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Function-theoretic Properties for the Gauss
Maps of Various Classes of Surfaces
Dedicated to Professor Akio Kodama on his 65th birthday

Yu Kawakami

Abstract. We elucidate the geometric background of function-theoretic properties for the Gauss
maps of several classes of immersed surfaces in three-dimensional space forms, for example, min-
imal surfaces in Euclidean three-space, improper aõne spheres in the aõne three-space, and con-
stant mean curvature one surfaces and �at surfaces in hyperbolic three-space. To achieve this pur-
pose, we prove an optimal curvature bound for a speciûed conformal metric on an open Riemann
surface and give some applications. We also provide unicity theorems for the Gauss maps of these
classes of surfaces.

1 Introduction

One of the central issues in minimal surface theory is understanding the global be-
havior of theGaussmap. In the latter half of the twentieth century,Osserman [37–39]
initiated a systematic study of the Gauss map and, in particular, proved that the im-
age of the Gauss map of a non�at completeminimal surface in Euclidean 3-space R3

must be dense in the unit 2-sphere S2. Xavier [49] then showed that the Gauss map
can omit at most a ûnite number of values in S2, and Fujimoto [10] proved that the
precisemaximum for the number of omitted values possible is 4. Fujimoto also gave
a curvature bound for aminimal surface when all of themultiple values of the Gauss
map are totally ramiûed ([11,12]). Here, a value α of amap or function g is said to be to-
tally ramiûed if the equation g = α has no simple roots. Moreover, Fujimoto obtained
a unicity theorem for the Gauss maps of non�at completeminimal surfaces, which is
analogous to the Nevanlinna unicity theorem ([33]) for meromorphic functions on
the complex plane C ([13]).

_ere exist several classes of immersed surfaces whose Gauss maps have these
function-theoretical properties. For instance, Yu [50] showed that the hyperbolic
Gaussmap of a non�at, complete, constant,mean curvature one surface in hyperbolic
3-space H3 can omit at most 4 values. _e author and Nakajo [21] obtained that the
maximal number of omitted values of the LagrangianGaussmap of aweakly complete
improper aõne front in the aõne 3-space R3 is 3, unless it is an elliptic paraboloid.
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As an application of this result, a simple proof of the parametric aõne Bernstein the-
orem for an improper aõne sphere in R3 was provided. Moreover, the author [19]
gave similar results for �at fronts inH3. In [18], we revealed a geometricmeaning for
themaximal number of omitted values of their Gauss maps. To be precise, we gave a
curvature bound for the conformal metric ds2 = (1+ ∣g∣2)m ∣ω∣2 on an open Riemann
surface Σ, where ω is a holomorphic 1-form and g is a meromorphic function on Σ
([18,_eorem 2.1]) and, as a corollary of the theorem, proved that the precisemaximal
number of omitted values of the nonconstant meromorphic function g on Σ with the
complete conformal metric ds2 is m + 2 ([18, Corollary 2.2, Proposition 2.4]). Since
the induced metric from R3 of a complete minimal surface is ds2 = (1 + ∣g∣2)2∣ω∣2
(i.e.,m = 2), themaximum number of omitted values of theGauss map g of a non�at
completeminimal surface in R3 is 4 (= 2+ 2). On the other hand, for the Lagrangian
Gauss map ν of a weakly complete improper aõne front, because ν is meromorphic,
dG is holomorphic and the completemetric is dτ2 = (1 + ∣ν∣2)∣dG∣2 (i.e., m = 1), the
maximal number of omitted values of the LagrangianGaussmap of aweakly complete
improper aõne front in R3 is 3 (= 1 + 2), unless it is an elliptic paraboloid.

_e goal of this paper is to elucidate the geometric background of function-theo-
retic properties for the Gauss maps. _e paper is organized as follows. In Section 2,
we ûrst give a curvature bound for the conformal metric ds2 = (1 + ∣g∣2)m ∣ω∣2 on an
open Riemann surface Σ when all of the multiple values of the meromorphic func-
tion g are totally ramiûed (_eorem 2.1). _is is a generalization of [18,_eorem 2.1],
and the proof is given in Section 3.1. As a corollary of this theorem, we give a rami-
ûcation theorem for themeromorphic function g on Σ with the complete conformal
metric ds2 (Corollary 2.2). We remark that this corresponds to the defect relation in
Nevanlinna theory (see [24,35,36,41] for details).

Next, we provide two applications of the result. _e ûrst is to show that the precise
maximal number of omitted values of the nonconstantmeromorphic function g on Σ
with complete conformal metric ds2 is m + 2 (Corollary 2.4). _e second is to prove
an analogue of a special case of the Ahlfors islands theorem [2, _eorem B.2] for g
on Σ with the complete conformal metric ds2 (Corollaries 2.6 and 2.7). _e Ahlfors
islands theorem has found various applications in complex dynamics; see [2] for an
exposition.

We also give a unicity theorem for the nonconstantmeromorphic function g on an
openRiemann surface Σwith the complete conformal metric ds2 (_eorem 2.9). _is
theorem is optimal in that for every even number m, there exist examples (Example
2.11). _e proof is given in Section 3.2. When m = 0, all results coincide with the
results for meromorphic functions on C (Remarks 2.3, 2.8, and 2.10).

In Section 4, as applications of themain results, we show some function-theoretic
properties for theGaussmaps of the following classes of surfaces:minimal surfaces in
R3 (Section 4.1), constant mean curvature one surfaces inH3 (Section 4.2),maxfaces
in R3

1 (Section 4.3), improper aõne fronts in R3 (Section 4.4), and �at fronts in H3

(Section 4.5). In particular, we give their geometric background.
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2 Main Results

2.1 Curvature Bound and its Corollaries

We ûrst give the following curvature bound for the conformal metric

ds2 = (1 + ∣g∣2)m ∣ω∣2

on an open Riemann surface Σ. _is is more precise than [18,_eorem 2.1].

_eorem 2.1 Let Σ be an open Riemann surface with the conformal metric

(2.1) ds2 = (1 + ∣g∣2)m ∣ω∣2 ,

where ω is a holomorphic 1-form, g is a meromorphic function on Σ, and m ∈ N. Let
q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that

(2.2) γ =
q
∑
j=1
( 1 − 1

ν j
) > m + 2.

If g satisûes the property that all α j-points of g have multiplicity at least ν j , then there
exists a positive constantC, depending on m, γ, and α1 , . . . , αq , but not the surface, such
that for all p ∈ Σ, we have

(2.3) ∣Kd s2(p)∣1/2 ≤
C
d(p)

,

where Kd s2(p) is theGaussian curvature of themetric ds2 at p and d(p) is the geodesic
distance from p to the boundary of Σ, that is, the inûmum of the lengths of the divergent
curves in Σ emanating from p.

As a corollary of _eorem 2.1, we give the following ramiûcation theorem for the
meromorphic function g on Σ with complete conformal metric ds2 = (1 + ∣g∣2)m ∣ω∣2.

Corollary 2.2 Let Σ be an open Riemann surface with the conformal metric given by
(2.1). Let q ∈ N, α1 , . . . , αq ∈ C∪{∞} be distinct and let ν1 , . . . , νq ∈ N∪{∞}. Suppose
that themetric ds2 is complete and that inequality (2.2) holds. If g satisûes the property
that all α j-points of g havemultiplicity at least ν j , then g must be constant.

Proof Since ds2 is complete, wemay set d(p) =∞ for all p ∈ Σ. By virtue of_eo-
rem 2.1, Kd s2 ≡ 0 on Σ. On the other hand, the Gaussian curvature of themetric ds2
is given by

Kd s2 = −
2m∣g′z ∣2

(1 + ∣g∣2)m+2∣ω̂z ∣2
,

where ω = ω̂zdz and g′z = dg/dz. Hence, Kd s2 ≡ 0 if and only if g is constant.

Remark 2.3 _e geometricmeaning of the “2” in “m+2” is the Euler characteristic
of the Riemann sphere. Indeed, if m = 0, then themetric ds2 = (1 + ∣g∣2)0∣ω∣2 = ∣ω∣2
is �at and complete on Σ. We thus may assume that g is a meromorphic function
on C, because g is replaced by g ○ π, where π∶C → Σ is a holomorphic universal
covering map. On the other hand, Ahlfors [1] and Chern [8] showed that the least
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upper bound for the defect relation for meromorphic functions on C coincides with
the Euler characteristic of the Riemann sphere. Hence we get the conclusion.

We next give two applications of Corollary 2.2. _e ûrst one provides the precise
maximal number of omitted values of the meromorphic function g on Σ with the
complete conformal metric ds2 = (1 + ∣g∣2)m ∣ω∣2.

Corollary 2.4 ([18, Corollary 2.2]) Let Σ be an open Riemann surface with the con-
formal metric given by (2.1). If themetric ds2 is complete and themeromorphic function
g is nonconstant, then g can omit at most m + 2 distinct values.

Proof By way of contradiction, assume that g omits m+ 3 distinct values. In Corol-
lary 2.2, if g does not take a value α j ( j = 1, . . . , q), wemay set ν j =∞ in (2.2). _us
we can consider the case where γ ≥ m + 3 (> m + 2). By virtue of Corollary 2.2, the
function g is constant. _is contradicts the assumption that g is nonconstant.

_e number m + 2 is sharp, because there exist examples in [18, Proposition 2.4].
_e second application shows an analogue of the Ahlfors islands theorem [2,_e-

orem B.2] for themeromorphic function g on Σ with the complete conformal metric
ds2 = (1 + ∣g∣2)m ∣ω∣2. We ûrst recall the notion of chordal distance between two dis-
tinct values in the Riemann sphere C∪ {∞}. For two distinct values α, β ∈ C∪ {∞},
we set

∣α, β∣ ∶= ∣α − β∣
√

1 + ∣α∣2
√

1 + ∣β∣2

if α /= ∞ and β /= ∞, and ∣α,∞∣ = ∣∞, α∣ ∶= 1/
√

1 + ∣α∣2. We remark that if we take
v1, v2 ∈ S2 with α = ϖ(v1) and β = ϖ(v2), we have that ∣α, β∣ is a half of the chordal
distance between v1 and v2, where ϖ denotes the stereographic projection of S2 onto
C ∪ {∞}. We next explain the deûnition of an island of ameromorphic function on
a Riemann surface.

Deûnition 2.5 Let Σ be a Riemann surface and let g∶Σ → C∪ {∞} be ameromor-
phic function. LetV ⊂ C∪{∞} be a Jordan domain. A simply-connected component
U of g−1(V) with U ⊂ Σ is called an island of g over V . Note that g∣U ∶U → V is a
propermap. _e degree of thismap is called themultiplicity of the islandU . An island
ofmultiplicity one is called a simple island.

When all islands of themeromorphic function g with the complete conformalmet-
ric ds2 = (1+ ∣g∣2)m ∣ω∣2 are small disks,we get the following result by applyingCorol-
lary 2.2.

Corollary 2.6 Let Σ be an open Riemann surface with the conformal metric given
by (2.1). Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct, let D j(α j , ε) ∶= {z ∈ C ∪

{∞} ; ∣z, α j ∣ < ε} (1 ≤ j ≤ q) be pairwise disjoint, and let ν1 , . . . , νq ∈ N. Suppose that
the metric ds2 is complete and that inequality (2.2) holds. _en there exists ε > 0 such
that if g has no island of multiplicity less than ν j over D j(α j , ε) for all j ∈ {1, . . . , q},
then g must be constant.
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Proof If such an ε does not exist, then for any εwe can ûnd a nonconstantmeromor-
phic function g that has no island ofmultiplicity less than ν j overD j(α j , ε). However,
this implies that all α j-points of g havemultiplicity at least ν j , contradictingCorollary
2.2.

_e important case of Corollary 2.6 is the case where q = 2m + 5 and ν j = 2 for
each j ( j = 1, . . . , q). _is corresponds to the so-called ûve islands theorem in the
Ahlfors theory of covering surfaces ([1], [34, Chapter XIII]).

Corollary 2.7 Let Σ be an open Riemann surfacewith the complete conformal metric
given by (2.1). Let α1 , . . . , α2m+5 ∈ C ∪ {∞} be distinct and let

D j(α j , ε) ∶= {z ∈ C ∪ {∞} ; ∣z, α j ∣ < ε} (1 ≤ j ≤ 2m + 5).

_en there exists ε > 0 such that if g has no simple island of over any of the small disks
D j(α j , ε), then g must be constant.

Remark 2.8 Corollary 2.7 is valid for the case where m = 0. In fact, by the same
argument inRemark 2.3,we can easily show that the theorem corresponds to a special
case of the Ahlfors ûve islands theorem.

2.2 Unicity Theorem

We give another type of function-theoretic property of themeromorphic function g
on Σ with the complete conformal metric ds2 = (1 + ∣g∣2)m ∣ω∣2. In [33], Nevanlinna
showed that two nonconstant meromorphic functions on C coincide with each other
if they have the same inverse images for ûve distinct values. We get the following
analogue to this unicity theorem.

_eorem 2.9 Let Σ be an open Riemann surface with the conformal metric

ds2 = (1 + ∣g∣2)m ∣ω∣2

and let Σ̂ be another open Riemann surface with the conformal metric

d ŝ 2
= (1 + ∣ĝ∣2)m ∣ω̂∣2 ,

where ω and ω̂ are holomorphic 1-forms, g and ĝ are nonconstant meromorphic func-
tions on Σ and Σ̂ respectively, and m ∈ N. We assume that there exists a conformal dif-
feomorphism Ψ∶Σ → Σ̂. Suppose that there exist q distinct points α1 , . . . , αq ∈ C∪{∞}
such that g−1(α j) = (ĝ ○Ψ)−1(α j) (1 ≤ j ≤ q). If q ≥ m + 5 (= (m + 4)+ 1) and either
ds2 or d ŝ 2 is complete, then g ≡ ĝ ○Ψ.

Remark 2.10 When m = 0, _eorem 2.9 coincides with the Nevanlinna unicity
theorem.

_e maps g and ĝ ○ Ψ are said to share the value α (ignoring multiplicity) when
g−1(α) = (ĝ ○Ψ)−1(α). _eorem 2.9 is optimal for an arbitrary even number m(≥ 2),
because of the following examples.
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Example 2.11 For an arbitrary even number m (≥ 2), we take m/2 distinct points
α1 , . . . , αm/2 in C/{0,±1}. Let Σ be either the complex plane punctured at m + 1 dis-
tinct points 0, α1 , . . . , αm/2, 1/α1 , . . . , 1/αm/2 or the universal covering of that punc-
tured plane. We set

ω =
dz

z∏m/2
i=1 (z − α i)(α iz − 1)

, g(z) = z,

ω̂ (= ω) =
dz

z∏m/2
i=1 (z − α i)(α iz − 1)

, ĝ(z) =
1
z
.

We can easily show that the identity map Ψ∶Σ → Σ is a conformal diòeomorphism
and the metric ds2 = (1 + ∣g∣2)m ∣ω∣2 is complete. _en the maps g and ĝ share the
m + 4 distinct values 0,∞, 1, −1, α1 , . . . , αm/2, 1/α1 , . . . , 1/αm/2, and g /≡ ĝ ○ Ψ. _ese
show that the number m + 5 in _eorem 2.9 cannot be replaced by m + 4.

3 Proof of Main Theorems

3.1 Proof of Theorem 2.1

Before proceeding to the proof of_eorem 2.1, we recall two lemmas.

Lemma 3.1 ([12, Corollary 1.4.15]) Let g be a nonconstant meromorphic function on
△R = {z ∈ C; ∣z∣ < R} (0 < R ≤ ∞). Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and
let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that

γ =
q
∑
j=1
( 1 − 1

ν j
) > 2.

If g satisûes the property that all α j-points of g have multiplicity at least ν j , then, for
arbitrary constants η ≥ 0 and δ > 0 with γ − 2 > γ(η + δ), then there exists a positive
constant C′, depending only on γ, η, δ, and L ∶= mini< j ∣α i , α j ∣, such that

∣g′∣
1 + ∣g∣2

1
(∏

q
j=1∣g , α j ∣

1−1/ν j)1−η−δ
≤ C′

R
R2 − ∣z∣2

.

Lemma 3.2 ([12, Lemma 1.6.7]) Let dσ 2 be a conformal �at metric on an open Rie-
mann surface Σ. _en, for each point p ∈ Σ, there exists a local diòeomorphism Φ of
a disk ∆R = {z ∈ C ; ∣z∣ < R} (0 < R ≤ +∞) onto an open neighborhood of p with
Φ(0) = p such that Φ is an isometry; that is, the pull-back Φ∗(dσ 2) is equal to the
standard Euclidean metric ds2Euc on ∆R and, for a point a0 with ∣a0∣ = 1, the Φ-image
Γa0 of the curve La0 = {w ∶= a0s ; 0 < s < R} is divergent in Σ.

Proof of_eorem 2.1 For the proof of_eorem 2.1, wemay assume the following:
(A) For any proper subset I in {1, 2, . . . , q},

∑
j∈I
( 1 − 1

ν j
) ≤ m + 2.

https://doi.org/10.4153/CJM-2015-008-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-008-5


Function-theoretic Properties for the Gauss Maps of Various Classes of Surfaces 1417

(B) _ere exists no set of positive integers (ν∗1 , . . . , ν∗q) distinctwith (ν1 , . . . , νq) sat-
isfying the conditions

(3.1) ν∗j ≤ ν j(1 ≤ j ≤ q),
q
∑
j=1
( 1 − 1

ν∗j
) > m + 2.

If there exists some proper subset I in {1, 2, . . . , q} such that

∑
j∈I
( 1 − 1

ν j
) > m + 2,

then the assumption in_eorem 2.1 for {α j ; 1 ≤ j ≤ q} can be replaces by the assump-
tion for {α j ; j ∈ I}. Moreover, if there exists some (ν∗1 , . . . , ν∗q) satisfying (3.1), then
wemay prove_eorem 2.1 a�er replacing each integer ν j by ν∗j .

Lemma 3.3 _ere exist only ûnite many sets of integers ν1 , . . . , νq with ν j ≥ 2 that
satisfy conditions (A) and (B).

Proof We take positive integers ν1 , . . . , νq satisfying conditions (A) and (B).We as-
sume that ν1 ≤ ⋅ ⋅ ⋅ ≤ νq . _en, for the number

γ =
q
∑
j=1
( 1 − 1

ν j
) ,

we shall show that

(3.2) γ − (m + 2) ≤ 1
νq(νq − 1)

.

In fact, we suppose that γ − (m + 2) > 1/νq(νq − 1). If νq = 2, then

γ > (m + 1) + 1
2

and
q−1
∑
j=1
( 1 − 1

ν j
) > m + 2,

which contradicts assumption (A). _us, νq ≥ 3. Here, ifwe set ν∗j ∶= ν j (1 ≤ j ≤ q− 1)
and ν∗q ∶= νq − 1, then

q
∑
j=1
( 1 − 1

ν∗j
) =

q
∑
j=1
( 1 − 1

ν j
) −

1
νq(νq − 1)

> m + 2.

_is contradicts assumption (B). We have thus proved inequality (3.2).
By virtue of (3.2),

γ ≤ m + 2 + 1
νq(νq − 1)

< m + 2 + 1
2
= m +

5
2
.

On the other hand, since ν j ≥ 2 for all j, we have

γ = ∑
j
( 1 − 1

ν j
) ≥ q( 1 − 1

ν1
) ≥

q
2
,

where q ≥ 5. Hence we obtain that ν1 < 2q/(2q − 2m − 5) and q < 2m + 5.
Now we consider the numbers ν1 , . . . , νq satisfying conditions (A) and (B).We set

γ0 ∶=
k
∑
j=1
( 1 − 1

ν j
) .
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Since
m + 2 < γ = γ0 +

q
∑

j=k+1
( 1 − 1

ν j
) ,

we have
γ0 + q − k − (m + 2) = γ − (m + 2) +

q
∑

j=k+1

1
ν j

> 0.

_en we take a number N with γ0 + q − k − (m + 2) > η0 ∶= 1/N(N − 1). If νq ≤ N ,
then we have νk+1 ≤ N . Otherwise, by inequality (3.2) and νk ≤ ν j for j = k + 1, . . . , q,
we have

0 < γ0 + q − k − η0 − (m + 2) ≤ γ0 + q − k − (m + 2) − 1
νq(νq − 1)

≤
q
∑

j=k+1

1
ν j

≤
q − k
νk+1

.

_is gives

νk+1 ≤
q − k

γ0 − (m + 2) + q − k − η0
.

We thereby get that

νk+1 ≤ max{N , q − k
γ0 − (m + 2) + q − k − η0

} .

Since the boundedness of ν1 has been already shown, by induction on k (= 1, . . . , q),
we have completed the proof of the lemma.

By Lemma 3.3, if we take the maximum C0 in constants that are chosen for the
ûnitely many possible cases of ν′js satisfying conditions (A) and (B), then C0 satisûes
the desired inequality (2.3). Hence, for the proof of _eorem 2.1, we will show the
existence of a constant satisfying (2.3),whichmay depend on the given data ν1 , . . . , νq .

We may assume that m /= 0 and αq = ∞ a�er a suitable Möbius transformation.
We choose some δ such that γ − (m + 2) > 2γδ > 0 and

(3.3) η ∶=
γ − (m + 2) − 2γδ

γ
, λ ∶=

m
m + γδ

.

_en if we choose a suõciently small positive number δ depending on γ and m, for
the constant ε0 ∶= (γ − (m + 2))/2mγ we have

(3.4) 0 < λ < 1, ε0λ
1 − λ

(=
γ − (m + 2)

2δγ2 ) > 1.

Now we deûne a new metric

(3.5) dσ 2
= ∣ω̂z ∣

2/(1−λ)
(

1
∣g′z ∣

q−1
∏
j=1
(
∣g − α j ∣
√

1 + ∣α j ∣2
)

µ j(1−η−δ)
)

2λ/(1−λ)
∣dz∣2

on the set Σ′ = {p ∈ Σ ; g′z /= 0 and g(z) /= α j for all j}, where ω = ω̂zdz, g′z = dg/dz
and µ j = 1 − (1/ν j). Take a point p ∈ Σ′. Since the metric dσ 2 is �at on Σ′, by
Lemma 3.2, there exists an isometry Φ satisfying Φ(0) = p from a disk △R = {z ∈

C ; ∣z∣ < R} (0 < R ≤ +∞)with the standardmetric ds2Euc onto anopenneighborhood
of p in Σ′ with themetric dσ 2 such that for a point a0 with ∣a0∣ = 1, the Φ-image Γa0
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of the curve La0 = {w ∶= a0s ; 0 < s < R} is divergent in Σ′. For brevity, we denote the
function g ○Φ on△R by g in the sequel. By Lemma 3.1, we get that

(3.6) R ≤ C′
1 + ∣g(0)∣2

∣g′z(0)∣
q
∏
j=1
∣g(0), α j ∣

µ j(1−η−δ) < +∞.

Hence
Ldσ(Γa0) = ∫

Γa0
dσ = R < +∞,

where Ldσ(Γa0) denotes the length of Γa0 with respect to the metric dσ 2. Now we
prove that Γa0 is divergent in Σ. Indeed, if it is not, then Γa0 must tend to a point
p0 ∈ Σ/Σ′ where g′z(p0) = 0 or g(p0) = α j for some j, because Γa0 is divergent in Σ′
and Ldσ(Γa0) < +∞. Taking a local complex coordinate ζ in a neighborhood of p0
with ζ(p0) = 0, we can write themetric dσ 2 as

dσ 2
= ∣ζ ∣2kλ/(1−λ)w∣dζ ∣2 ,

with some positive smooth function w and some real number k. If g − α j has a zero
of order l (≥ ν j ≥ 2) at p0 for some 1 ≤ j ≤ q − 1, then g′z has a zero of order l − 1 at p0
and ω̂z(z0) /= 0. _en we obtain that

k = −(l − 1) + l( 1 − 1
ν j
)(1 − η − δ)

= ( 1 − l
ν j
) −

l
ν j
(ν j − 1)(η + δ) = −(η + δ) ≤ −ε0 .

For the case where g has a pole of order l (≥ νq ≥ 2), g′z has a pole of order l + 1, ω̂z
has a zero of order ml at p0, and each component g − α j in the right side of (3.5) has
a pole of order l at p0. Using the identity µ1 + ⋅ ⋅ ⋅ + µq−1 = γ− µq and (3.3), we get that

k =
ml
λ
+ (l + 1) − l(γ − µq)(1 − η − δ)

= l µq(1 − η − δ) − (l − 1) ≤ −ε0 .

Moreover, for the case where g′z(p0) = 0 and g(p0) /= α j for all j, we see that k ≤ −1.
In any case, kλ/(1 − λ) ≤ −1 by (3.4) and there exists a positive constant C̃ such that

dσ ≥ C̃
∣dζ ∣
∣ζ ∣

in a neighborhood of p0. _us, we obtain that

R = ∫
Γa0
dσ ≥ C̃ ∫

Γa0

∣dζ ∣
∣ζ ∣

= +∞,

which contradicts (3.6).
Since Φ∗dσ 2 = ∣dz∣2, we get by (3.5) that

(3.7) ∣ω̂z ∣ = ( ∣g′z ∣
q−1
∏
j=1
(

√
1 + ∣α j ∣2

∣g − α j ∣
)

µ j(1−η−δ)
)

λ
.
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By Lemma 3.1, we obtain that

Φ∗ds = (1 + ∣g∣2)m/2∣ω∣

= ( ∣g′z ∣(1 + ∣g∣
2
)
m/2λ

q−1
∏
j=1
(

√
1 + ∣α j ∣2

∣g − α j ∣
)

µ j(1−η−δ)
)

λ
∣dz∣

= (
∣g′z ∣

1 + ∣g∣2
1

∏
q
j=1 ∣g , α j ∣

µ j(1−η−δ)
)

λ
∣dz∣

≤ (C′)λ(
R

R2 − ∣z∣2
)

λ
∣dz∣.

_us we have

d(p) ≤ ∫
Γa0
ds = ∫

La0

Φ∗ds ≤ (C′)λ ∫
La0

(
R

R2 − ∣z∣2
)

λ
∣dz∣ ≤ (C′)λ

R1−λ

1 − λ
(< +∞)

because 0 < λ < 1. Moreover, by (3.6), we get that

d(p) ≤
(C′)λ

1 − λ
(
1 + ∣g(0)∣2

∣g′z(0)∣
q
∏
j=1
∣g(0), α j ∣

µ j(1−η−δ))
1−λ

.

On the other hand, the Gaussian curvature Kd s2 of themetric ds2 = (1+ ∣g∣2)m ∣ω∣2 is
given by

Kd s2 = −
2m∣g′z ∣2

(1 + ∣g∣2)m+2∣ω̂z ∣2
.

_us, by (3.7), we also get that

∣Kd s2 ∣1/2 =
√

2m ( ∣g
′

z ∣

1 + ∣g∣2
)

1−λ
(

q
∏
j=1
∣g , α j ∣

µ j(1−η−δ))
λ
.

Since ∣g , α j ∣ ≤ 1 for each j, we obtain that

∣Kd s2(p)∣1/2d(p) ≤
√

2mC′

1 − λ
=∶ C .

Hence we get the conclusion.

3.2 Proof of Theorem 2.9

We review the following two lemmas used in the proof of_eorem 2.9.

Lemma 3.4 ([13, Proposition 2.1]) Let g and ĝ be mutually distinct nonconstant
meromorphic functions on a Riemann surface Σ. Let q ∈ N and α1 , . . . , αq ∈ C ∪ {∞}

be distinct. Suppose that q > 4 and g−1(α j) = ĝ−1(α j) (1 ≤ j ≤ q). For b0 > 0 and ε
with q − 4 > qε > 0, we set

ξ ∶= (
q
∏
j=1
∣g , α j ∣ log (

b0
∣g , α j ∣2

))
−1+ε

, ξ̂ ∶= (
q
∏
j=1
∣ĝ , α j ∣ log (

b0
∣ĝ , α j ∣2

))
−1+ε

,

and deûne

(3.8) du2
∶= ( ∣g , ĝ∣2ξ ξ̂ ∣g

′∣

1 + ∣g∣2
∣ĝ′∣

1 + ∣ĝ∣2
) ∣dz∣2
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outside the set E ∶= ⋃q
j=1 g

−1(α j) and du2 = 0 on E. _en for a suitably chosen b0, du2

is continuous on Σ and has strictly negative curvature on the set {du2 /= 0}.

Lemma 3.5 ([13, Corollary 2.4]) Let g and ĝ be a meromorphic function on △R
satisfying the same assumption as in Lemma 3.4. _en for the metric du2 deûned by
(3.8), there exists a constant Ĉ > 0 such that

du2
≤ Ĉ

R2

(R2 − ∣z∣2)2
∣dz∣2 .

Proof of_eorem 2.9 For brevity, we denote the function ĝ ○ Ψ by ĝ in the sequel.
We assume that there exist q distinct values α1 , . . . , αq such that g−1(α j) = ĝ−1(α j)

(1 ≤ j ≤ q), αq =∞ a�er a suitableMöbius transformation and m /= 0. Moreover, we
assume that q > m + 4, either ds2 or d ŝ 2, say ds2, is complete and g /≡ ĝ. _en the
map Ψ gives a biholomorphic isomorphism between Σ and Σ̂. _us, for each local
complex coordinate z deûned on a simply connected open domain U , we can ûnd a
nonzero holomorphic function hz such that

(3.9) ds2 = ∣hz ∣
2
(1 + ∣g∣2)m/2(1 + ∣ĝ∣2)m/2∣dz∣2 .

We take some η with q − (m + 4) > qη > 0 and set

(3.10) λ ∶=
m

q − 4 − qη
(< 1).

Now we deûne a new metric

(3.11) dσ 2
= ∣hz ∣

2/(1−λ)
(

∏
q−1
j=1 (∣g − α j ∣∣ĝ − α j ∣)

1−η

∣g − ĝ∣2∣g′z ∣∣ĝ′z ∣∏
q−1
j=1 (1 + ∣α j ∣2)(1−η)/2

)

λ/(1−λ)

∣dz∣2 ,

on the set Σ′ = Σ/E′, where
E′ = {z ∈ Σ ; g′z(z) = 0, ĝ′z(z) = 0, or g(z)(= ĝ(z)) = α j for some j}.

On the other hand, setting ε ∶= η/2, we can deûne another pseudo-metric du2 on Σ
given by (3.8), which has strictly negative curvature on Σ′.

Take a point p ∈ Σ′. Since themetric dσ 2 is �at on Σ′, by Lemma 3.2, there exists
an isometry Φ satisfying Φ(0) = p from a disk△R = {z ∈ C ; ∣z∣ < R} (0 < R ≤ +∞)

with the standardmetric ds2Euc onto an open neighborhood of p in Σ′ with themetric
dσ 2. We denote the functions g ○Φ and ĝ ○Φ(= ĝ ○Ψ○Φ) by g and ĝ, respectively, in
the sequel. Moreover the pseudo-metricΦ∗du2 on△R has strictlynegative curvature.
Since there exists no metric with strictly negative curvature on C (see [12, Corollary
4.2.4]), we get that R < +∞. Furthermore, by the same argument as in the proof of
_eorem 2.1, we can choose a point a0 with ∣a0∣ = 1 such that, for the curve La0 =

{w ∶= a0s ; 0 < s < R}, the Φ-image Γa0 tends to the boundary of Σ′ as s tends to R.
Here, if we choose a suitable constant η in the deûnition (3.10) of λ, then Γa0 tends to
the boundary of Σ.

Since Φ∗dσ 2 = ∣dz∣2, we get by (3.11) that

∣hz ∣
2
= (
∣g − ĝ∣2∣g′z ∣∣ĝ

′

z ∣∏
q−1
j=1 (1 + ∣α j ∣

2)(1−η)/2

∏
q−1
j=1 (∣g − α j ∣∣ĝ − α j ∣)1−η

)

λ

.
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By (3.9), we have that

ds2 = ∣hz ∣
2
(1 + ∣g∣2)m/2(1 + ∣ĝ∣2)m/2∣dz∣2

= (
∣g − ĝ∣∣g′z ∣∣ĝ

′

z ∣(1 + ∣g∣2)m/2λ(1 + ∣ĝ∣2)m/2λ∏
q−1
j=1 (1 + ∣α j ∣

2)(1−η)/2

∏
q−1
j=1 (∣g − α j ∣∣ĝ − α j ∣)1−η

)

λ

∣dz∣2

= ( µ2
q
∏
j=1
(∣g − α j ∣∣ĝ − α j ∣)

ε
( log b0

∣g , α j ∣2
log b0
∣ĝ , α j ∣2

)
1−ε
)

λ

∣dz∣2 ,

where µ is the function with du2 = µ2∣dz∣2. Since the function x ε log1−ε
(b0/x2) (0 <

x ≤ 1) is bounded, we obtain that

ds2 ≤ C′′(
∣g , ĝ∣2∣g′z ∣∣ĝ′z ∣ξξ̂
(1 + ∣g∣2)(1 + ∣ĝ∣2)

)

λ

∣dz∣2

for some constant C′′. By Lemma 3.5, we have that

ds2 ≤ C′′′(
R

R − ∣z∣2
)

λ
∣dz∣2

for some constant C′′′. _us we obtain that

∫
Γa0
ds ≤ (C′′′)1/2 ∫

La0

(
R

R2 − ∣z∣2
)

λ/2
∣dz∣ ≤ C

R(2−λ)/2

1 − (λ/2)
< +∞

because 0 < λ < 1. However, it contradicts the assumption that the metric ds2 is
complete. Hence, we have necessarily g ≡ ĝ.

4 Applications

In this section, we give several applications of our main results.

4.1 Gauss Map of Minimal Surfaces in R3

We ûrst recall some basic facts of minimal surfaces in Euclidean 3-space R3. Details
can be found, for example, in [12, 30, 39]. Let X = (x 1 , x2 , x3)∶Σ → R3 be an ori-
entedminimal surface in R3. By associating a local complex coordinate z = u+

√
−1v

with each positive isothermal coordinate system (u, v), Σ is considered as a Riemann
surface whose conformal metric is the inducedmetric ds2 from R3. _en

(4.1) △d s2X = 0

holds; that is, each coordinate function x i is harmonic. With respect to the local
complex coordinate z = u +

√
−1v of the surface, (4.1) is given by

∂∂X = 0,

where ∂ = (∂/∂u −
√
−1∂/∂v)/2, ∂ = (∂/∂u +

√
−1∂/∂v)/2. Hence each ϕ i ∶= ∂x idz

(i = 1, 2, 3) is a holomorphic 1-form on Σ. If we set that

ω = ϕ1 −
√
−1ϕ2 , g =

ϕ3

ϕ1 −
√
−1ϕ2

,
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then ω is a holomorphic 1-form and g is ameromorphic function on Σ. Moreover the
function g coincides with the composition of the Gauss map and the stereographic
projection from S2 onto C ∪ {∞}, and the inducedmetric is given by

ds2 = (1 + ∣g∣2)2∣ω∣2 .

Applying _eorem 2.1 to themetric ds2, we can get the Fujimoto curvature bound
for aminimal surface in R3.

_eorem 4.1 ([11, _eorem C], [12, _eorem 1.6.1]) Let X∶Σ → R3 be an oriented
minimal surface. Let q ∈ N, α1 , . . . , αq ∈ C∪{∞} be distinct and ν1 , . . . , νq ∈ N∪{∞}.
Suppose that

(4.2) γ =
q
∑
j=1
( 1 − 1

ν j
) > 4 (= 2 + 2).

If the Gauss map g∶Σ → C ∪ {∞} satisûes the property that all α j-points of g have
multiplicity at least ν j , then there exists a positive constant C, depending on α1 , . . . , αq ,
but not the surface, such that for all p ∈ Σ inequality (2.3) holds.

As a corollary of_eorem 4.1, we have the following ramiûcation theorem for the
Gauss map of a completeminimal surface in R3.

Corollary 4.2 ([40, _eorem 2], [10, Corollary 3.4]) Let X∶Σ → R3 be a complete
minimal surface. Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and let ν1 , . . . , νq ∈

N ∪ {∞}. Suppose that inequality (4.2) holds. If the Gauss map g∶Σ → C ∪ {∞}

satisûes the property that all α j-points of g havemultiplicity at least ν j , then g must be
constant; that is, X(Σ) is a plane. In particular, the Gauss map of a non�at complete
minimal surface in R3 can omit at most 4 (= 2 + 2) values.

We remark that the author, Kobayashi, andMiyaoka [20] gave a similar result for
the Gauss map of a special class of completeminimal surfaces (this class is called the
pseudo-algebraicminimal surfaces).
As an application of Corollary 4.2,we obtain the following analogue to the Ahlfors

islands theorem. We remark that Klots and Sario [22] investigated the upper bound
for the number of islands for the Gauss map of aminimal surface in R3.

_eorem 4.3 Let X∶Σ → R3 be a complete minimal surface. Let q ∈ N, α1 , . . . , αq ∈

C ∪ {∞} be distinct, let D j(α j , ε) ∶= {z ∈ C ∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ q) be
pairwise disjoint, and let ν1 , . . . , νq ∈ N. Suppose that inequality (4.2) holds. _en there
exists ε > 0 such that, if the Gauss map g has no island of multiplicity less than ν j over
D j(α j , ε) for all j ∈ {1, . . . , q}, then g must be constant; that is, X(Σ) is a plane.

_e important case of_eorem 4.3 is the one where q = 9 (= 2 ⋅ 2 + 5) and ν j = 2
for each j ( j = 1, . . . , q).

Corollary 4.4 Let X∶Σ → R3 be a complete minimal surface. Let α1 , . . . , α9 ∈ C ∪

{∞} be distinct and let D j(α j , ε) ∶= {z ∈ C ∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ 9). _en there
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exists ε > 0 such that, if the Gauss map g has no simple island of over any of the small
disks D j(α j , ε) for all j ∈ {1, . . . , 9}, then g must be constant; that is, X(Σ) is a plane.

Finally, by applying _eorem 2.9,we provide the Fujimoto unicity theorem for the
Gauss maps of completeminimal surfaces in R3.

_eorem 4.5 ([13,_eoremI]) Let X∶Σ → R3 and X̂∶ Σ̂ → R3 be two non�atminimal
surfaces and assume that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂. Let g∶Σ →
C ∪ {∞} and ĝ∶ Σ̂ → C ∪ {∞} be the Gauss maps of X(Σ) and X̂(Σ̂), respectively. If
g /≡ ĝ○Ψ and either X(Σ) or X̂(Σ̂) is complete, then g and ĝ○Ψ share atmost 6 (= 2+4)
distinct values.

4.2 Hyperbolic Gauss Map of Constant Mean Curvature One Surfaces in H3

We denote by H3 hyperbolic 3-space, that is, the simply connected Riemannian
3-manifold with constant sectional curvature −1, which is represented as

H3
= SL(2,C)/SU(2) = {aa∗; a ∈ SL(2,C)} (a∗ ∶= ta).

_en there exists the following representation formula for constant mean curvature
one (CMC-1) surfaces inH3 as an analogy of the Enneper–Weierstrass representation
formula in minimal surface theory.

_eorem 4.6 ([3, 44]) Let Σ̃ be a simply connected Riemann surface with a base
point z0 ∈ Σ̃ and (g ,ω) a pair consisting of ameromorphic function and a holomorphic
1-form on Σ̃ such that

(4.3) ds2 = (1 + ∣g∣2)2∣ω∣2

gives a (positive deûnite) Riemannian metric on Σ̃. Take a holomorphic immersion F =
(Fi j)∶ Σ̃ → SL(2,C) satisfying F(z0) = id and

(4.4) F−1dF = (g −g2

1 −g )ω.

_en f ∶ Σ̃ → H3 deûned by

(4.5) f = FF∗

is aCMC-1 surface and the inducedmetric of f is ds2. Moreover the second fundamental
form h and the Hopf diòerential Q of f are given by

h = −Q − Q + ds2 , Q = ω dg .

Conversely, for any CMC-1 surface f ∶ Σ̃ → H3, there exist a meromorphic function g
and a holomorphic 1-form ω on Σ̃ such that the induced metric of f is given by (4.3)
and (4.5) holds, where the map F∶ Σ̃ → SL(2,C) is a holomorphic null (“null” means
det (F−1dF) = 0) immersion satisfying (4.4).

Following the terminology of [44], g is called a secondaryGaussmap of f . _e pair
(g ,ω) is called Weierstrass data of f . Let f ∶Σ → H3 be a CMC-1 surface on a (not
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necessarily simply connected) Riemann surface Σ. _en the map F is deûned only
on its universal covering surface Σ̃. _us, the pair (ω, g) is not single-valued on Σ.
However, the hyperbolic Gauss map of f deûned by

G =
dF11

dF21
=
dF12

dF22
, where F(z) = (F11(z) F12(z)

F21(z) F22(z)
)

is a single-valuedmeromorphic function on Σ. By identifying the ideal boundary S2
∞

of H3 with the Riemann sphere C ∪ {∞}, the geometric meaning of G is given as
follows (cf. [3]). _e hyperbolic Gauss map G sends each p ∈ Σ to the point G(p) at
S2
∞

reached by the orientednormal geodesics emanating from the surface. _e inverse
matrix F−1 is also a holomorphic null immersion and produce a new CMC-1 surface
f ♯ ∶= F−1(F−1)∗∶ Σ̃ → H3, which is called the dual of f ([45]). _en theWeierstrass
data (g♯ ,ω♯), the Hopf diòerential Q♯, and the hyperbolic Gauss map G♯ of f ♯ are
given by

(4.6) g♯ = G , ω♯ = −
Q
dG

, Q♯ = −Q , G♯ = g .

By _eorem 4.6 and (4.6) , the inducedmetric ds2 ♯ of f ♯ is given by

ds2 ♯ = (1 + ∣g♯∣2)2∣ω♯∣2 = (1 + ∣G∣2)2∣ Q
dG
∣
2
.

We call the metric ds2 ♯ the dual metric of f . _ere exists the following relationship
between themetric ds2 and the dual metric ds2 ♯.

_eorem 4.7 ([45, 50]) _e metric ds2 is complete (resp. nondegenerate) if and only
if the dual metric ds2 ♯ is complete (resp. nondegenerate).

Applying _eorem 2.1 to the dual metric ds2 ♯, we get the following theorem.

_eorem 4.8 Let f ∶Σ → H3 be a CMC-1 surface. Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞}

be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that inequality (4.2) holds. If the
hyperbolicGaussmap G∶Σ → C∪{∞} satisûes the property that all α j-points ofG have
multiplicity at least ν j , then there exists a positive constant C, depending on α1 , . . . , αq ,
but not the surface, such that for all p ∈ Σ we have

∣Kd s2 ♯(p)∣1/2 ≤
C
d(p)

,

where Kd s2 ♯(p) is the Gaussian curvature of the metric ds2 ♯ at p and d(p) is the geo-
desic distance from p to the boundary of Σ.

Combining _eorems 4.7 and 4.8, we get the following ramiûcation theorem for
the hyperbolic Gauss map of CMC-1 surfaces in H3.

Corollary 4.9 ([17], [50]) Let f ∶Σ → H3 be a complete CMC-1 surface. Let q ∈ N,
α1 , . . . , αq ∈ C ∪ {∞} be distinct and ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that inequality
(4.2) holds. If the hyperbolic Gauss map G∶Σ → C ∪ {∞} satisûes the property that
all α j-points of G have multiplicity at least ν j , then G must be constant; that is, f (Σ)
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is a horosphere. In particular, the hyperbolic Gauss map of a non�at complete CMC-1
surface in H3 can omit at most 4 (= 2 + 2) values.

Moreover, we obtain the following analogue to the Ahlfors islands theorem.

_eorem 4.10 Let f ∶Σ → H3 be a complete CMC-1 surface. Let q ∈ N, α1 , . . . , αq ∈

C ∪ {∞} be distinct, let D j(α j , ε) ∶= {z ∈ C∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ q) be pairwise
disjoint, and let ν1 , . . . , νq ∈ N. Suppose that inequality (4.2) holds. _en there exists
ε > 0 such that, if the hyperbolic Gauss map G has no island of multiplicity less than
ν j over D j(α j , ε) for all j ∈ {1, . . . , q}, then G must be constant; that is, f (Σ) is a
horosphere.

_e important case of_eorem 4.10 is the case where q = 9 (= 2 ⋅ 2+ 5) and ν j = 2
for each j ( j = 1, . . . , q).

Corollary 4.11 Let f ∶Σ → H3 be a completeCMC-1 surface. Let α1 , . . . , α9 ∈ C∪{∞}
be distinct and let D j(α j , ε) ∶= {z ∈ C∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ 9). _en there exists
ε > 0 such that, if the hyperbolic Gauss map G has no simple island of over any of the
small disks D j(α j , ε) for all j ∈ {1, . . . , 9}, then G must be constant; that is, f (Σ) is a
horosphere.

Finally, by applying _eorem 2.9,we provide the following unicity theorem for the
hyperbolic Gauss maps of complete CMC-1 surfaces in H3.

_eorem 4.12 Let f ∶Σ → H3 and f̂ ∶ Σ̂ → H3 be two non�at CMC-1 surfaces and
assume that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂. Let G∶Σ → C ∪ {∞}

and Ĝ∶ Σ̂ → C ∪ {∞} be the hyperbolic Gauss maps of f (Σ) and f̂ (Σ̂), respectively.
If G /≡ Ĝ ○ Ψ and either f (Σ) or f̂ (Σ̂) is complete, then G and Ĝ ○ Ψ share at most
6 (= 2 + 4) distinct values.

4.3 Lorentzian Gauss Map of Maxfaces in R3
1

Maximal surfaces in theLorentz–Minkowski 3-spaceR3
1 are closely related tominimal

surfaces in R3. We treat maximal surfaces with some admissible singularities, called
maxfaces, as introduced by Umehara and Yamada [46]. We remark that maxfaces,
non-branched generalized maximal surfaces in the sense of [9], and non-branched
generalizedmaximal maps in the sense of [15] are all the same class ofmaximal sur-
faces. _e Lorentz–Minkowski 3-space R3

1 is the aõne 3-space R3 with inner product

⟨ ⋅ , ⋅ ⟩ = −(dx 1
)
2
+ (dx2

)
2
+ (dx3

)
2 ,

where (x 1 , x2 , x3) is the canonical coordinate system of R3. We consider a ûbration

pL ∶C3
∋ (ζ 1 , ζ2 , ζ3

)↦ Re(−
√
−1ζ 1 , ζ2 , ζ3

) ∈ R3
1 .

_e projection of null holomorphic immersions intoR3
1 by pL givesmaxfaces. Here, a

holomorphicmap F = (F1 , F2 , F3)∶Σ → C3 is said to be null if {(F1)
′

z}
2 + {(F2)

′

z}
2 +

{(F3)
′

z}
2 vanishes identically, where ′ = d/dz denotes the derivative with respect
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to a local complex coordinate z of Σ. For a maxface, an analogue of the Enneper–
Weierstrass representation formula is known (see also [23]).

_eorem 4.13 ([46, _eorem 2.6]) Let Σ be a Riemann surface and (g ,ω) a pair
consisting of ameromorphic function and a holomorphic 1-form on Σ such that

(4.7) dσ 2
∶= (1 + ∣g∣2)2∣ω∣2

gives a (positive deûnite) Riemannian metric on Σ, and ∣g∣ is not identically 1. Assume
that

Re∫
γ
(−2g , 1 + g2 ,

√
−1(1 − g2

))ω = 0

for all loops γ in Σ. _en

f = Re∫
z

z0
(−2g , 1 + g2 ,

√
−1(1 − g2

))ω

is well deûned on Σ and gives amaxface in R3
1 , where z0 ∈ Σ is a base point. Moreover,

all maxfaces are obtained in this manner. _e induced metric ds2 ∶= f ∗⟨ ⋅ , ⋅ ⟩ is given
by

ds2 = (1 − ∣g∣2)2∣ω∣2 ,
and the point p ∈ Σ is a singular point of f if and only if ∣g(p)∣ = 1.

We call g the Lorentzian Gaussmap of f . If f has no singularities, then g coincides
with the composition of theGauss map (i.e., (Lorentzian) unit normal vector) n∶Σ →
H2
±
into the upper or lower connected component of the two-sheet hyperboloidH2

±
=

H2
+
∪H2

−
in R3

1 , where

H2
+
∶= {n = (n1 , n2 , n3

) ∈ R3
1 ; ⟨n, n⟩ = −1, n1

> 0},

H2
−
∶= {n = (n1 , n2 , n3

) ∈ R3
1 ; ⟨n, n⟩ = −1, n1

< 0},

and the stereographic projection from the north pole (1, 0, 0) of the hyperboloid onto
the Riemann sphere C ∪ {∞} (see [46, Section 1] for the details). A maxface is said
to be weakly complete if themetric dσ 2 as in (4.7) is complete. We note that (1/2)dσ 2

coincides with the pull-back of the standard metric on C3 by the null holomorphic
immersion of f (see [46, Section 2]). Applying _eorem 2.1 to themetric dσ 2,we can
get the following curvature estimate.

_eorem 4.14 Let f ∶Σ → R3
1 be a maxface. Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞}

be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that inequality (4.2) holds. If the
Lorentzian Gaussmap g∶Σ → C∪{∞} satisûes the property that all α j-points of g have
multiplicity at least ν j , then there exists a positive constant C, depending on α1 , . . . , αq ,
but not the surface, such that for all p ∈ Σ we have

∣Kdσ 2(p)∣1/2 ≤
C
d(p)

,

whereKdσ 2(p) is theGaussian curvature of themetric dσ 2 at p and d(p) is the geodesic
distance from p to the boundary of Σ.
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As a corollary of_eorem4.14,we have the following ramiûcation theorem for the
Lorentzian Gauss map of a weakly completemaxface in R3

1 .

Corollary 4.15 Let f ∶Σ → R3
1 be a weakly completemaxface. Let

q ∈ N, α1 , . . . , αq ∈ C ∪ {∞}

be distinct and ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that inequality (4.2) holds. If the
Lorentzian Gauss map g∶Σ → C ∪ {∞} satisûes the property that all α j-points of g
havemultiplicity at least ν j , then g must be constant; that is, f (Σ) is a plane. In partic-
ular, the Lorentzian Gauss map of a non�at weakly completemaxface in R3

1 can omit at
most 4 (= 2 + 2) values.

As an application of Corollary 4.15, we can give a simple proof of the Calabi–
Bernstein theorem ([5,7]) for amaximal space-like surface in R3

1 from the viewpoint
of function-theoretic properties of the Lorentzian Gauss map. For the details, see
[18, Section 4.2].
As another application of Corollary 4.15, we obtain the following analogue to the

Ahlfors islands theorem.

_eorem 4.16 Let f ∶Σ → R3
1 be a weakly completemaxface. Let

q ∈ N, α1 , . . . , αq ∈ C ∪ {∞}

be distinct, let D j(α j , ε) ∶= {z ∈ C ∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ q) be pairwise disjoint,
and let ν1 , . . . , νq ∈ N. Suppose that inequality (4.2) holds. _en there exists ε > 0
such that, if the Lorentzian Gauss map g has no island of multiplicity less than ν j over
D j(α j , ε) for all j ∈ {1, . . . , q}, then g must be constant; that is, f (Σ) is a plane.

_e important case of_eorem 4.16 is the case where q = 9 (= 2 ⋅ 2+ 5) and ν j = 2
for each j ( j = 1, . . . , q).

Corollary 4.17 Let f ∶Σ → R3
1 be a weakly complete maxface. Let α1 , . . . , α9 ∈ C ∪

{∞} be distinct and let D j(α j , ε) ∶= {z ∈ C ∪ {∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ 9). _en there
exists ε > 0 such that, if the Lorentzian Gauss map g has no simple island of over any of
the small disks D j(α j , ε) for all j ∈ {1, . . . , 9}, then g must be constant; that is, f (Σ) is
a plane.

Finally, by applying _eorem 2.9,we provide the following unicity theorem for the
Lorentzian Gauss maps of weakly completemaxfaces in R3

1 .

_eorem 4.18 Let f ∶Σ → R3
1 and f̂ ∶ Σ̂ → R3

1 be two non�at maxfaces and assume
that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂. Let g∶Σ → C ∪ {∞} and
ĝ∶ Σ̂ → C ∪ {∞} be the Lorentzian Gauss maps of f (Σ) and f̂ (Σ̂), respectively. If
g /≡ ĝ ○ Ψ and either f (Σ) or f̂ (Σ̂) is weakly complete, then g and ĝ ○ Ψ share at most
6 (= 2 + 4) distinct values.
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4.4 Lagrangian Gauss Map of Improper Affine Fronts in R3

Improper aõne spheres in the aõne 3-space R3 also have similar properties to mini-
mal surfaces in Euclidean 3-space. Recently,Martínez [31] discovered the correspon-
dence between improper aõne spheres and smooth special Lagrangian immersions
in the complex 2-space C2 and introduced the notion of improper aõne fronts, that
is, a class of (locally strongly convex) improper aõne spheres with some admissible
singularities in R3. We remark that this class is called “improper aõnemaps” in [31],
but we call this class “improper aõne fronts”, because all of the improper aõnemaps
are wave fronts in R3 ([32,47]). _e diòerential geometry of wave fronts is discussed
in [42]. Moreover, Martínez gave the following holomorphic representation for this
class.

_eorem 4.19 ([31,_eorem 3]) Let Σ be a Riemann surface and let (F ,G) be a pair
of holomorphic functions on Σ such that Re(FdG) is exact and ∣dF∣2 + ∣dG∣2 is positive
deûnite. _en the inducedmap ψ∶Σ → R3 = C ×R given by

ψ ∶= (G + F , ∣G∣
2 − ∣F∣2

2
+ Re(GF − 2∫ FdG))

is an improper aõne front. Conversely, any improper aõne front is given in this way.
Moreover, we set x ∶= G + F and n ∶= F −G. _en Lψ ∶= x +

√
−1n∶Σ → C2 is a special

Lagrangian immersion whose inducedmetric dτ2 from C2 is given by

dτ2
= 2(∣dF∣2 + ∣dG∣2).

In addition, the aõnemetric h of ψ is expressed as h ∶= ∣dG∣2 − ∣dF∣2, and the singular
points of ψ correspond to the points where ∣dF∣ = ∣dG∣.

We remark that Nakajo [32] constructed a representation formula for indeûnite
improper aõne spheres with some admissible singularities.

_e nontrivial part of theGauss map of Lψ ∶Σ → C2 ≃ R4 (see [6]) is themeromor-
phic function ν∶Σ → C ∪ {∞} given by ν ∶= dF/dG , which is called the Lagrangian
Gauss map of ψ. An improper aõne front is said to be weakly complete if the induced
metric dτ2 is complete. We remark that

dτ2
= 2(∣dF∣2 + ∣dG∣2) = 2(1 + ∣ν∣2)∣dG∣2 .

Applying _eorem 2.1 to themetric dτ2, we can get the following theorem. _is is
a generalization of [18,_eorem 4.6].

_eorem 4.20 Let ψ∶Σ → R3 be an improper aõne front. Let q ∈ N, α1 , . . . , αq ∈

C ∪ {∞} be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose that

(4.8) γ =
q
∑
j=1
( 1 − 1

ν j
) > 3 (= 1 + 2).

If the Lagrangian Gauss map ν∶Σ → C ∪ {∞} satisûes the property that all α j-points
of ν have multiplicity at least ν j , then there exists a positive constant C, depending on
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α1 , . . . , αq , but not the surface, such that for all p ∈ Σ we have

∣Kdτ2(p)∣1/2 ≤
C
d(p)

,

where Kdτ2(p) is theGaussian curvature of themetric dτ2 at p and d(p) is the geodesic
distance from p to the boundary of Σ.

As a corollary of_eorem4.20,we have the following ramiûcation theorem for the
Lagrangian Gauss map of a weakly complete improper aõne front in R3.

Corollary 4.21 ([21, _eorem 3.2]) Let ψ∶Σ → R3 be a weakly complete improper
aõne front. Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}.
Suppose that inequality (4.8) holds. If the Lagrangian Gauss map ν∶Σ → C ∪ {∞}

satisûes the property that all α j-points of ν havemultiplicity at least ν j , then ν must be
constant; that is, ψ(Σ) is an elliptic paraboloid. In particular, if the Lagrangian Gauss
map of a weakly complete improper aõne front in R3 is nonconstant, then it can omit
at most 3 (= 1 + 2) values.

Since the singular points of ψ correspond to the points where ∣ν∣ = 1, we can get
a simple proof of the parametric aõne Bernstein theorem ([4, 16]) for an improper
aõne sphere from the viewpoint of function-theoretic properties of the Lagrangian
Gauss map. For the details, see [18, Corollary 3.6].
As an application of Corollary 4.21,we obtain the following analogue to theAhlfors

islands theorem.

_eorem 4.22 Let ψ∶Σ → R3 be a weakly complete improper aõne front. Let q ∈ N,
α1 , . . . , αq ∈ C∪{∞} be distinct, let D j(α j , ε) ∶= {z ∈ C∪{∞}; ∣z, α j ∣ < ε} (1 ≤ j ≤ q)
be pairwise disjoint, and let ν1 , . . . , νq ∈ N. Suppose that inequality (4.8) holds. _en
there exists ε > 0 such that, if the Lagrangian Gauss map ν has no island ofmultiplicity
less than ν j over D j(α j , ε) for all j ∈ {1, . . . , q}, then ν must be constant; that is, ψ(Σ)
is an elliptic paraboloid.

_e important case of_eorem 4.22 is the case where q = 7 (= 2 ⋅ 1+ 5) and ν j = 2
for each j ( j = 1, . . . , q).

Corollary 4.23 Let ψ∶Σ → R3 be a weakly complete improper aõne front. Let
α1 , . . . , α7 ∈ C ∪ {∞} be distinct and let D j(α j , ε) ∶= {z ∈ C ∪ {∞} ; ∣z, α j ∣ < ε}
(1 ≤ j ≤ 7). _en there exists ε > 0 such that, if the Lagrangian Gauss map ν has no
simple island of over any of the small disks D j(α j , ε) for all j ∈ {1, . . . , 7}, then ν must
be constant; that is, ψ(Σ) is an elliptic paraboloid.

Finally, by applying _eorem 2.9,we provide the following unicity theorem for the
Lagrangian Gauss maps of weakly complete improper aõne fronts in R3.

_eorem 4.24 Let ψ∶Σ → R3 and ψ̂∶ Σ̂ → R3 be two improper aõne fronts and
assume that there exists a conformal diòeomorphismΨ∶Σ → Σ̂. Let ν∶Σ → C∪{∞} and
ν̂∶ Σ̂ → C∪{∞} be the LagrangianGaussmaps ofψ(Σ) and ψ̂(Σ̂), respectively. Suppose
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that there exist q distinct points α1 , . . . , αq ∈ C∪{∞} such that ν−1(α j) = (ν̂○Ψ)−1(α j)

(1 ≤ j ≤ q). If q ≥ 6 (= (1 + 4) + 1) and either ψ(Σ) or ψ̂(Σ̂) is weakly complete, then
either ν ≡ ν̂ ○ Ψ or ν and ν̂ are both constant; that is, ψ(Σ) and ψ̂(Σ̂) are both elliptic
paraboloids.

4.5 Ratio of Canonical Forms of Flat Fronts in H3

For a holomorphic Legendrian immersion L∶Σ → SL(2,C) on a simply connected
Riemann surface Σ, the projection

f ∶= LL∗
∶Σ → H3

gives a �at front in H3. Here, �at fronts in H3 are �at surfaces in H3 with some ad-
missible singularities (see [26, 29] for the deûnition of �at fronts in H3). We call L
the holomorphic li� of f . Since L is a holomorphic Legendrian map, L−1dL is oò-
diagonal (see [14,28,29]). If we set that

L−1dL = (
0 θ
ω 0) ,

then the pull-back of the canonical Hermitian metric of SL(2,C) byL is represented
as

ds2L ∶= ∣ω∣2 + ∣θ∣2

for holomorphic 1-forms ω and θ on Σ. A �at front f is said to be weakly complete if
themetric ds2L is complete ([27,47]). We deûne ameromorphic function on Σ by the
ratio of canonical forms ρ ∶= θ/ω. _en a point p ∈ Σ is a singular point of f if and
only if ∣ρ(p)∣ = 1 ([25]). We remark that

ds2L = ∣ω∣2 + ∣θ∣2 = (1 + ∣ρ∣2)∣ω∣2 .

Applying _eorem 2.1 to the metric ds2L, we can get the following curvature esti-
mate. _is is a generalization of [18,_eorem 4.8].

_eorem 4.25 Let f ∶Σ → H3 be a �at front on a simply connected Riemann surface
Σ. Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose
that inequality (4.8) holds. If the ratio of canonical forms ρ∶Σ → C ∪ {∞} satisûes the
property that all α j-points of ρ have multiplicity at least ν j , then there exists a positive
constant C, depending on α1 , . . . , αq , but not the surface, such that for all p ∈ Σ we have

∣Kd s2
L
(p)∣1/2 ≤

C
d(p)

,

whereKd s2
L
(p) is theGaussian curvature of themetric ds2L at p and d(p) is the geodesic

distance from p to the boundary of Σ.

If Σ is not simply connected, thenwe consider that ρ is ameromorphic function on
its universal covering surface Σ̃. As a corollary of_eorem4.25,we have the following
ramiûcation theorem for the ratio of canonical forms of a weakly complete improper
aõne front in H3.

https://doi.org/10.4153/CJM-2015-008-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-008-5


1432 Y. Kawakami

Corollary 4.26 ([19, _eorem 3.2]) Let f ∶Σ → H3 be a weakly complete �at front.
Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct and let ν1 , . . . , νq ∈ N ∪ {∞}. Suppose
that inequality (4.8) holds. If the ratio of canonical forms ρ satisûes the property that
all α j-points of ρ have multiplicity at least ν j , then ρ must be constant; that is, f (Σ)
is a horosphere or a hyperbolic cylinder. In particular, if the ratio of canonical forms of
a weakly complete �at front in H3 is nonconstant, then it can omit at most 3 (= 1 + 2)
values.

As an application of Corollary 4.26, we can obtain a simple proof of the classi-
ûcation ([43, 48]) of complete nonsingular �at surfaces in H3. For the details, see
[19, Corollary 4.5].
As another application of Corollary 4.26, we get the following analogue to the

Ahlfors islands theorem.

_eorem 4.27 ([19, Corollary 4.2]) Let f ∶Σ → H3 be a weakly complete �at front.
Let q ∈ N, α1 , . . . , αq ∈ C ∪ {∞} be distinct, let D j(α j , ε) ∶= {z ∈ C ∪ {∞}; ∣z, α j ∣ < ε}
(1 ≤ j ≤ q) be pairwise disjoint, and let ν1 , . . . , νq ∈ N. Suppose that inequality (4.8)
holds. _en there exists ε > 0 such that, if the ratio of canonical forms ρ has no island of
multiplicity less than ν j over D j(α j , ε) for all j ∈ {1, . . . , q}, then ρ must be constant;
that is, f (Σ) is a horosphere or a hyperbolic cylinder.

_e important case of_eorem 4.27 is the case where q = 7 (= 2 ⋅ 1+ 5) and ν j = 2
for each j ( j = 1, . . . , q).

Corollary 4.28 ([19, Corollary 4.3]) Let f ∶Σ → H3 be a weakly complete �at front.
Let α1 , . . . , α7 ∈ C ∪ {∞} be distinct and let D j(α j , ε) ∶= {z ∈ C ∪ {∞} ; ∣z, α j ∣ < ε}
(1 ≤ j ≤ 7). _en there exists ε > 0 such that, if the ratio of canonical forms ρ has no
simple island of over any of the small disks D j(α j , ε) for all j ∈ {1, . . . , 7}, then ν must
be constant, that is, f (Σ) is a horosphere or a hyperbolic cylinder.

Finally, by applying _eorem 2.9,we provide the following unicity theorem for the
ratios of canonical forms of weakly complete �at fronts in H3.

_eorem 4.29 Let f ∶Σ → H3 and f̂ ∶ Σ̂ → R3 be two �at fronts on simply connected
Riemann surfaces and assume that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂.
Let ρ∶Σ → C ∪ {∞} and ρ̂∶ Σ̂ → C ∪ {∞} be the ratio of canonical forms f (Σ) and
f̂ (Σ̂), respectively. Suppose that there exist q distinct points α1 , . . . , αq ∈ C∪ {∞} such
that ρ−1(α j) = (ρ̂ ○ Ψ)−1(α j) (1 ≤ j ≤ q). If q ≥ 6 (= (1 + 4) + 1) and either f (Σ) or
f̂ (Σ̂) is weakly complete, then either ρ ≡ ρ̂ ○Ψ or ρ and ρ̂ are both constant.
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