THE COHOMOLOGY OF THE UNITS IN CERTAIN Z_{p}-EXTENSIONS

BY
H. KISILEVSKY
Dedicated to the memory of R. A. Smith

> AbSTRACT. For K / k a Z_{p}-extension with Galois group Γ, Iwasawa in [4], poses the question of determining the cohomology groups $H^{\prime \prime}(\Gamma, E)$ of the unit group E of K. In this article we compute the cohomology of the units (up to finite groups) for a certain class of Z_{p}-extensions.

Let k be a finite extension of the field Q of rational numbers, and fix p, a prime number. Suppose that K / k is a Z_{p}-extension with Galois group $\Gamma=\operatorname{Gal}(K / k)$. For integers $n \geq 0$, let k_{n} be the $n^{\text {th }}$ layer of $K,\left(k_{0}=k\right)$, and denote by Γ_{n} the Galois group $\operatorname{Gal}\left(K / k_{n}\right)$ so that $\Gamma_{n}=\Gamma^{p^{n}}$. Let E_{n} be the group of units of k_{n} and $E=\cup_{n \geq 0} E_{n}$ be the unit group of K. Then E is a discrete Γ-module, and in [4], Iwasawa poses the question of determining the cohomology groups

$$
H^{n}(\Gamma, E)=\lim H^{n}\left(\Gamma / \Gamma_{n}, E_{n}\right) .
$$

Since Γ is a free pro- p-group, $H^{n}(\Gamma, A)=0$ for $n \geq 3$ for every discrete Γ-module A, so that this question is of interest only for $n=1,2$. Iwasawa ([4], prop. 2) proves

$$
H^{1}(\Gamma, E) \sim\left(\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{r}, H^{2}(\Gamma, E) \approx\left(\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{r-1}
$$

for some integer $r, 1 \leq r \leq u$, where $u=u(K / k)$ is the number of prime ideals of k ramified in K. Here for abelian groups A, B we write $A \sim B$ if there is a map $\phi: A \rightarrow B$ with finite kernel and cokernel. If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two sequences of finite groups then we write $A_{n} \sim B_{n}$ if there are homomorphisms $\phi_{n}: A_{n} \rightarrow B_{n}$ whose kernels and cokernels have orders bounded independently of n.

In [4], Iwasawa gives several conditions on the Z_{p}-extension K / k under which he shows that $r=u$. In this article we compute the invariant r for certain \boldsymbol{Z}_{p}-extensions which will be described in §2.

1. Firstly, we note that

$$
H^{2}(\Gamma, E)=\lim _{\rightarrow} H^{2}\left(\Gamma / \Gamma_{n}, E_{n}\right)
$$

and since Γ / Γ_{n} is a cyclic group, we have

[^0]$$
H^{2}\left(\Gamma / \Gamma_{n}, E_{n}\right) \simeq E_{0} / N_{n}\left(E_{n}\right)
$$
where $N_{n}=N_{n, 0}$ is the norm map from k_{n} to $k_{0}=k$. We note that these are isomorphisms of abelian groups which commute with the inflation maps of the direct limit (but which will not necessarily commute with the action of the Galois group Δ in §3).

If we denote by P_{n}, I_{n}, C_{n} the group of principal ideals, the group of (fractional) ideals, and the ideal class group of k_{n}, respectively, then we have the exact sequence

$$
0 \rightarrow P_{n} \rightarrow I_{n} \rightarrow C_{n} \rightarrow 0
$$

We obtain the exact cohomology sequence

$$
0 \rightarrow P_{n}^{\Gamma} \rightarrow I_{n}^{\Gamma} \rightarrow C_{n}^{\Gamma} \rightarrow H^{1}\left(\Gamma, P_{n}\right) \rightarrow 0
$$

where $H^{1}\left(\Gamma, P_{n}\right) \approx E_{0} \cap N_{n}\left(k_{n}^{*}\right) / N_{n}\left(E_{n}\right)$, and for a Γ-module A, A^{Γ} denotes the elements of A fixed by Γ.

Let S_{n} be the set of prime ideals of k_{n} ramified in K / k_{n} so that S_{n} is a finite set of primes of k_{n} (dividing p) and in fact S_{n} is the set of all primes of k_{n} lying over a prime in S_{0}. Let $\left\langle S_{n}\right\rangle$ be the subgroup of the ideal class group C_{n} generated by the primes in S_{n} and denote by C_{n}^{\prime} the " S-class group" of k_{n}, i.e.,

$$
C_{n}^{\prime}=C_{n} /\left\langle S_{n}\right\rangle .
$$

It then follows that

$$
0 \rightarrow\left\langle S_{n}\right\rangle^{\Gamma} \rightarrow C_{n}^{\Gamma} \rightarrow\left(C_{n}^{\prime}\right)^{\Gamma}
$$

is exact, and we have the following lemma.
Lemma. If $\left(C_{n}^{\prime}\right)^{\Gamma} \sim 0$, then $E_{0} \cap N_{n}\left(k_{n}^{*}\right) / N_{n}\left(E_{n}\right) \sim 0$ and $C_{n}^{\Gamma} \sim I_{n}^{\Gamma} / P_{n}^{\Gamma}$.
Proof. It is clear that $\left(C_{n}^{\prime}\right)^{\Gamma} \sim 0$ implies that $C_{n}^{\Gamma} \sim\left\langle S_{n}\right\rangle^{\Gamma}$. But it is also clear that $\left\langle S_{n}\right\rangle^{\Gamma} \sim I_{n}^{\Gamma} / P_{n}^{\Gamma}$ is (up to groups of bounded order) the subgroup of C_{n} represented by ideals invariant under Γ. But then it follows that $H^{1}\left(\Gamma, P_{n}\right) \simeq E_{0} \cap N_{n}\left(k_{n}^{*}\right) / N_{n}\left(E_{n}\right)$ must have order which is bounded for all n.

We now describe a result proved in [2], [7] which is sufficient for $\left(C_{n}^{\prime}\right)^{\Gamma} \sim 0$.
Theorem. Let K / k be a Z_{p}-extension, k / \bar{k} a finite abelian extension such that K / \bar{k} is a Galois extension. Suppose:
(I) The set $S=S_{0}$ of all primes of k ramified in K consists of all the prime divisors of a single prime ideal p of \bar{k}.
(II) p has local degree equal to one.
(III) The decomposition group D of p in $\operatorname{Gal}(k / \bar{k})$ acts trivially on Γ.

Then $\left(C_{n}^{\prime}\right)^{\Gamma} \sim 0$.
The hypotheses of this theorem are satisfied, for example, by the cyclotomic \boldsymbol{Z}_{p}-extension of any field k abelian over $\boldsymbol{Q}(=\bar{k})$. In this context the result is due to Greenberg [3].
2. In this section we give a set of Z_{p}-extensions for which we can compute $H^{n}(\Gamma, E)$.

They will satisfy the hypotheses of Theorem 1. In addition we require that the field \bar{k} in Theorem 1 is either \boldsymbol{Q} or an imaginary quadratic field. This will allow us to describe the units of k, up to finite groups, as a cyclic module over $\boldsymbol{Z}[\Delta]$, where $\Delta=\operatorname{Gal}(k / \bar{k})$. Also for such fields k, Leopoldt's conjecture is known to be true.

Let $\bar{k}=\boldsymbol{Q}$ or an imaginary quadratic field, and let k / \bar{k} be an abelian extension with Galois group $\Delta=\operatorname{Gal}(k / \bar{k})$. Suppose that p is a prime satisfying $\delta^{p-1}=1$ for all $\delta \in \Delta$.

CASE I. If $\bar{k}=\boldsymbol{Q}$ and k is a complex abelian extension of \boldsymbol{Q}, denote by $\hat{\Delta}$ the group of characters of Δ with values in the $(p-1)^{s t}$ roots of unity of \boldsymbol{Z}_{p}. Let $J \in \Delta$ be the automorphism obtained by restricting complex conjugation to k. It is known ([1], [5]) that for each character $\chi \in \hat{\Delta}$ such that $\chi(J)=-1$ or $\chi=\chi_{0}$ (the principal character) there is a uniquely defined \boldsymbol{Z}_{p}-extension K_{χ} / k such that $K_{\chi} / \boldsymbol{Q}$ is a Galois extension. In fact $\operatorname{Gal}\left(K_{\chi} / \boldsymbol{Q}\right)$ is a semidirect product $\Delta \cdot \Gamma$ with $\Gamma=\operatorname{Gal}\left(K_{\chi} / k\right) \simeq \boldsymbol{Z}_{p}$ and Δ acts on Γ via χ, i.e., $\delta(\gamma)=\bar{\delta} \gamma \bar{\delta}^{-1}=\gamma^{\chi(\delta)}$ for each $\gamma \in \Gamma, \delta \in \Delta$, where $\bar{\delta}$ is any lift of $\delta \in \Delta$ to $\operatorname{Gal}\left(K_{\chi} / \boldsymbol{Q}\right)$. Hence $K_{\chi_{0}} / k$ is the cyclotomic \boldsymbol{Z}_{p}-extension of k, and $K \chi / \boldsymbol{Q}$ is non-abelian for $\chi \neq \chi_{0}$. In order to satisfy hypothesis III of the theorem, §1, we consider only those extensions $K \chi / k$ such that $D \subseteq$ ker χ, where D is the decomposition group of p in Δ.

Case II. If $\bar{k}=\boldsymbol{Q}$ and k is a totally real abelian extension of \boldsymbol{Q}, then k has exactly one \boldsymbol{Z}_{p}-extension, the cyclotomic \boldsymbol{Z}_{p}-extension.

If \bar{k} is an imaginary quadratic field, then for hypothesis II of Theorem 1 we require that $p=p \bar{p}$ splits in \bar{k}, and we consider the unique \boldsymbol{Z}_{p}-extension of $k, K_{p} / k$, which is ramified only at p. Then K_{p} is abelian over \bar{k} with Galois $\operatorname{group} \operatorname{Gal}\left(K_{p} / \bar{k}\right) \simeq \Gamma \times \Delta$.
3. We calculate the cohomology groups

$$
H^{n}(\Gamma, E) \quad n=1,2
$$

for the \boldsymbol{Z}_{p}-extensions of $\S 2$ using the results of [2, §1], and [6] (see also [5]). Since

$$
H^{n}(\Gamma, E)=\lim _{\rightarrow} H^{n}\left(\Gamma / \Gamma_{n}, E_{n}\right)
$$

and since $H^{2}\left(\Gamma / \Gamma_{n}, E_{n}\right) \approx E_{0} / N_{n}\left(E_{n}\right)$ (as abelian groups) we may use the lemma of $\S 1$ to conclude for the Z_{p}-extensions considered here

$$
H^{2}\left(\Gamma / \Gamma_{n}, E_{n}\right) \sim E_{0} / E_{0} \cap N_{n}\left(k_{n}^{*}\right)
$$

As Δ acts on $\Gamma=\operatorname{Gal}(K \chi / k)$ via the character $\chi\left(\chi=\chi_{0}\right.$ in Case II $)$ it follows that, for $\phi \in \hat{\Delta}$,

$$
H^{n}\left(\Gamma / \Gamma_{n}, E_{n}\right)_{\phi} \approx H^{n+2}\left(\Gamma / \Gamma_{n}, E_{n}\right)_{\phi \chi} .
$$

Also the groups $\left(E_{0} / E_{0} \cap N_{n}\left(k_{n}^{*}\right)\right)_{\phi}$ are computed in [1,§1] in Case I, and the calculation in Case II is similar. We tabulate the results in Proposition 1.

Proposition 1. Let K / k be one of the \boldsymbol{Z}_{p}-extensions defined in $\$ 2$. Then

```
Case I \(\quad H^{0}\left(\Gamma / \Gamma_{n}, E_{n}\right)_{\phi} \sim \boldsymbol{Z} / p^{n} \boldsymbol{Z} \quad \phi(J)=+1, \quad \phi \neq \chi_{0}\)
    \(D \subseteq \operatorname{ker} \phi\)
\begin{tabular}{rlrl} 
& \(\sim 0\) & & otherwise \\
\(H^{2}(\Gamma, E)_{\phi}\) & \(\sim Q_{p} / Z_{p}\) & & \(\phi(J)=\chi(J), \quad \phi \neq \chi\) \\
& & \(\phi|D=\chi| D\) \\
& \(\sim 0\) & & otherwise
\end{tabular}
Case II \(\quad H^{0}\left(\Gamma / \Gamma_{n}, E_{n}\right)_{\phi} \sim \boldsymbol{Z} / p^{n} \boldsymbol{Z}\)
\(\sim 0\) \(H^{2}\left(\Gamma, E_{n}\right)_{\phi} \sim \boldsymbol{Q}_{p} / Z_{p}\)
~ 0
otherwise \(\phi \neq \chi_{0}, D \subseteq \operatorname{ker} \phi\) otherwise \(\phi \neq \chi_{0}, D \subseteq \operatorname{ker} \phi\) otherwise
```

We now give the D-decomposition for $H^{1}(\Gamma, E)$. It follows from the results in [2, $\S 2 ; 5 ; 6]$ that $D \subseteq \operatorname{ker} \chi$ implies that C_{n}^{Γ} has known Δ-decomposition up to groups whose order are bounded independently of n. Lemma 1 also gives the exactness of the following sequence up to groups of bounded orders

$$
\sim 0 \rightarrow P_{n}^{\Gamma} / P_{0} \rightarrow I_{n}^{\Gamma} / I_{0} \rightarrow C_{n}^{\Gamma} \rightarrow \sim 0 .
$$

However

$$
I_{n}^{\mathrm{\Gamma}} / I_{0} \sim \boldsymbol{Z} / p^{n} \boldsymbol{Z}[\Delta / D]
$$

and in Case I

$$
\begin{aligned}
\left(C_{n}^{\Gamma}\right)_{\phi} & \sim Z / p^{n} Z & & \phi \in V, \phi \neq \chi, \phi|D=\chi| D \\
& \sim 0 & & \text { otherwise }
\end{aligned}
$$

where $V=\left\{\phi \in \hat{\Delta} \mid \phi(J)=-1\right.$ or $\left.\phi=\chi_{0}\right\}$. In Case II the truth of Leopoldt's conjecture implies that $C_{n}^{\Gamma} \sim 0$. Hence in both cases this gives a calculation of

$$
P_{n}^{\Gamma} / P_{0} \simeq H^{\prime}(\Gamma, E) .
$$

Proposition 2. For the \boldsymbol{Z}_{p}-extensions defined in $\S 2$ we have:
Case I $\quad H^{1}(\Gamma, E)_{\phi} \sim \boldsymbol{Q}_{p} / Z_{p}$ if $\phi=\chi$ or $\phi(J)=+1, \phi\left|D=\chi_{0}\right| D, \phi \neq \chi_{0}$
$\sim 0 \quad$ otherwise
Case II $\quad H^{1}(\Gamma, E)_{\phi} \sim \boldsymbol{Q}_{p} / Z_{p} \quad \phi\left|D=\chi_{0}\right| D$

$$
\sim 0 \quad \text { otherwise }
$$

(Note in Case I if $\chi=\chi_{0}$, then $H^{1}(\Gamma, E)_{\phi} \sim \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}$ if and only if $\phi(J)=+1$ and $D \subseteq$ ker ϕ.)

We see that the integer r defined by Iwasawa in Case II always satisfies $r=u(K / k)$. However in Case I there are many examples in which we find that $r=u / 2$ if $J \notin D$.
H. Yamashita has also written a paper on this subject (Tohoku Math. J. 36 (1984), pp. 75-80).

Acknowledgement. I would like to thank the Institute for Advanced Study, Princeton, for their hospitality during the preparation of this paper.

References

1. J. Carrol and H. Kisilevsky, On Iwasawa's λ-invariant for certain \mathbf{Z}_{ℓ}-extensions, Acta Arithmetica XL (1981), pp. 1-8.
2. - On the Iwasawa invariants of certain Z_{p}-extensions, Compositio Math. 49 (1983), pp. 217-229.
3. R. Greenberg, On a certain p-adic representation, Inventiones Math. 21 (1973), pp. 117-124.
4. K. Iwasawa, On cohomology groups of units for \boldsymbol{Z}_{p}-extensions, American Jour. of Math. Vol. 105, No. 1 (1983), pp. 189-200.
5. J. F. Jaulent, Sur la théorie des genres dans une extension procyclique métabelienne sur un sous corps, To appear.
6. H. Kisilevsky, Some non-semi-simple Iwasawa modules, Compositio Math. 49 (1983), pp. 399-404.
7. -_, On the semi-simplicity of a certain Iwasawa module, Submitted to Can. J. of Math.

Department of Mathematics
Concordia University
Montreal, Quebec H3G 1M8
Canada

[^0]: Received by the editors August 13, 1984.
 AMS Subject Classification: Primary, 12A60; Secondary, 12A45.
 Research supported in part by grants from NSERC and FCAC.
 © Canadian Mathematical Society 1984.

