
A note on inverting ice-stream surface data

In a recent paper in the Journal, Thorsteinsson and others
(2003) presented an interesting method for obtaining
information about basal conditions under ice streams from
surface data by means of an inverse model. The discussion
below applies as much to the forward theory on which their
method is built, and which is presented in detail in
Gudmundsson (2003), as to the inversion carried out by
Thorsteinsson and others. Nevertheless, it is best addressed
to the paper by Thorsteinsson and others as it extends the
validity and applicability of their results.

Our aim is to address the apparent limitationofGudmunds-
son’s model to a particular sliding law of linear Weertman
type. Although sliding laws of this type have a long pedigree
in glaciology, more recent work has indicated that Coulomb-
type friction laws may be more appropriate descriptions of
ice-stream motion, and these have also found their way into
the inversion of ice surface data (e.g. Joughin and others,
2004). Incidentally, the model which we propose also has
the advantage that it is not formally based on a perturbation
expansion which assumes small variations in stress and
velocity about mean fields describing the laminar flow of a
parallel-sided ice slab (as is the case for Gudmundsson’s
theory); in fact, our method naturally allows for O(1)
variations in the stress field compared with driving stress.

Let us first consider the question of a sliding law. Friction
at the bed of an ice stream can arise either from ice–sediment
interactions (e.g. Tulaczyk, 1999) or from combined creep
flow and regelation around bed obstacles (e.g. Nye, 1969). In
either case, there may be small-scale variations in drag at a
local scale determined by clast size or the wavelength of bed
obstacles. Provided this local length scale is small compared
with the ice thickness, it is in principle possible to average
locally over these variations and to obtain a sliding law
which relates the shear stress experienced at a ‘smoothed
bed’ by the bulk flow of the ice stream to other global
variables such as sliding velocity, spatially averaged water
pressure or normal stress. The relevant mathematical
method, which separates the ice flow into a bulk flow
occupying most of the thickness of the ice and a thin
boundary layer near the bed, is outlined by Fowler (1981).
We emphasize that this method is not contingent on the
particular sliding physics considered by Fowler, but can in
theory be applied to any small-scale ice–bed interactions.
The result of this averaging procedure, and hence the
resulting sliding law, naturally depends on the precise
physics of the ice–bed interactions and, consequently, one
generally does not know the precise functional form of the
sliding law. Below, we will assume only a general functional
relationship of the type �b ¼ �bðx, ub,�nnÞ where �b is the
shear stress experienced by the bulk flow of the ice stream at
the smoothed bed and ub is the bed-parallel sliding velocity
of the bulk flow (both taken in the sense of Fowler, 1981),
while �nn is compressive normal stress at the bed and x
denotes position along the bed. The rationale behind
choosing this functional form is that hard-bed sliding theories
(e.g. Nye, 1969; Fowler, 1981) naturally lead to basal shear
stress �b increasing with sliding velocity ub, while studies of
ice flow over deformable beds (Tulaczyk, 1999) – or hard
beds in the presence of subglacial cavities (Schoof, 2004) –
predict that basal shear stress should depend only weakly (if
at all) on sliding velocity, while depending strongly on
effective pressure, which we may take to be the difference

between compressive normal stress �nn and basal water
pressure. An explicit dependence on position x is included in
the sliding law to account for variations in bed roughness or
basal water pressures over distances comparable with ice
thickness, which cannot be averaged out by Fowler’s (1981)
local smoothing. Indeed, the very aim of Thorsteinsson and
others (2003) is to study spatial variations in basal properties,
which we include through this explicit dependence on x.

Gudmundsson’s theory relies on a particular form of the
sliding law considered above, namely

�b ¼ C�1ðxÞub ð1Þ
with C > 0. In the context of his linearization of the ice-flow
problem, the use of this sliding law can be justified as a
linearization of a more general sliding law �b ¼ �bðx, ubÞ in
which basal drag is independent of normal stress (otherwise
we would require an additional term in Equation (1)
describing this dependence), and a strictly increasing
function of sliding velocity; for a non-linear sliding law this
linearization then requires small changes in sliding velocity.
However, as pointed out above, such a sliding lawmay not be
appropriate for ice streams, or even for hard-bedded glaciers
when subglacial cavitation is widespread (Schoof, 2004). An
alternative approach to ice-stream flow with variations in
basal properties over the kilometre scale, which avoids the
need to linearize a sliding law inherent in Gudmundsson’s
work, is the multiple-scales expansion technique developed
in Schoof (2002). Rather than arbitrarily introducing small
perturbations to a mean flow field, this technique exploits
some of the small parameters inherent in ice-stream flow,
namely mean slip ratio and mean surface slope (just as the
shallow-ice approximation exploits the small aspect ratio of
ice sheets; see Morland and Johnson, 1980).

It is not our intention to reproduce a formal derivation of
our model here, which closely follows Schoof (2002).
Instead, we motivate our model equations physically,
although they could be derived using the same formalism
as Schoof (2002), but with a different choice of scales. Our
model assumes that stress variations in the ice, induced by
variations in basal stickiness represented by the x-depend-
ence of �bðx, ub,�nnÞ, and by flow over sufficiently shallow
undulations in the bed, are comparable with the driving
stress, and that sliding is rapid (it can be shown from these
assumptions that the form drag caused by these bed
undulations is a small correction in the ice stream’s force
balance, which is where our theory departs from that of
Schoof (2002)). We restrict ourselves to ice of constant
viscosity �, and to ice flow in two dimensions (x, z) with the
z axis pointing vertically up and i denoting the unit vector in
the x direction. We also consider only what happens on
Schoof’s (2002) ‘inner’ length scale associated with ice
thickness, whilst ignoring the evolution of the ice stream as a
whole (which is associated with a much longer time-scale
than that relevant below). Denoting variations in velocity
about the regional plug-flow velocity Ui of the ice stream by
u = (u,w) and pressure variations about a mean cryostatic
pressure field by p, then u and p satisfy the Stokes equations.
At leading order,

�r2u�rp ¼ �f i, r � u ¼ 0 , ð2Þ
where the forcing term f ¼ ��gDX � @TYY=@Y , � is ice
density, g gravity, DX a regionally averaged surface slope as
in Schoof (2002), and @TYY=@Y is the contribution of lateral
shearing on the outer length scale to force balance (e.g.
Raymond, 1996), with TYY being lateral shear stress and Y a
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transverse out coordinate. In order for stress variations to
scale with driving stress, bed bumps must be shallow, as the
vertical velocity variations introduced by flow over these
bumps must scale with the shearing component of ice
velocity, which is by assumption small compared with the
plug-flow velocity U. As a result of this shallowness, we can
linearize the geometry of the ice flow (but not the sliding
law), and consider a domain 0 < z < D, where z ¼ 0 denotes
the mean (i.e. regionally averaged) bed elevation, and z ¼ D
the mean surface elevation, which is independent of the
(inner) coordinate x (see Fig. 1). The effect of bed bumps of
height h(x) on ice flow, and friction at the bed, can then be
written as the boundary conditions

�
@u
@z

þ @w
@x

� �
¼ �b x,U,�nnð Þ, w ¼ U

dh
dx

at z ¼ 0 : ð3Þ

The first of these conditions states that the friction
experienced by the ice stream (when averaged over sub-
kilometre-scale variations as described above) is given by
the sliding law, in which the sliding velocity argument is
simply taken as the plug velocity U, as velocity variations
about this plug flow must remain small. Meanwhile, the
normal stress argument is �nn ¼ �gD þ p � 2� @w=@z evalu-
ated at z ¼ 0. The second boundary condition simply states
that ice does not penetrate into the bed. At the upper surface
z ¼ D, we have no friction, while the excess cryostatic
pressure caused by surface undulations (denoted by d(x); see
Fig. 1) compensates for non-zero deviatoric normal stresses
near the ice surface, so

�
@u
@z

þ @w
@x

� �
¼ 0, �gd ¼ p � 2�

@w
@z

at z ¼ D : ð4Þ

Lastly, surface undulations satisfy a kinematic boundary
condition, at leading order of the form

@d
@t

þU
@d
@x

¼ w at z ¼ D : ð5Þ
If we were to attempt a solution of the forward model, we
would need to specify the exact form of the sliding law.
However, the purpose of this note is to elucidate what
happens in the inverse model. From the formulation above,
it is evident that steady-state surface profiles d on the inner
scale depend linearly on basal topography h (as is also the
case in Gumdundsson’s and Thorsteinsson and others’
theories). Importantly, d also depends linearly on basal
shear stress �b regardless of which particular functional form
the sliding law takes, and this is where our theory differs
from that used in Thorsteinsson and others (2004). We see
that the introduction of the ‘slipperiness parameter’ C
considered by Gudmundsson (2003) and Thorsteinsson
and others (2003) is an unnecessary complication, and in
any case, the linear dependence on perturbations in C is

recovered only if we put �bðx,ub,�nnÞ ¼ U=ðC þ�CðxÞÞ
and linearize on the basis that�C is small compared with C,
so �bðxÞ � U=C � ðU=C2Þ�CðxÞ. As pointed out before,
this does require the use of a particular linear sliding law
which may not hold in practice. The advantage of the
approach advocated here is that no specific assumptions
regarding basal sliding processes need to be made beyond
the possibility of parameterizing them in the form of a sliding
law �b ¼ �bðx,U,�nnÞ, and that the inversion of surface data
can be used to infer directly variations in basal shear stress.
Consequently, it may make more sense to interpret
Thorsteinsson and others’ results for –DC as being a direct
measure of variations in basal shear stress.

One further point remains to be made: once stress
perturbations are similar to the driving stress, the use of a
fully linear model is likely to fail in practice because of the
non-linear rheology of ice. Thorsteinsson and others’ use of
a ‘stratified’ viscosity, which decreases with depth in the ice
but is independent of strain rate, can mimic the effect of a
non-linear rheology only if stress field variations in the ice
are small compared with driving stress, and a non-linear
forward model must be used for larger stress variations. In
our framework above, this could be achieved by changing
the Stokes equations (2) to describe a non-linear stress–
strain-rate relation, and by allowing � in the boundary
conditions (3) and (4) to depend on strain rate in accordance
with that non-linear rheology.
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Fig. 1. Geometry of the ice flow problem.
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