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Selmer Groups of Elliptic Curves
with Complex Multiplication

A. Saikia

Abstract. Suppose K is an imaginary quadratic field and E is an elliptic curve over a number field F

with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as p1p2 in

K. Let Epn denote the pn-division points on E. Assume that F(Epn ) is abelian over K for all n ≥ 0. This

paper proves that the Pontrjagin dual of the p
∞
1 -Selmer group of E over F(Ep∞ ) is a finitely generated

free Λ-module, where Λ is the Iwasawa algebra of Gal
(

F(Ep∞ )/F(Ep
∞
1 p2

)
)

. It also gives a simple

formula for the rank of the Pontrjagin dual as a Λ-module.
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1 Introduction

Let K be an imaginary quadratic field. Suppose E is an elliptic curve over a number

field F with complex multiplication by the ring of integers O in K. Let p 6= 2, 3
denote a rational prime such that pO = p1p2 and assume that E has good reduction
over both p1 and p2. Pick any element π of O such that πO = p

h
1 for some h ≥ 1.

Clearly, there is also an element π̄ in O such that π̄O = p
h
2. Let L be an algebraic

extension of F. For n ≥ 0, the πn-Selmer group of E over L is defined as

Selπn (E/L) = Ker
(

H1(L, Eπn ) →
∏

v

H1(Lv, E)πn

)
,

where v runs over all the places of L. The p
∞
1 -Selmer group of E/L is defined as

Selp
∞
1

(E/L) = lim
−→

n
Selπn (E/L),

where the limit is with respect to the homomorphisms induced by the natural inclu-
sion of Eπn into Eπn+1 . The p

∞
1 -Selmer group fits into an exact sequence

(1) 0 → E(L) ⊗ Kp1
/Op1

→ Selp
∞
1

(E/L) → III(E/L)p
∞
1

→ 0,
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where E(L) is the Mordell-Weil group of rational points on E defined over L and
III(E/L) is the Tate-Shafarevich group of E/L defined by

III(E/L) = Ker
(

H1(L, E) →
∏

v

H1(Lv, E)
)
.

One of the basic questions in number theory is to understand the Mordell-Weil group
and the Tate-Shafarevich group of E over various field extensions of Q . Thus, the
importance of the study of Selmer groups arise from the exact sequence (1) above.

There are some natural choices for the field extension L of F, over which we want
to examine the structure of Selp

∞
1

(E/L). We usually take L to be a field generated over
F by the torsion points on E. In particular, we will consider

F∞ = F(Ep∞),

and study Selp
∞
1

(E/F∞), or rather its Pontrjagin dual X(F∞). By definition,

X(F∞) = Hom
(

Selp
∞
1

(E/F∞),Qp/Zp

)
.

It is compact and has the natural structure of Gal(F∞/F)-module. This will be the
primary object of our study in this paper.

2 Notation

We define the following field extensions of the number field F generated by torsion
points on E:

L0 = F(Ep), F0 = L0(Ep
∞
1

), L∞ = L0(Ep
∞
2

), F∞ = F(Ep∞).

Let Γ
′ be the Galois group of F∞ over L0, and Σ be the Galois group F0 over L0. Let

Γ be the Galois group F∞ over F0, which can also be identified with the Galois group
L∞ over L0. Clearly, Γ

′ is isomorphic to Z2
p, whereas Γ and Σ are isomorphic to Zp.

We denote the unique subgroup of index pn in Γ by Γn. Let Ln and Fn be the fixed

fields of L∞ and F∞ respectively under the action of Γn. Then, we have the following
Galois groups:

Gal(L∞/Ln) ' Gal(F∞/Fn) = Γn, Gal(Ln/L0) ' Gal(Fn/F0) = Γ/Γn ' Zp/pn
Zp.

We have the following field diagram:
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L0(Ep
∞
2

) = L∞

Ln

F(Ep) = L0

F∞ = F(Ep∞)

Fn = Ln(Ep
∞
1

)

F0 = L0(Ep
∞
1

)

�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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Γ/Γn ' Zp/pnZp

Γ, Λ = Zp[[Γ]]

' Zp[[T]]

Γn

Σ, Ω = Zp[[Σ]] ' Zp[[S]]

The Iwasawa algebra of Γ is defined as

Zp[[Γ]] = lim
−→

n
Zp[Γ/Γn],

where the inverse limit is taken with respect to canonical surjective maps. We denote
the Iwasawa algebra of Γ by Λ, and that of Σ by Ω. Following Serre, we can identify Λ

with Zp[[T]] and Ω with Zp[[S]]. We note that Zp[[Γ ′]] is isomorphic to Zp[[T, S]].
We will denote the Pontrjagin dual of Selp

∞
1

(E/Fn) by X(Fn).

3 Statement of Results

Our goal is to study the structure of X(F∞) as a module over the Iwasawa algebra
Λ ' Zp[[T]]. We shall work under the following hypothesis:

(Hyp) The fields F(Epn ) are abelian over K for all n ≥ 0.

Note that when F = K, the hypothesis is true by theory of complex multiplica-
tion. It is well known (e.g., see [P-R 1]) that X(F∞) is a finitely generated torsion
module over the Iwasawa algebra Zp[[S,T]], whereas X(Fn) is a finitely generated

torsion Zp[[S]]-module under the above hypothesis. Let λ0 be the rank of X(F0) as
a Zp-module. In this paper, we shall prove the following two theorems about the
Λ-module structure of X(F∞):

Theorem 1 X(F∞) is a finitely generated Λ-module.

Theorem 2 X(F∞) is a free Λ-module of rank λ0 + r − 1.
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Here r is the number of primes of F0 above p2. Since the primes over p2 do not
split in the tower F∞ over F0, r is also the number of primes above p2 of Fn for any

n ≥ 0.

4 The Structure of X(Fn)

The key idea in the proof of the Theorems 1 and 2 is to examine the relation be-
tween X(F∞) and X(Fn), and then exploit well-known facts about X(Fn). Theo-
rem 18 and Proposition 20 in [P-R 1] show that X(Fn) is a finitely generated torsion
Zp[[S]]-module provided Leopoldt’s conjecture is true for the Zp-extension Fn over

Ln. Brumer proved that Leoplodt’s conjecture is true for the Zp-extensions of an
abelian extension of an imaginary quadratic field. Under our hypothesis (Hyp), Ln is
an abelian extension of the imaginary quadratic field K. Therefore, Leopoldt’s con-
jecture holds for Fn and as a consequence, we know that X(Fn) is a finitely generated

torsion Zp[[S]]-module. By structure theory of finitely generated torsion Zp[[S]]-
module, there is a homomorphism

(2) φ : X(Fn) →
⊕( s⊕

i=1

Zp[[S]]/pni

)
⊕

( t⊕

j=1

Zp[[S]]/( f
m j

j )
)
,

with finite kernel and cokernel. Here f j are distinguished polynomials in Zp[[S]] and
s, t , ni , m j are non-negative integers. The lambda-invariant λn and the mu-invariant
µn of the Zp[[S]]-module X(Fn) are defined as

λn =

t∑

j=1

m j · deg( f j ), µn =

r∑

i=1

ni .

When Ln is an abelian extension of K, Gillard ([Gi 1], [Gi 2]) has shown that µn = 0.

While [Gi 2] has the proof of vanishing of the mu-invariant without any assumption
on the class number of K, the proof in [Gi 1] works under the assumption that the
class number of K is 1 (that would have amounted to assuming that E is defined over
K in our work). As Ln is abelian over K under our hypothesis (Hyp), Gillard’s result

implies that the p-torsion part in the right hand side of (2) does not occur. Moreover,
it follows (as pointed out in Theorem 25 of [P-R 1]) from the work of Greenberg ([Gr
1]) that X(Fn) has no finite non-zero Zp[[S]]-submodule. Thus, the kernel of φ (a

priori finite) is trivial. Hence, φmaps X(Fn) injectively into a free Zp-module of rank

λn with finite cokernel. We have now obtained the following information regarding
the Zp-module structure of X(Fn):

Proposition 3 X(Fn) is a free Zp-module of rank λn under our hypothesis (Hyp).

How the lambda-invariant λn of X(Fn) varies along the tower of fields Fn (n =

0, 1, 2, . . .) will be very important to us. We will study this question in Section 7 (cf.

Lemma 11).

https://doi.org/10.4153/CJM-2004-009-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-009-7


DRAFT: Canad. J. Math. February 5, 2004 12:33 File: saikia2222 pp.194–208 Page 198 Sheet 5 of 15

198 A. Saikia

5 A Crucial Proposition

Let us fix an n ≥ 0. Let S be the set of primes of F above p. Let FS be the maximal
extension of F unramified outside S. It is clear that F∞ ⊂ FS and Ep

∞
1

⊂ E(FS). The

following result is a crucial ingredient in examining the relation between X(F∞) and
X(Fn) [see the commutative diagram (c.d.) in Section 6]:

Proposition 4 There is an exact sequence of Galois modules

0 → Selp
∞
1

(E/Fn) → H1(FS/Fn, Ep
∞
1

) →
∏

v|p

H1(Fn,v, E)p
∞
1

→ 0.

The key part in the above proposition is the surjectivity. Hachimori and Mat-
suno [H-M] proved the above result for the cyclotomic Zp-extension of a number

field. But their argument carries over to our situation of elliptic curves with complex
multiplication. We will briefly describe how the methods of [H-M] can be adopted
in our case. We will see that the sequence in Proposition 4 comes from a five-term
Cassels-Poitou-Tate sequence (5). It will be sufficient to show that the fourth term in

(5) vanishes (Lemma 5). As a consequence of this method of proof, we deduce that
the fifth term in (5) (a H2 term) also vanishes and deduce Corollary 6. This vanishing
(of H2) will be needed for the calculations of Section 7, especially Lemma 12.

Let us denote the Zp-extension Fn of Ln by T∞. We know that the Galois group
Σ ' Gal(T∞/Ln) has a unique subgroup Σm of index pm. Let Tm be the fixed field
of T∞ under the action of Σm. We have a field diagram

Fn = Ln(Ep
∞
1

) = T∞

Tm

Ln

Σm

Σ, Ω ' Zp[[Σ]]

By Cassels-Poitou-Tate sequence for the number fields Tm, we have a long exact
sequence (where M̂ denotes the Pontrjagin dual of M)

(3)

0 → Selπk (E/Tm) → H1(FS/Tm, Eπk ) →
∏

v|p

H1(Tm,v, E)πk

→ ̂Selπ̄k (E/Tm) → H2(FS/Tm, Eπk ) →
∏

v|p

H2(Tm,v, Eπ̄k )

→ ̂H0(FS/Tm, Eπ̄k ) → 0.
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We note that in applying Poitou-Tate duality, one has to consider not only the primes
above p, but also the infinite primes and the primes of bad reduction. However, E

has good reduction everywhere over L0 by theory of complex multiplication, and we
can also ignore the infinite primes as p is odd. The inclusion Eπk ↪→ Eπk+1 induces a
map Hi(FS/Tm, Eπk ) to Hi(FS/Tm, Eπk+1 ), and its dual is given by ‘multiplication by
π’. By taking direct limits in (3) as k goes to infinity, we get a five term exact sequence

0 → Selp
∞
1

(E/Tm) → H1(FS/Tm, Ep
∞
1

) →
∏

v|p

H1(Tm,v, E)p
∞
1

→
(

lim
←−

k

Selπ̄k (E/Tm)
)∧

→ H2(FS/Tm, Ep
∞
1

) → 0.

(4)

We remark that when we take direct limit with respect to k, the sixth term in (3) van-
ishes by Tate local duality (see [Se, Chapter II, Proposition 16]). There is a restriction
map from Hi(FS/Tm, Ep

∞
1

) to Hi(FS/Tm+1, Ep
∞
1

), and the dual map is given by core-

striction which acts like the norm map on H0. We now take direct limits in (4) as m

goes to infinity, and obtain a five term exact sequence

0 → Selp
∞
1

(E/T∞) → H1(FS/T∞, Ep
∞
1

) →
∏

v|p

H1(T∞,v, E)p
∞
1

→
(

lim
←−

m
lim
←−

k
Selπ̄k(E/Tm)

)∧
→ H2(FS/T∞, Ep

∞
1

) → 0.

(5)

Let us denote the fourth term in the above sequence as Ŵ , i.e.,

W = lim
←−

m
lim
←−

k
Selπ̄k (E/Tm).

Proposition 4 claims that the fourth term in the above sequence (5) vanishes.

Lemma 5

W = lim
←−

m
lim
←−

k
Selπ̄k (E/Tm) = 0.

Proof We adopt an argument similar to the one in Proposition 2.3 of [H-M]. We
have an exact sequence (see [C-S, Lemma 1.8])

0 → Eπ̄∞(Tm) → lim
←−

k
Selπ̄k (E/Tm) → HomZp

(
̂Selπ̄∞(E/Tm),Zp

)
→ 0.

We now take inverse limit with respect to corestriction maps as m goes to infinity.
These maps act like norm maps on the first term, and it vanishes in the limit since
only finitely many π̄-torsion points of E are defined over T∞. Thus, we obtain an

injection

W = lim
←−

m
lim
←−

k
Selπ̄k (E/Tm) ↪→ lim

←−
m

HomZp

(
̂Selp
∞
2

(E/Tm),Zp

)
.
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The kernel of the restriction map Selp
∞
2

(E/Tm) → Selp
∞
2

(E/T∞)
Σm is finite and its

order is bounded independent of m (this kernel is contained in H1
(
Σm, Ep

∞
2

(T∞)
)

,
and this group is bounded independent of m, as shown in Lemma 3.1 of [Gr 2]).
Therefore, we have an injection

lim
←−

m
HomZp

(
̂Selp
∞
2

(E/Tm),Zp

)
↪→ lim
←−

m
HomZp

((
̂Selp
∞
2

(E/T∞)
)

Σm
,Zp

)
.

The latter module has the same underlying set as HomΩ

(
̂Selp
∞
2

(E/T∞),Ω
)

(e.g.,
Section 2, Lemma 4(ii) in [P-R 2]).

We again invoke Proposition 20 in [P-R 1] which says that Selp
∞
2

(E/T∞) is
Ω-cotorsion provided Leopoldt’s conjecture is true for the Zp-extension T∞ of Ln.

But Leopoldt’s conjecture is true for the Zp-extension T∞ of the abelian [under
our hypothesis (Hyp)] extension Ln of the imaginary quadratic field K. Therefore,

Selp
∞
2

(E/T∞) is Ω-cotorsion and HomΩ

(
̂Selp
∞
2

(E/T∞),Ω
)

= 0.
Thus, the compact Ω-module W can be embedded into the null module.

With this lemma, the proof of Proposition 4 is now complete. The following corol-

lary to Lemma 5 will be a vital step in our proof of Theorem 2 (Lemma 12 in Sec-
tion 7).

Corollary 6 For any n ≥ 0, H2(FS/Fn, Ep
∞
1

) = 0.

Proof From the Cassels-Poitou-Tate sequence (5) and Lemma 5, it is clear that
H2(FS/T∞, Ep

∞
1

) = 0. But T∞ stands for any of the Fn for n ≥ 0.

6 Relation Between X(F∞) and X(Fn)

In order to examine the relation between X(F∞) and X(Fn), the following commuta-
tive diagram is of crucial importance:

0 → Selp
∞
1

(E/F∞)Γn
→ H1(FS/F∞, Ep

∞
1

)Γn
→

∏
v|p

(∏
w|v

H1(F∞,w, E)p
∞
1

) Γn

αn

x βn

x
x γn=

∏
v|p

γn,v

0 → Selp
∞
1

(E/Fn) → H1(FS/Fn, Ep
∞
1

) →

∏
v|p

H1(Fn,v, E)p
∞
1

→ 0

Commutative Diagram (c.d.)

The horizontal maps originate from Cassels-Poitou-Tate sequence, whereas the verti-
cal maps are induced by restriction. All of our work in Section 5 has been to establish
the exactness of the bottom row in the above diagram. We are primarily interested in
the kernel and cokernel of the map αn above. By the snake lemma, we have an exact

sequence

(6) 0 → Ker(αn) → Ker(βn) → Ker(γn) → Coker(αn) → Coker(βn) · · ·

In order to understand the structure of Ker(αn) and Coker(αn), we will first study

the kernels and cokernels of the maps βn and γn.

Lemma 7 Ker(βn) ' Qp/Zp, and Coker(βn) = 0.
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Proof Recall that all the points in Ep
∞
1

are defined over Fn (n = 0, 1, . . .). By
the inflation-restriction sequence of cohomology, Ker(βn) equals H1(Γn, Ep

∞
1

), and

Coker(βn) is contained in H2(Γn, Ep
∞
1

). But Γn is isomorphic to Zp, and hence it
has p-cohomological dimension 1. Therefore, H2(Γn, Ep

∞
1

) vanishes and it follows
that Coker(βn) is trivial. Moreover, Γn acts trivially on Ep

∞
1

and hence H1(Γn, Ep
∞
1

)
equals Hom(Γn,Qp/Zp). We can now conclude that Ker(βn) ' Qp/Zp.

Lemma 8 For v|p1, Ker(γn,v) = 0.

We shall give a short and direct proof of this lemma, though it follows from a more
general result of Perrin-Riou (Lemma 9 in [P-R 1]).

Proof By Shapiro’s lemma,

(∏

w|v

H1(F∞,w, E)
)Γn

p
∞
1

= H1(F∞,w, E)
Γn,v

p
∞
1
,

where Γn,v is the decomposition subgroup of Γn. By the inflation-restriction se-
quence,

Ker(γn,v) = H1
(
Γn,v, E(F∞,w)

)
p
∞
1

.

Clearly,

F∞,w =

⋃

M

L∞,v ′M,

where M runs over the finite extensions of Ln,ṽ contained in Fn,v, and v ′, ṽ are the
primes below w of L∞ and Ln, respectively. Now,

Ker(γn,v) = lim
−→
M

H1
(

G(L∞,v ′M/M), E(L∞,v ′M)
)

p
∞
1

.

Note that E has good reduction over Ln,ṽ. Therefore, L∞,v ′ is unramified over Ln,ṽ

and so is L∞,v ′M over M. Hence, H1
(

G(L∞,v ′M/M), E(L∞,v ′M)
)

= 0 (see [Mi,
p. 58]). This concludes the proof of Lemma 8.

Lemma 9 For v|p2, Ker(γn,v) ' Qp/Zp.

Proof The extension F∞ is totally ramified over Fn at the prime v over p2. Therefore,
there is only one prime w of F∞ over v and the decomposition group Γn,v is the Galois

group Γn. By the inflation-restriction sequence,

Ker(γn,v) = H1
(
Γn,v, E(F∞,v)

)
p
∞
1

.

Let m∞,v be the maximal ideal of F∞,v and k∞,v be the residue field. Let Ê be the

formal group attached to E giving the kernel of reduction at v. We have the following
exact sequence of Γn,v-modules:

0 → Ê(m∞,v) → E(F∞,v) → Ẽv(k∞,v) → 0.
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Taking Galois cohomology, we get the following exact sequence:

· · · → H1
(
Γn,v, Ê(m∞,v)

)
p
∞
1

→ H1
(
Γn,v, E(F∞,v)

)
p
∞
1

→ H1
(
Γn,v, Ẽv(k∞,v)

)
p
∞
1

→ H2
(
Γn,v, Ê(m∞,v)

)
p
∞
1

→ · · · .

Since v|p2, π is an automorphism of Ê. Therefore, Hi
(
Γn,v, Ê(m∞,v)

)
p
∞
1

= 0 ∀ i ≥ 0.

Hence we have

H1
(
Γn,v, E(F∞,v)

)
p
∞
1

∼
→ H1

(
Γn,v, Ẽv(k∞,v)

)
p
∞
1

.

As Ẽv(k∞,v) is a torsion module, we can take the p
∞
1 -torsion inside the cohomol-

ogy group. Since F∞,w is totally ramified over Fn,v, the group Γn,v acts trivially on
Ẽv(k∞,v). Therefore, the right hand side in the previous expression is

Hom(Γn,v, Ẽv,p∞
1

) ' Hom(Zp,Qp/Zp) = Qp/Zp.

Note that there are r primes above p2 in Fn (n = 0, 1, . . .). It follows from
Lemma 8 and Lemma 9 that

Ker(γn) =

⊕

v|p

Ker(γn,v) ' (Qp/Zp)r.

We can now rewrite the exact sequence (6) as

(7) 0 → Ker(αn) → Qp/Zp → (Qp/Zp)r → Coker(αn) → 0.

The above exact sequence enables us to deduce the following result about the Λ-
module structure of X(F∞):

Lemma 10 X(F∞)Γn
is a free Zp-module.

Proof Taking the Pontrjagin dual of the exact sequence (7), we obtain

0 → ̂Coker(αn) → Z
r
p → · · ·

This tells us that ̂Coker(αn) is a finitely generated free Zp-module. Taking Pontrjagin
dual in the first column of the commutative diagram (c.d.), we have

0 → ̂Coker(αn) → X(F∞)Γn
→ X(Fn).

By Proposition 3, we know that X(Fn) is a free Zp-module. As both Ĉoker(αn) and
X(Fn) have no Zp-torsion, it is clear that X(F∞)Γn

is a free Zp-module.
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Proof of Theorem 1 We shall show that the exact sequence (7) and Lemma 10 imply
Theorem 1. By considering the Zp-coranks of the terms in the exact sequence (7), we

find that

(8) corankZp

(
Coker(αn)

)
− corankZp

(
Ker(αn)

)
= r − 1.

The left vertical map in the commutative diagram (c.d.) implies that

corankZp

(
Selp

∞
1

(E/F∞)Γn
)

= corankZp

(
Coker(αn)

)
− corankZp

(
Ker(αn)

)
+ corankZp

(
Selp

∞
1

(E/Fn)
)

= r − 1 + corankZp

(
Selp

∞
1

(E/Fn)
)
, [by (8)]

i.e.,

(9) rankZp

(
X(F∞)

)
Γn

= λn + r − 1.

By Lemma 10, we can conclude that

(
X(F∞)

)
Γ0

' Z
λ0+r−1
p .

In particular, we have

X(F∞)/(p,T) ' (Zp/p)λ0+r−1
= a finite module.

Since (p,T) is the maximal ideal of Zp[[T]] ' Λ, Theorem 1 follows from
Nakayama’s lemma (e.g., see [La, p. 126]) for compact Λ-modules.

7 Λ-Rank of X(F∞)

We have shown in the preceding section that X(F∞) is a finitely generated Λ-module.

We want to compute its Λ-rank and its Λ-torsion submodule. By structure theory of
Λ-modules [see (16) and ‘General Lemma’ near the end of this section], it will be
enough to show that

(
X(F∞)

)
Γn

is a free Zp-module of rank pn · c, where c is a

constant independent of n. Then, the ‘General Lemma’ would imply that X(F∞) is a

free Λ-module of rank c. Since the Zp-rank of
(

X(F∞)
)

Γn
is (λn + r − 1) by (9), we

want to know how the λn’s vary with n as we go along the tower of fields Fn over F0.

Lemma 11 λn+1 = pλn + (p − 1)(r − 1).

We prove Lemma 11 using ideas from [H-M]. Let G be the Galois group
Gal(Fn+1/Fn). It is obvious that G is a cyclic group of order p. Formula (3.3) in

[H-M] implies that

corankZp

(
Selp

∞
1

(Fn+1)
)

= p · corankZp

(
Selp

∞
1

(Fn)
)

+ (p − 1) ord p

(
hG

(
Selp

∞
1

(Fn+1)
))
,
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where hG denotes the Herbrand quotient. In our notation, the above formula be-
comes

(10) λn+1 = p · λn + (p − 1) ord p

(
hG

(
Selp

∞
1

(Fn+1)
))

.

We will now calculate the Herbrand quotient of the Selmer group in the above ex-

pression, since it will determine the explicit relation betweenλn+1 and λn. The second
exact sequence in the commutative diagram (c.d.) of Section 6 implies that

(11) hG

(
Selp

∞
1

(Fn+1)
)

=

hG

(
H1

(
G(FS/Fn+1), Ep

∞
1

))

∏
v|p hG

(
H1(Fn+1,v, E)p

∞
1

) .

We shall evaluate the numerator and the denominator in the above expression with

the next three propositions. We shall adopt arguments of Hachimori and Matsuno
who dealt with the cyclotomic situation. The following lemma simplifies the calcula-
tion of the right hand side of (11).

Lemma 12 For i = 1, 2, we have

(a) Hi
(

G,H1
(

G(FS/Fn+1), Ep
∞
1

))
= Hi(G, Ep

∞
1

),

(b) Hi
(

G,H1(Fn+1,v, E)p
∞
1

)
= Hi

(
G, E(Fn+1,v)

)
p
∞
1

.

Proof (a) The Galois group Gal(FS/Fn+1) has p-cohomological dimension at most

2 (see [N-S-W, Proposition 8.3.17]). Combining this with Corollary 6, we conclude
that H2(FS/Fn+1, Ep

∞
1

) vanishes for i ≥ 2. Then, we have a long exact Hochschild-
Serre spectral sequence

· · ·H2(FS/Fn, Ep
∞
1

) → H1
(

G,H1(FS/Fn+1, Ep
∞
1

)
)
→ H3

(
G, E(Fn+1)p

∞
1

)

→ H3(FS/Fn, Ep
∞
1

) → H2
(

G,H1(FS/Fn+1, Ep
∞
1

)
)

→ H4
(

G, E(Fn+1)p
∞
1

)
→ H4(FS/Fn, Ep

∞
1

) · · · .

As G is a finite cyclic group, we have

Hi(G,A) = Hi+2(G,A) ∀ i ≥ 0,

where A is any G-module. As H i(FS/Fn, Ep
∞
1

) = 0 for i ≥ 2, this part of the lemma

holds.

(b) The Galois group Gal(F̄n+1,v/Fn+1,v) has strict cohomological dimension at
most 2 (see [Se, Chapter II, Propositions 1 and 4]). Moreover, H2(Fn+1,v, E) is trivial
because

H2(Fn+1,v, E) = lim
−→

Qp⊂M⊂Fn+1,v

[M:Qp]<∞

H2(M, E),
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and by Tate local duality (see [Se, Chapter II, Proposition 16]), H2(M, E) vanishes for
any finite extension M of Qp. As in the previous proposition, we have a long exact

Hochschild-Serre spectral sequence and we can conclude that

Hi
(

G,H1(Fn+1,v, E)
)

p
∞
1

= Hi+2
(

G, E(Fn+1,v)
)

p
∞
1

for i = 1, 2.

As H1(Fn+1,v, E) is a torsion group and G is cyclic, the above expression reduces to

Hi
(

G,H1(Fn+1,v, E)p
∞
1

)
= Hi

(
G, E(Fn+1,v)

)
p
∞
1

for i = 1, 2.

Proposition 13 hG

(
H1

(
G(FS/Fn+1), Ep

∞
1

))
=

1
p

.

Proof By the first part of Lemma 12,

hG

(
H1

(
G(FS/Fn+1), Ep

∞
1

))
= hG(Ep

∞
1

).

Clearly, G acts trivially on Ep
∞
1

as these points are defined over Fn. Let s be a generator

of G and suppose N =
∑p−1

i=o si . Then

H2(G, Ep
∞
1

) = (Ep
∞
1

)G/N(Ep
∞
1

) = 0,

H1(G, Ep
∞
1

) = Ker(N)/(s − 1)Ep
∞
1

= Ep1
.

Therefore,

hG

(
H1

(
G(FS/Fn+1), Ep

∞
1

))
= hG(Ep

∞
1

) =
1

p
.

We calculate the denominator in (11) by proving the following two propositions.

Proposition 14 hG

(
H1(Fn+1,v, E)p

∞
1

)
= 1 ∀ v|p1.

Proof By the second part of Lemma 12, we need to calculate the ratio of the order
of Hi

(
G, E(Fn+1,v)

)
p
∞
1

for i = 2, 1. We consider the following exact sequence of

G-modules

(12) 0 → Ê(mn+1,v) → E(Fn+1,v) → Ẽv(kn+1,v) → 0,

where mn+1,v is the maximal ideal of Fn+1,v, and kn+1,v is the residue field. Taking
G-cohomology, we have a long exact sequence

(13)

· · · → H1
(

G, Ê(mn+1,v)
)

p
∞
1

→ H1
(

G, E(Fn+1,v)
)

p
∞
1

→ H1
(

G, Ẽv(kn+1,v)
)

p
∞
1

→ H2
(

G, Ê(mn+1,v)
)

p
∞
1

→ · · · .
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For v|p1, Fn+1,v is deeply ramified. By a result of Coates and Greenberg [C-G, Theo-
rem 3.1], Hi

(
G, Ê(mn+1,v)

)
= 0 ∀ i ≥ 1. Moreover, Ẽv(kn+1,v) is a torsion group and

we can take the p
∞
1 -torsion inside the cohomology in (13). We now have

(14) Hi
(

G, E(Fn+1,v)
)

p
∞
1

= Hi
(

G, Ẽv(kn+1,v)p
∞
1

)
for i = 1, 2.

For v|p1, kn+1,v is the residue field of a ramified Zp-extension of a finite extension of

Qp, and hence kn+1,v is a finite field. Let us now consider the p1-primary part in (12):

0 → Ê(mn+1,v)p
∞
1

→ E(Fn+1,v)p
∞
1

= Qp/Zp → Ẽv(kn+1,v)p
∞
1

= a finite module → 0.

But Qp/Zp has no nontrivial finite quotient, and we deduce that Ẽv(kn+1,v)p
∞
1

= 0.

Therefore, Hi
(

G, Ẽv(kn+1,v)p
∞
1

)
=0. By Lemma 12(b) and (14), we now conclude that

Hi
(

G,H1(Fn+1,v, E)p
∞
1

)
= 0 ∀ v|p1 for i = 1, 2.

In particular, the Herbrand quotient hG is 1.

Proposition 15 hG

(
H1(Fn+1,v, E)p

∞
1

)
=

1
p
∀ v|p2.

Proof We proceed as in the previous proposition. However, π is an automorphism
of Ê for v not dividing π. Therefore, H i

(
G, Ê(mn+1,v)

)
p
∞
1

= 0 ∀ i ≥ 0. By (13),

(15) Hi
(

G, E(Fn+1,v)
)

p
∞
1

= Hi
(

G, Ẽv(kn+1,v)
)

p
∞
1

∀ i ≥ 0.

As before, we can take the p
∞
1 -torsion inside the cohomology on the right hand side

of (15). Since the extension Fn+1,v is totally ramified over Fn,v, the Galois group G acts
trivially on Ẽv(kn+1,v). Clearly,

∣∣H1
(

G, Ẽv(kn+1,v)
)

p
∞
1

∣∣ = |Hom(G,Qp/Zp)| = p

∣∣H2
(

G, Ẽv(kn+1,v)
)

p
∞
1

∣∣ = |H2(G,Qp/Zp)| = 1.

From Lemma 12(b) and (15), it is now obvious that hG

(
H1(Fn+1,v, E)p

∞
1

)
=

1
p

.

We can now derive the relation between λn+1 and λn, as stated in Lemma 11. We
substitute the values obtained by the three previous propositions in (11). We find
that

hG

(
Selp

∞
1

(Fn+1)
)

=

1
p

( 1
p

)r
= pr−1,

recalling that r is the number of primes above p2 in Fn+1 for any n. Now, it follows
from (10) that

λn+1 = pλn + (p − 1)(r − 1).

This completes the proof of Lemma 11.

Lemma 16 X(F∞)Γn
is a free Zp-module of rank pn(λ0 + r − 1).
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Proof We already saw that X(F∞)Γn
is a free Zp-module [cf. Lemma 10] of rank

(λn + r − 1) [cf. (9)]. By using Lemma 11 recursively, we obtain that

λn = pnλ0 + (r − 1)(pn − 1).

Substituting in (9), we find that

rankZp

(
X(F∞)

)
Γn

= pn(λ0 + r − 1).

We can now prove Theorem 2 with the following result about the structure of

Λ-modules (the proof is included for the sake of completeness):

General Lemma Let Y be a Λ-module such that YΓn
is a free Zp-module of rank cpn.

Then Y is a free Λ-module of rank c.

Proof Recall that Λ ' Zp[[T]]. By structure theory of finitely generated Zp[[T]]-
modules, there is a homomorphism ψ of Zp[[T]]-modules

0 → A → Y
ψ
→ N =

⊕
Zp[[T]]a ⊕

( s⊕

i=1

Zp[[T]]/pni

)

⊕
( t⊕

j=1

Zp[[T]]/( f
m j

j )
)
→ B → 0,

(16)

where A and B are finite. For sufficiently large n, Γn acts trivially on the finite modules
A and B. Therefore, BΓn = B, AΓn

= A for n sufficiently large. We can rewrite (16) as

0 → A → Y → Im(ψ) → 0,

0 → Im(ψ) → N → B → 0.

Therefore, we have exact sequences

Im(ψ)Γn → AΓn
→ YΓn

→
(

Im(ψ)
)

Γn
→ 0,(17)

NΓn → BΓn →
(

Im(ψ)
)

Γn
→ NΓn

→ BΓn
→ 0.(18)

By our assumption, it is now clear from (17) that
(

Im(ψ)
)

Γn
is a free Zp-module of

rank pnc. From (18), we can now deduce that a = c and N has no Zp[[T]]-torsion
part (note that the order of BΓn

is bounded independent of n). Thus, N = Zp[[T]]c .

Therefore, NΓn = 0 and BΓn ↪→
(

Im(ψ)
)

Γn
. Since

(
Im(ψ)

)
Γn

does not have any

nontrivial finite Zp-submodule, BΓn = 0 for all n. Thus, B = 0 and Im(ψ) = N =

Zp[[T]]c . Now, Im(ψ)Γn = 0, and (17) implies that AΓn
↪→ YΓn

. But YΓn
does not

have any nontrivial finite Zp-submodule. Thus, AΓn
= 0 for all n. Therefore, A = 0.

We can now rewrite (16) as
Y ∼= Zp[[T]]c.
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Proof of Theorem 2 Theorem 2 follows directly from Lemma 16 and the ‘General
Lemma’ above.

We can conclude that when F(Epn ) is abelian over K for all n ≥ 0, the Pontrjagin

dual X
(

F(Ep∞)
)

of the p
∞
1 -Selmer group of E over F(Ep∞) is a free Zp[[T]]-module

of rank λ0 + r − 1. In particular, it is true when E is defined over K as the abelian
property is implied by theory of complex multiplication.
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