isomorphism.

The rest of the article will be devoted to the proof of this theorem.

Remark 4.3.2. Let us sketch the argument. We shall first show injectivity. For this, we can
restrict to smaller and smaller subgroups G and even to their limit. In the limit, the statement
follows by base change from Lazard’s result for R= Zp. We then show surjectivity. Finite
dimensionality of Lie algebra cohomology implies that the morphism is surjective for sufficiently
small G. Algebraicity then implies surjectivity also for the maximal G.

By construction, the Lazard morphism Φ depends only on an infinitesimal neighborhood of e
in G. Hence it factors through the Lazard morphism for all open sub-Lie-groups of G and even
through its limit

Φ∞ : lim−→
G′⊂G

H i
la(G′, K)→H i(g, K).

Lemma 4.3.3. The limit morphism Φ∞ is an isomorphism.

Proof. For K = Qp, this holds by Proposition 4.2.4 and the work of Lazard [Laz65, ch. V,
Theorems 2.4.9 and 2.4.10].

The system of open sub-Lie-groups of G is filtered; hence

lim−→
G′⊂G

H i
la(G′, K) =H i(Ola(G•)e),

where Ola(Gn)e is the ring of germs of locally analytic functions in e. Note that G(Zp) also
carries the structure of a rigid analytic variety, and germs of locally analytic functions are none
other than germs of rigid analytic functions, therefore they can be identified with a limit of Tate
algebras.

First, suppose that G = HR for a smooth group scheme H over Zp. Then

Ola(Gn)e ∼=Ola(H(Zp)n)⊗K

because Tate algebras are well-behaved under base change (see [BGR84, ch. 6.1, Corollary 8]).
Moreover, Φ∞ is compatible with base change. Since it is an isomorphism for H, it is also an
isomorphism for G.

Now consider general G. By Lemma 4.1.1, G is a direct factor of some group of the form HR

where H is a group over Zp. Indeed, H = ResR/Zp
(G). By naturality, Φ∞,G is a direct factor of

Φ∞,HR
and hence, by the special case, an isomorphism. 2

Corollary 4.3.4. The Lazard morphism Φ is injective.

Proof. Since G(R) is compact, all open sub-Lie-groups are of finite index. If G′ ⊂ G is an open
normal subgroup, we have

H i
la(G, K)∼=H i

la(G′, K)G/G
′
.
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Hence the restriction maps

H i
la(G, K)→H i

la(G′, K)

are injective. Because the system of open normal subgroups is filtered, this also implies that

H i
la(G, K)→ lim−→

G′
H i

la(G′, K)

is injective. The injectivity of Φ then follows from the injectivity of Φ∞. 2

Lemma 4.3.5. Let G ⊂G(R) be an open subgroup. Then there is an open subgroup H⊂ G such
that the Lazard morphism for H is bijective.

Remark 4.3.6. Note that this is precisely what Lazard proved over Qp with H being the
saturated subgroup of G = G(Zp).

Proof. As Φ∞ is bijective and Φ injective, it suffices to show that there is H such that the
restriction map

H i
la(H, K)→ lim−→

G′
H i

la(G′, K)

is surjective. Let α be a cocycle with class [α] ∈ lim−→G′ H
i
la(G′, K). By definition, it is represented

by a cochain on some G′. It is a cocycle (possibly on some smaller G′). Hence [α] is in the image
of the restriction map for G′.

Lie algebra cohomology is finite-dimensional by definition, hence this is also true of
lim−→G′ H

i
la(G′, K). By intersecting the G′ for a basis we get the group H that we wanted to

construct. 2

Proof of Theorem 4.3.1. Injectivity has already been proved in Corollary 4.3.4. We use an
argument of Casselman and Wigner [CW74, § 3] to conclude the proof. The operation of GK

on H i(g, K) is algebraic. Hence the stabilizer SK is a closed subgroup of GK . On the other hand,
it contains some open subgroup of G(R). This implies that SK = GK because GK is connected.
Hence G ⊂G(R) operates trivially, and thus

Φ :H i
la(G, K)→H i(g, K)

is surjective. 2

Remark 4.3.7. The argument also works for cohomology with coefficients in a finite-dimensional
algebraic representation of the group.
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Appendix A. A remark of Weigel on equi-p-valued groups

In this short appendix we explain an interesting remark that T. Weigel communicated to us
during the proofreading of the present paper.
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We fix an odd prime p and mention, without going into any detail, that at the prime 2 similar
but strictly weaker results are available.

Proposition A.1 (Weigel). Let (G, ω) be a p-saturated group of finite rank which is equi-p-
valued.

(i) The filtration of G defined by ω is the lower p-series.

(ii) There is a valuation ω′ on G which has all the properties of ω and is such that, in addition,
there is an ordered basis gi ∈G satisfying ω′(gi) = 1 for all i.

(iii) The group G is uniformly powerful.

Proof. (i) Denote by t the valuation of an ordered basis of G. Since (G, ω) is equi-p-valued, we
have

gr(G) = Fp[ε] · grt(G);
that is, the filtration of G defined by ω has jumps exactly as follows:

G=Gt ⊇Gt+1 ⊇Gt+2 · · · .

For every n> 0 we see that

Gt+n/Gt+n+1 ' grt+n(G)' εn · grt(G)

is elementary p-abelian; hence the Frattini subgroup Φ(Gt+n) of Gt+n satisfies

Φ(Gt+n)⊆Gt+n+1.

On the other hand, we have inclusions

Gt+n+1 ⊆ (Gt+n)p ⊆ Φ(Gt+n),

the first one by divisibility and the second one by a general property of Frattini subgroups. This
proves (i).

(ii) Since (G, ω) is p-saturated, we have
1

p− 1
< t6

p

p− 1
.

We now check that ω′ := ω + 1− t has the desired properties.
Write c := 1− t and first assume that t> 1, i.e. c6 0. Then for all x, y ∈G,

ω′([x, y]) = ω([x, y]) + c> ω(x) + ω(y) + c= ω′(x) + ω′(y)− c> ω′(x) + ω′(y).

This shows that ω′ has properties (i)–(iii) of Definition 2.1.1. Since (recall that p 6= 2)

ω′ > 1>
1

p− 1
,

ω′ has property (iv) of Definition 2.1.1, and property (v) is trivially satisfied. Take x ∈G with

ω(x) + c= ω′(x)>
p

p− 1
.

Then, again because c6 0, we have

ω(x)>
p

p− 1
− c>

p

p− 1
,

and x ∈Gp since ω is saturated. Hence ω′ has property (vi) of Definition 2.1.1, and property (vii)
is trivially satisfied.
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Now assume that t < 1, i.e. c > 0. For all x and y in an ordered basis of G we have

ω([x, y]) > ω(x) + ω(y) = 2t > t,

which, using the structure of gr(G), implies the first inequality in

ω([x, y]) > t+ 1 = ω(x) + ω(y) + 1− t= ω(x) + ω(y) + c.

By uniformity, this inequality holds for all x, y ∈G, and thus ω′ has property (ii); hence
properties (i)–(iii) of Definition 2.1.1 are satisfied. Take x ∈G with

ω(x) + c= ω′(x)>
p

p− 1
.

Then

ω(x)>
p

p− 1
− c=

p

p− 1
+ t− 1 = t+

1
p− 1

> t.

By the structure of gr(G), this implies

ω(x) > t+ 1.

Using the fact that (G, ω) is p-saturated, we have t+ 1 > p/(p− 1) and x ∈Gp. This implies
that ω′ has property (vi) of Definition 2.1.1. Since ω′ > 1, ω′ has property (iv) and the rest of
assertion (ii) in the proposition is clear.

(iii) We first show that G is uniform. Choose ω′ as in part (ii) above; then

G=G1 ⊇G2 ⊇ · · ·

is the lower p-series and

[Gn :Gn+1] = |εn · gr1(G)|= [G1 :G2].

Furthermore, G/Gp is abelian because

[G, G]⊆G2 ⊆ (G1)p =Gp. 2

We conclude by explaining the simplifications implied by this result for our integral Lazard
isomorphism, i.e. Theorem 3.1.1.

Theorem A.2. Let p be an odd prime and (G, ω) a compact, saturated, equi-p-valued group.
Let M be as in Theorem 3.1.1. Then there is an isomorphism of graded Zp-modules

φG(M) :H∗c (G,M)'H∗(L∗(G), M),

which is natural in M and G and compatible with cup-products.

Proof. Replace ω by the filtration constructed above. Then we are in the e= 1 case of
Theorem 3.1.1 with generators in degree one. For naturality in G, note that every group
homomorphism f (is continuous and) respects the lower p-series; hence the isomorphism is
natural with respect to f . In particular, then, the isomorphism is always compatible with cup-
products. 2
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