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All polynomials considered in this paper belong to Q[x] and reducibility means
reducibility over Q. It has been established by one of us [5] that every binomial in Q[x]
has an irreducible factor which is either a binomial or a trinomial. He has further raised
the question "Does there exist an absolute constant K such that every trinomial in Q[x]
has a factor irreducible over Q which has at most K terms (i.e. K non-zero coefficients)?"

A similar question could be asked for a quadrinomial, or, more generally, for a
polynomial with m non-zero coefficients. This paper deals with the general problem, that
could be formulated as follows:

Given a positive integer m does there exist a number K such that every polynomial in
Q[x] with m non-zero coefficients has a factor irreducible over Q with at most K non-zero
coefficients (AT "terms")?

If for a given m numbers K with the above property exist we denote by K{m) the
least of them, otherwise we put K{m) = °°.
We shall prove

THEOREM, (i) K(3) > 8, (ii) K(4) > 13, (iii) K(5) > 14, (iv) K(6) s 16 and for every
m>2: K{m) > max{2m, c{m

ci}, where cx = 0-014 and c2 = 1-22 are both independent of
m.

Proof.
(i)m = 3.
This case has been dealt earlier by Bremner [1] who has proved K(3) 2= 8, without,

however explicitly giving the trinomial concerned. We shall obtain the same result by a
numerical example. We write

f(x) = x7 + 20A:6 + 200JC5 + 2450*4 + 29 OOOx3 + 545 OOOJC2 + 8 101 250* + 35 275 000.

Then we have the identity

f(x)f(-x) = -x14 - 27 180 501 562 500*2 + 35 275 0002.

We prove the irreducibility of f(x) andf(-x) by using the method of G. Dumas [3] (cf.
Dorwart [2]) based on Newton polygon. The Newton polygon corresponding to/(x) for
the prime 2 is shown on Figure 1.

It follows from the irreducibility theorem of Dumas that the proper factors of f(x)
can only be of degree 1 or 6, thus if f(x) is reducible it has a factor x — X, where A is an
integer. We must have A | 35 275 000, also 10 | A and finitely many possible values of A are
easily ruled out. Therefore f{x) is irreducible and as it has 8 terms K(3) > 8.

(ii) m = 4. Let

f{x) = x12 + 4x11 + 8x10 + 16x9 + 32jt8 + 64x7 + 128x6 + 192JC5 + 256x4

+ 384JC3 + 512x2 + 640x + 512.
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We have the identity

f(x)f(-x) = x24 + 32 76&x4 + 114 688JC2 + 262 144.

To prove that/(x) is irreducible, we construct the Newton polygon corresponding to/(jc)
for the prime 2 (Figure 2).

It then follows from the irreducibility theorem of Dumas that the proper factors of
f(x) must be of degree 1 or 11. Thus if f(x) is reducible it must have a factor x - A, where
A is an integer and A | 512. All such factors are easily ruled out. Hence/(JC) is irreducible
and as it has 13 non-zero coefficients K(4) > 13.
(iii) m = 5. Let

f(x, t) = &t13 - 16x12 + 16A:11 - 16x10 + 16*9 - 16x8 + 16x7 - 8tx6

+ (16r - 16)JC5 - (2Qf - 24)*4 + (24/ - 32)x3 - (27/ - 38)x2

+ (30f - 44)JC + 2t2 - 23/ + 30

= 2/2 - /(&c6 - 16JC5 + 2(k4 - 24JC3 + 27x2 - 30J: + 23) + 8x13 - 16x12 + 16^"

- 16x10 + 16A:9 - 16JC8 + 16A;7 - 16x5 + 24x4 - 32x3 + 38*2 - 44x + 30.
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As the coefficients of t2,t,t° have the highest common factor 1, f(x,t) has no factors
depending only on x. Moreover its discriminant with respect to t is not a perfect square
and f(x, t) is thus irreducible in x, t. By virtue of Hilbert's irreducibility theorem ([4], cf.
also [6], p. 179) there exist infinitely many integers t for which f(x, t) is irreducible. The
identity

f(x, t)f(-x, t) = -64A:26 - (32f3 + 88f2 - 608r + 608)*6

- (80f3 - 305f2 + 324f - 68)x4

- (108t3 - 494t2 + 728r - 344)x2 + (2t2 - lit + 30)2

provides us with infinitely many examples which show that

K(5) s 14.

(iv) m = 6.
To prove K(6) s 16, we use another polynomial defined by

f(x, t) = (575 - 2t)x15 + (2t3 - 444t2 + 30 032/ - 582 402)x14

+ (t3 - 222t2 + 15 016f - 291 070)JC13 + (-2t2 + 304f - 7708)*12

+ {-t2 + 152t - 3812)JC" + (4/ - 28)*'° + 2tx9 + 74A:8

+ 42x7 + 2(k6 + 12JC5 + 6x* + 4x3 + 2x2 + 2x + 1

- (2x15 - 30 032JC
 M - 15 016x13 - 304A:

 12 - 152*'' - 4x10 - 2x9)t

+ 575JC15 - 582 402x14 - 291 070A-13 - 7708A:12 - 3812A:11

- 28JC10 + 74A-8 + 42A-7 + 20A:6 + 12A:5 + 6A:4 + 4A:3 + 2A:2 + 2A: + 1.

The polynomial/(A-, t) is irreducible as a polynomial in two variables. Indeed, it has
no factor depending only on x, since the coefficients of t3 and t° are relatively prime.
Therefore the only possible factorisation would be

f(x, t) = {a(x)t + b(x)}{c(x)t2 + d(x)t + e(x)}.

Hence
(i) a(A-)c(A-) = 2A-14 + A-13

(ii) a(x)d(x) + b(x)c(x) = -444A: 1 4 - 222A:13 - 2A:12 - A:11

(iii) a(x)e(x) + b(x)d(x) = -2A:15 + . . . + 2x9

(iv) b(x)e(x)=f(x,Q)
Let a,b,c,d,e be divisible exactly by xa,xp,xY,xd,xe respectively. By (i) a + y =

13, by (iv) f3 — e = 0, hence by (iii) either a s 9, 6 s 9 or a = 6. In the former case, the
degrees with respect to x of both factors of the first term on the left hand side of (ii) are
at least 9, hence the degree of the product is at least 18, a contradiction. In the latter case
by (ii) either cr +<5 = 2a-> 11, /3 + y = 1 3 - a> 11, hence 26 = 2a + 2(13 - a) > 33, a
contradiction, or a + 8 = /J + y; 2a = 13 — a, 3a = 13, a contradiction.

Since f(x,t) is irreducible as a polynomial in x and t, Hilbert's theorem gives the
existence of infinitely many integers such that f(x, t) is irreducible in x. We also note that
in the product f(x, t)f{-x,t) only the coefficients of A-30, A-28, JC26, A-24, A-22 and x° are not
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zero. The other coefficients are all 0, so we have only six non-zero terms in the product
and it follows that

K(6) > 16.

(v) For the general case of a polynomial with m non-zero terms, we establish
K{m) > 2m by an explicit example.

Let

f(x) = px2m~l + 2px2m~2 + 2px2m~3 + ...+ 2px3

+ p2x2 + 2p(p - l)x + 2(p - I ) 2 .

Then the only non-zero terms in the product f(x)f(—x) are the coefficients of x*m~2,
x2™-2, x2m~\ x2"1'6,. . . ,xA and JC°. Thus, the product f(x)f(-x) has only m non-zero
terms and if we take p as an odd prime, both f(x) and f(-x) are irreducible in view of
Einstenstein's criterion.

This proves that
K{m)>2m.

To prove K(m) > cxm
c*, we use a result of Verdenius [7] who has established that for

every positive integer n, there exists a polynomial/(AT) of the nth degree with real integer
coefficients such that f2(x) consists of less than 5(162n'og'6 —12) terms. For any such
polynomial f(x), we have the identity

V(PX) -Pf(x)}{f(px)+pf(x)} =f\px) -p2f2(x).

While the two factors on the left hand side have n and (n + 1) terms respectively, their
product has m terms, m<5(162nlog96-12). Also, if f(x) = a^" +. . . + an and p is a
prime number such that p-ra0 and p k an, both factors on the left hand side are
irreducible in view of Einsenstein's criterion.
It follows that K(m)>n.

Now

yields
m + 12\|OS69

)

or
n

where
d = 0-014...

c2 = l-22

Hence for every integer m, K{m) >cxm\
Thus, for each m, K(m) ^ 2m and also K(m) > cxm

c*, so we have

K(m) ^ max{2m, t^m0*

where cx = 0-014... and c2 = 1-22
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