THE COHOMOLOGY OF THE UNITS IN CERTAIN Z_{ρ} -EXTENSIONS

ΒY

H. KISILEVSKY

Dedicated to the memory of R. A. Smith

ABSTRACT. For K/k a \mathbb{Z}_p -extension with Galois group Γ , Iwasawa in [4], poses the question of determining the cohomology groups $H^n(\Gamma, E)$ of the unit group E of K. In this article we compute the cohomology of the units (up to finite groups) for a certain class of \mathbb{Z}_p -extensions.

Let k be a finite extension of the field Q of rational numbers, and fix p, a prime number. Suppose that K/k is a \mathbb{Z}_p -extension with Galois group $\Gamma = \text{Gal}(K/k)$. For integers $n \ge 0$, let k_n be the n^{th} layer of K, $(k_0 = k)$, and denote by Γ_n the Galois group $\text{Gal}(K/k_n)$ so that $\Gamma_n = \Gamma^{p^n}$. Let E_n be the group of units of k_n and $E = \bigcup_{n\ge 0} E_n$ be the unit group of K. Then E is a discrete Γ -module, and in [4], Iwasawa poses the question of determining the cohomology groups

$$H^n(\Gamma, E) = \lim H^n(\Gamma/\Gamma_n, E_n).$$

Since Γ is a free pro-*p*-group, $H^n(\Gamma, A) = 0$ for $n \ge 3$ for every discrete Γ -module A, so that this question is of interest only for n = 1, 2. Iwasawa ([4], prop. 2) proves

$$H^1(\Gamma, E) \sim (\mathbf{Q}_p/\mathbf{Z}_p)^r, H^2(\Gamma, E) \approx (\mathbf{Q}_p/\mathbf{Z}_p)^{r-1}$$

for some integer r, $1 \le r \le u$, where u = u(K/k) is the number of prime ideals of k ramified in K. Here for abelian groups A, B we write $A \sim B$ if there is a map $\phi: A \to B$ with finite kernel and cokernel. If $\{A_n\}$ and $\{B_n\}$ are two sequences of finite groups then we write $A_n \sim B_n$ if there are homomorphisms $\phi_n: A_n \to B_n$ whose kernels and cokernels have orders bounded independently of n.

In [4], Iwasawa gives several conditions on the Z_p -extension K/k under which he shows that r = u. In this article we compute the invariant r for certain Z_p -extensions which will be described in §2.

1. Firstly, we note that

$$H^2(\Gamma, E) = \lim H^2(\Gamma/\Gamma_n, E_n)$$

and since Γ/Γ_n is a cyclic group, we have

Received by the editors August 13, 1984.

AMS Subject Classification: Primary, 12A60; Secondary, 12A45.

Research supported in part by grants from NSERC and FCAC.

[©] Canadian Mathematical Society 1984.

Z_p-EXTENSIONS

$$H^2(\Gamma/\Gamma_n, E_n) \simeq E_0/N_n(E_n)$$

where $N_n = N_{n,0}$ is the norm map from k_n to $k_0 = k$. We note that these are isomorphisms of abelian groups which commute with the inflation maps of the direct limit (but which will *not* necessarily commute with the action of the Galois group Δ in §3).

If we denote by P_n , I_n , C_n the group of principal ideals, the group of (fractional) ideals, and the ideal class group of k_n , respectively, then we have the exact sequence

$$0 \to P_n \to I_n \to C_n \to 0$$

We obtain the exact cohomology sequence

$$0 \to P_n^{\Gamma} \to I_n^{\Gamma} \to C_n^{\Gamma} \to H^1(\Gamma, P_n) \to 0$$

where $H^1(\Gamma, P_n) \approx E_0 \cap N_n(k_n^*)/N_n(E_n)$, and for a Γ -module A, A^{Γ} denotes the elements of A fixed by Γ .

Let S_n be the set of prime ideals of k_n ramified in K/k_n so that S_n is a finite set of primes of k_n (dividing p) and in fact S_n is the set of all primes of k_n lying over a prime in S_0 . Let $\langle S_n \rangle$ be the subgroup of the ideal class group C_n generated by the primes in S_n and denote by C'_n the "S-class group" of k_n , i.e.,

$$C'_n = C_n / \langle S_n \rangle.$$

It then follows that

$$0 \to \langle S_n \rangle^{\Gamma} \to C_n^{\Gamma} \to (C_n')^{\Gamma}$$

is exact, and we have the following lemma.

LEMMA. If
$$(C'_n)^{\Gamma} \sim 0$$
, then $E_0 \cap N_n(k_n^*)/N_n(E_n) \sim 0$ and $C_n^{\Gamma} \sim I_n^{\Gamma}/P_n^{\Gamma}$.

PROOF. It is clear that $(C'_n)^{\Gamma} \sim 0$ implies that $C_n^{\Gamma} \sim \langle S_n \rangle^{\Gamma}$. But it is also clear that $\langle S_n \rangle^{\Gamma} \sim I_n^{\Gamma} / P_n^{\Gamma}$ is (up to groups of bounded order) the subgroup of C_n represented by ideals invariant under Γ . But then it follows that $H^1(\Gamma, P_n) \simeq E_0 \cap N_n(k_n^*) / N_n(E_n)$ must have order which is bounded for all n.

We now describe a result proved in [2], [7] which is sufficient for $(C'_n)^{\Gamma} \sim 0$.

THEOREM. Let K/k be a \mathbb{Z}_p -extension, k/\bar{k} a finite abelian extension such that K/\bar{k} is a Galois extension. Suppose:

(I) The set $S = S_0$ of all primes of k ramified in K consists of all the prime divisors of a single prime ideal p of \bar{k} .

(II) p has local degree equal to one.

(III) The decomposition group D of p in $Gal(k/\bar{k})$ acts trivially on Γ . Then $(C'_n)^{\Gamma} \sim 0$.

The hypotheses of this theorem are satisfied, for example, by the cyclotomic Z_p -extension of any field k abelian over Q ($=\bar{k}$). In this context the result is due to Greenberg [3].

2. In this section we give a set of \mathbb{Z}_p -extensions for which we can compute $H^n(\Gamma, E)$.

https://doi.org/10.4153/CMB-1985-042-3 Published online by Cambridge University Press

1985]

They will satisfy the hypotheses of Theorem 1. In addition we require that the field k in Theorem 1 is either Q or an imaginary quadratic field. This will allow us to describe the units of k, up to finite groups, as a cyclic module over $Z[\Delta]$, where $\Delta = \text{Gal}(k/\bar{k})$. Also for such fields k, Leopoldt's conjecture is known to be true.

Let $\bar{k} = Q$ or an imaginary quadratic field, and let k/\bar{k} be an abelian extension with Galois group $\Delta = \text{Gal}(k/\bar{k})$. Suppose that p is a prime satisfying $\delta^{p-1} = 1$ for all $\delta \in \Delta$.

CASE I. If $\bar{k} = Q$ and k is a complex abelian extension of Q, denote by $\hat{\Delta}$ the group of characters of Δ with values in the $(p-1)^{st}$ roots of unity of Z_p . Let $J \in \Delta$ be the automorphism obtained by restricting complex conjugation to k. It is known ([1], [5]) that for each character $\chi \in \hat{\Delta}$ such that $\chi(J) = -1$ or $\chi = \chi_0$ (the principal character) there is a uniquely defined Z_p -extension $K\chi/k$ such that $K\chi/Q$ is a Galois extension. In fact Gal $(K\chi/Q)$ is a semidirect product $\Delta \cdot \Gamma$ with $\Gamma = \text{Gal}(K\chi/k) \simeq Z_p$ and Δ acts on Γ via χ , i.e., $\delta(\gamma) = \bar{\delta}\gamma \bar{\delta}^{-1} = \gamma^{\chi(\delta)}$ for each $\gamma \in \Gamma$, $\delta \in \Delta$, where $\bar{\delta}$ is any lift of $\delta \in \Delta$ to Gal $(K\chi/Q)$. Hence K_{χ_0}/k is the cyclotomic Z_p -extension of k, and $K\chi/Q$ is non-abelian for $\chi \neq \chi_0$. In order to satisfy hypothesis III of the theorem, §1, we consider only those extensions $K\chi/k$ such that $D \subseteq \ker \chi$, where D is the decomposition group of p in Δ .

CASE II. If $\bar{k} = Q$ and k is a totally real abelian extension of Q, then k has exactly one Z_p -extension, the cyclotomic Z_p -extension.

If \bar{k} is an imaginary quadratic field, then for hypothesis II of Theorem 1 we require that $p = p\bar{p}$ splits in \bar{k} , and we consider the unique \mathbb{Z}_p -extension of k, K_p/k , which is ramified only at p. Then K_p is abelian over \bar{k} with Galois group $\operatorname{Gal}(K_p/\bar{k}) \simeq \Gamma \times \Delta$.

3. We calculate the cohomology groups

$$H^n(\Gamma, E) \qquad n=1,2$$

for the \mathbb{Z}_p -extensions of §2 using the results of [2, §1], and [6] (see also [5]). Since

$$H^n(\Gamma, E) = \lim_{n \to \infty} H^n(\Gamma/\Gamma_n, E_n)$$

and since $H^2(\Gamma/\Gamma_n, E_n) \approx E_0/N_n(E_n)$ (as abelian groups) we may use the lemma of §1 to conclude for the Z_p -extensions considered here

$$H^2(\Gamma/\Gamma_n, E_n) \sim E_0/E_0 \cap N_n(k_n^*).$$

As Δ acts on $\Gamma = \text{Gal}(K\chi/k)$ via the character $\chi(\chi = \chi_0 \text{ in Case II})$ it follows that, for $\phi \in \hat{\Delta}$,

$$H^n(\Gamma/\Gamma_n, E_n)_{\phi} \approx H^{n+2}(\Gamma/\Gamma_n, E_n)_{\phi\chi}.$$

Also the groups $(E_0/E_0 \cap N_n(k_n^*))_{\phi}$ are computed in [1, §1] in Case I, and the calculation in Case II is similar. We tabulate the results in Proposition 1.

PROPOSITION 1. Let K/k be one of the \mathbb{Z}_p -extensions defined in §2. Then

Z_p-EXTENSIONS

Case I $H^{0}(\Gamma/\Gamma_{n}, E_{n})_{\phi} \sim \mathbb{Z}/p^{n}\mathbb{Z}$ $\phi(J) = +1, \quad \phi \neq \chi_{0}$ $D \subseteq \ker \phi$ ~ 0 otherwise $H^{2}(\Gamma, E)_{\phi} \sim \mathbb{Q}_{p}/\mathbb{Z}_{p}$ $\phi(J) = \chi(J), \quad \phi \neq \chi$ $\phi|D = \chi|D$ ~ 0 otherwise Case II $H^{0}(\Gamma/\Gamma_{n}, E_{n})_{\phi} \sim \mathbb{Z}/p^{n}\mathbb{Z}$ $\phi \neq \chi_{0}, D \subseteq \ker \phi$ ~ 0 otherwise $H^{2}(\Gamma, E_{n})_{\phi} \sim \mathbb{Q}_{p}/\mathbb{Z}_{p}$ $\phi \neq \chi_{0}, D \subseteq \ker \phi$ ~ 0 otherwise

We now give the *D*-decomposition for $H^1(\Gamma, E)$. It follows from the results in [2, §2; 5; 6] that $D \subseteq \ker \chi$ implies that C_n^{Γ} has known Δ -decomposition up to groups whose order are bounded independently of *n*. Lemma 1 also gives the exactness of the following sequence up to groups of bounded orders

$$\sim 0 \rightarrow P_n^{\Gamma}/P_0 \rightarrow I_n^{\Gamma}/I_0 \rightarrow C_n^{\Gamma} \rightarrow \sim 0.$$

However

$$I_n^{\Gamma}/I_0 \sim \mathbf{Z}/p^n \mathbf{Z}[\Delta/D]$$

and in Case I

$$(C_n^{\Gamma})_{\phi} \sim \mathbf{Z}/p^n \mathbf{Z} \qquad \phi \in V, \ \phi \neq \chi, \ \phi | D = \chi | D$$

~ 0 otherwise

where $V = \{ \phi \in \hat{\Delta} | \phi(J) = -1 \text{ or } \phi = \chi_0 \}$. In Case II the truth of Leopoldt's conjecture implies that $C_n^{\Gamma} \sim 0$. Hence in both cases this gives a calculation of

$$P_n^{\Gamma}/P_0 \simeq H^1(\Gamma, E)$$

PROPOSITION 2. For the \mathbb{Z}_p -extensions defined in §2 we have:

Case I
$$H^{1}(\Gamma, E)_{\phi} \sim Q_{p}/Z_{p}$$
 if $\phi = \chi$
or $\phi(J) = +1$, $\phi|D = \chi_{0}|D$, $\phi \neq \chi_{0}$
 ~ 0 otherwise
Case II $H^{1}(\Gamma, E)_{\phi} \sim Q_{p}/Z_{p}$ $\phi|D = \chi_{0}|D$

 ~ 0 otherwise

(Note in Case I if $\chi = \chi_0$, then $H^1(\Gamma, E)_{\phi} \sim Q_p/Z_p$ if and only if $\phi(J) = +1$ and $D \subseteq \ker \phi$.)

We see that the integer r defined by Iwasawa in Case II always satisfies r = u(K/k). However in Case I there are many examples in which we find that r = u/2 if $J \notin D$.

353

1985]

H. Yamashita has also written a paper on this subject (Tohoku Math. J. **36** (1984), pp. 75-80).

ACKNOWLEDGEMENT. I would like to thank the Institute for Advanced Study, Princeton, for their hospitality during the preparation of this paper.

References

1. J. Carrol and H. Kisilevsky, On Iwasawa's λ -invariant for certain Z_t -extensions, Acta Arithmetica XL (1981), pp. 1–8.

2. —, On the Iwasawa invariants of certain Z_p -extensions, Compositio Math. **49** (1983), pp. 217–229.

3. R. Greenberg, On a certain p-adic representation, Inventiones Math. 21 (1973), pp. 117-124.

4. K. Iwasawa, On cohomology groups of units for Z_p -extensions, American Jour. of Math. Vol. 105, No. 1 (1983), pp. 189–200.

5. J. F. Jaulent, Sur la théorie des genres dans une extension procyclique métabelienne sur un sous corps, To appear.

6. H. Kisilevsky, Some non-semi-simple Iwasawa modules, Compositio Math. 49 (1983), pp. 399-404.

7. ____, On the semi-simplicity of a certain Iwasawa module, Submitted to Can. J. of Math.

DEPARTMENT OF MATHEMATICS CONCORDIA UNIVERSITY MONTREAL, QUEBEC H3G 1M8 CANADA