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PRO-C COMPLETIONS OF CROSSED MODULES

by F. J. KORKES and T. PORTER
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Crossed modules occur in the theory of group presentations, in group cohomology and in providing algebraic
models for certain homotopy types. There are profinite analogues of each of these contexts. In this paper, we
examine the problem of extending the profinite completion functor on groups to one on crossed modules thus
providing a method for comparing the information contained in profinite and abstract crossed modules in
each of these situations.

1980 Mathematics subject classification (1985 Revision): 20E18, 2OFO5, 20L99.

Although it originated in algebraic topology, the theory of crossed modules has
recently become a useful tool in combinatorial and cohomological group theory. Almost
all of the algebraic results would seem to generalise, with suitable modification, to the
case where the groups involved are profinite groups and the homomorphism and action
are continuous. This raises the possibility of finding new methods for use in Galois
cohomology, in the general study of Galois groups and the related fundamental groups
of schemes.

In this paper we study one of the basic problems of this new area, namely the inter-
relationship between crossed modules and pro-C crossed modules for C a full class of
finite groups (see below). Explicitly we show that there is a pro-C completion functor
defined on the category of crossed modules, taking values in the category of pro-C
crossed modules. Having shown that such a pro-C completion exists, we ask the
obvious question: since a crossed module consists of two groups C and G and a group
homomorphism d between them (satisfying certain axioms), what is Jhe_relationship
between the pro-C completion of (C,G,d), which we will denote by (C,G,d), and the
pro-C completions of C, G as groups? Finally we study the pro-C completion of a free
crossed module and relate it to a free pro-C crossed module on associated data.
Applications are considered in [11] and [12].

Terminology

In this paper C will denote a class of finite groups which is closed under the
formation of subgroups, homomorphic images, finite products and which contains at
least one non-trivial group. Pro-C groups are profinite groups whose finite quotients are
in C.

The class C will be assumed to be full in the sense that C must also be closed under
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extension of groups. Of particular interest for future applications are the cases when C
is the class of finite p-groups or finite solvable groups.

1. Crossed modules and pro-C crossed modules

We recall the definition of a crossed module, (see for instance Brown and
Huebschmann [2] for a more detailed treatment), and introduce the pro-C analogue.

1.1. A crossed module (C,G,d) consists of groups C and G, a left action of G on C,
which will be written (g,c)-*gc for geG, ceC, and a group homomorphism d: C-*G
satisfying the following conditions:

(CM1) for all ceC, and geG

d(gc)=g(dc)g-1;

(CM2) for all cuc2eC

C2ClC2 = " Cj.

((CM2) is often called the Peiffer relation or Peiffer identity).

Examples. (1) For H a normal subgroup of G, the inclusion homomorphism
i:H-*G makes (H,G,i) into a crossed modules where G acts on H by conjugation.

(2) If M is a left G-module and 0:M->G is the zero homomorphism, then (Af, G,0) is
a crossed module.

Definition. Let (C, G, d), and (C, G', d') be crossed modules. A morphism

of crossed modules consists of group homomorphisms n:C-*C, n.G^G' such that

(i) d'n = nd and
(ii) //(9c) = "(9V(c) for all ceC,geG.

This notion of morphism easily gives us a category Cmod of crossed modules and
crossed module morphisms. There are special classes of morphisms that we will need
later, namely those in which G = G' and n is the identity morphism. For fixed G, such a
morphism (/j.,IdG): (C,G,d)->(C',G,d') will be called a morphism of crossed modules
over G. These give a subcategory Cmod/G of Cmod.

1.2. The pro-C analogues of these concepts are now easy to give.
A pro-C crossed module (C, G, d) is a crossed module in which C and G are pro-C

topological groups, d is a continuous homomorphism and the left G-action on C is a
continuous G-action. Closed normal subgroups give examples of such as do zero
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morphisms from pseudocompact left G-modules to G, (see Brumer [5] for the theory of
pseudocompact modules).

A morphism

of pro-C crossed modules is a morphism of the underlying crossed modules in which
both /i and n are continuous morphisms of pro-C groups. This gives us categories "Pro-
CCmod" and "Pro-CCmod/G" for G a pro-C group and also a functor

Ucmoi- Pro-CCmod -»Cmod

which forgets the topology.
Recall the corresponding situation for groups; the forgetful functor

UGrps: Pro-C.Grps-»Grps

(in the hopefully obvious notation) has a left adjoint, known as the pro-C completion
functor, which we will denote by a " ". This is defined as follows:

If G is a group, let il{G) be the directed set of normal finite index subgroups W of G
with G/WeC, then

Gs,Lim G/W

We will sometimes write WoHnG as indicating that We£l(G). This notation is useful in
as much as it is more suggestive of the actual concept involved, but can also become
somewhat cumbersome so we will use both notations.

We wish to see if the crossed module forgetful functor

C/Cmod: Pro-CCmod->Cmod

also has a left adjoint. The obvious approach using some idea of "normal" subcrossed
module of finite index is technically messy so we use an equivalent formulation
involving Loday's notion of cat'-groups.

2. Cat'-groups, their pro-C analogue and the completion process

The equivalence between crossed modules and internal categories in the category of
groups has been known for some time (see the comments on this in Brown-Spencer
[4]). A neat reformulation of the latter type of object was given by Loday in [13] (see
also Brown-Loday [3]). There one also finds the introduction of the convenient term
"cat'-group".

2.1. A cat1-group is a triple {G,s,t) consisting of a group G and endomorphisms s,
the source map, and t, the target map of G satisfying the following axioms:
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(i) st = t and ts = s,

(ii) [Kers, Ker(] = l.

Here, of course, [Ker s, Ker r] indicates the subgroup of G generated by the commuta-
tors [g,k]=ghg~l h~l with ge Kers, he Ker t.

There is an obvious notion of a morphism between cat'-groups: if (G,s,t), and
(G',s',tr) are cat'-groups, a morphism

4>:(G,s,t)-*(G',s',t')

is a group homomorphism </>:G->G' such that

and

This gives a category, which we will denote Cat1 (Grps), of cat1-groups and
morphisms between them.

2.2. In [13], Loday shows that there is an equivalence between the categories CMod
and Cat1 (Grps). This equivalence is constructed as follows:

Given d:C->B, a crossed module, we form the semi-direct product, G = C xB, using
the action of B on C. The structural maps s, t are given by

s(c,b) = (l,b)

and

for ceC, beB. This clearly satisfies the axioms for a cat1-group. On the other hand,
given a cat'-group (G,s,t), we set C = Kers, B = Ims, and d = t\C, the restriction of t to
C. The action of B on C is by conjugation within G. Again the axioms are easily
checked.

2.3. We next introduce the pro-C analogue of the above. A cat1 -pro-C-group is a
cat'-group (G,s,t) in which G is a pro-C group and s and t are continuous
endomorphisms of G. A morphism of cat'-pro-C groups is a morphism <p: {G,s,i)->
(G',s',tr) of the underlying cat'-groups such that <j> is a continuous morphism of pro-C
groups. This gives a category of cat'-pro-C groups that we will denote
Cat1 (Pro-C. Grps). There is a forgetful functor from Cat1 (Pro-C.Grps) to Cat^Grps)
which will be denoted by t/CGrPs-
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Lemma. There is an equivalence of categories

Pro-CCmod -^ Cat' (Pro-C. Grps)

compatible, via the forgetful functors, with the equivalence between Cmod and Cat1 (Grps),
i.e. the diagram

Pro-CCmod > Cat1 (Pro-C. Grps)

UCmod 'CGrps

Cmod > Cat'(Grps)

commutes.

Proof. In fact, if (C, B, d) is a pro-C crossed module then G = CxB is a pro-C group
and the endomorphisms s and t given earlier are continuous so the resulting (G,s,t) is a
cat'-pro-C group. Similarly, if (G,s,t) is a cat'-pro-C groups then (Kers, Ims,t|Kers) is a
pro-C crossed module.

This lemma will enable us to prove the existence of a left adjoint for UCmod:
Pro-CCmod-»Cmod by constructing one for C/CGrps: Cat1 (Pro-C.Grps)—•Cat1 (Grps).
This latter construction will need projective limits within Cat1 (Pro-C.Grps) and so we
will briefly look at their construction as it sheds more light on the pro-C completion
functor that will result from their use.

Given a projective system FiZ-^Cat^Pro-C.Grps), one notes that F is a projective
system of groups together with two endomorphisms of projective systems, s,t:F->F
satisfying st = t and ts = s, plus a commutator condition. We form Lim F by taking the
limit of this underlying system of pro-C groups together with the induced endomor-
phisms Lim s and Lim t. Writing the result as (F,s,l), we have merely to check the
commutator condition [Ker s, Ker f] = 1. However F can be realised as a subgroup of
the product n>e/f(0. ar |d f((x,))=(t(Ox.)> similarly for s, so as the commutator
subgroup [Kers(i'), Kert(i)] is trivial for each i in /, it is so for the limit as it can be
calculated "pointwise".

Proposition 2.4. A pro-C completion functor from Cat1 {Grps) to Cat1 (Pro-C.Grps)
exists, (i.e. the forgetful functor UCCrps has a left adjoint).

Proof. An exact sequence

of cat •-groups is an exact sequence
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of the underlying groups and continuous maps compatible with the source and target
maps. In this situation, we say that the cat'-group (H,s",t") is the quotient of (G,s,t) by
the normal sub-cat'-group (K,s\ t'). The latter is of finite index in (G,s,t) if H is finite.

Given any cat'-group (G,s, t) the set of its normal sub-cat'-groups (N,s',t') of finite
index with G/NeC is directed by inclusion so we can form an inverse system of finite
quotients of (G,s, t) and can take its limit within the category of cat'-pro-C groups. (As
usual one considers each finite cat'-group as a pro-C one having the discrete topology.)

Thus we define a functor

^^ :Cat'(Grps)->Cat'(Pro-C.Grps)

by

(G, 5, t) = Lim {finite C-quotients of (G,s,t)}

General considerations of category theory then imply that this functor is left adjoint
to the forgetful functor from Cat'(Pro-C.Grps) to Cat'(Grps).

Corollary 2.5. A pro-C completion functor from Cmod to Pro-CCmod exists (i.e. the
forgetful functor UCmod has a left adjoint)

Proof. In the diagram

Pro-CCmod —=—>• Cat1 (Pro-C. Grps)

Cmod —:z—* Cat'(Grps)

we have found a left adjoint to the (vertical) functor on the right. This induces via the
equivalence of categories a left adjoint for the left hand (vertical) functor.

Remark. One can attempt to use the functors defining the two equivalences to give
an "explicit" description of this pro-C completion functor, but in what follows we shall
merely use its existence and the universal property that it satisfies to compare it with
the pro-C completion of the individual groups involved.

Notation. We will denote by (C,G,d) or, less accurately, (C, 5,3), the pro-C
completion of the crossed module (C, G, d).

3. Relations between the pro-C completions of groups and of crossed modules

It is natural to want to compare this pro-C completion (C,G,%) with the pro-C
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completions C, G and d of the individual pieces of data involved. One may even wonder
why (C,G,d) is not itself always the same as (£, G,3). To start the study of this problem
we first look at G.

Proposition 3.1. For any crossed module (C,G,d), G^G.

Proof. This follows from an adjoint functor argument as follows: There is a forgetful
functor

R:CMod->Grps

given by R(C,G,d) = G and also an analogous one RpC: Pro-CCMod->Pro-CGrps.
These have left adjoints L and LpC defined by L(G) = (G,G,idQ) and similarly for LpC.

We have a diagram of left and right adjoints

Pro-CGrpsPro-CCMod

o ^ C M o d

he P
(

R

CMod L Grps

The right adjoint diagram commutes, so the left adjoint diagram commutes up to
isomorphism, i.e.

but better we have a sequence of isomorphisms: for a pro-C group H,

Pro-CGrps (Rpc(C,G,d),H).

£ Pro-CCMod((C,G,d), Lpc(H))
sCMod((C,G,<5),L/CModLpc(H))
^CMod((C,G,5), LUGrps(H)) by observation
sGrps(R(C,G,5),t/Grps(H))

p ( G r p s ) )
^Pro-CGrps(G,//)

as required; hence G = G, independently of what C is.

In order to study conditions which imply that C and C are isomorphic it is
convenient to introduce a condition that we will call the "cofinality condition".

Let (C, G, d) be a crossed module and write fiG(C) for the directed subset of Q(C), the
set of finite index normal subgroups of C, consisting of those Weil(C), C/WeC, which
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are G-invariant. We will say that (C,G,d) satisfies the cofinality condition if
cofinal in Q(C).

is

Proposition 3.2. If GeC, then any crossed G-module, {C,G,d), satisfies the cofinality
condition.

Proof. Given any We(l(C), let

w= o gw,
be the intersection of all translates of W under the G-action. Then W is G-invariant and
as G in C, W is of finite index C/W'eC. As W is contained in W, this completes the
proof.

Theorem 3.3. / / (C,G,d) satisfies the cofinality condition, then C = C.

Proof. Recall that one has an isomorphism

C/W.

As QG(C) is cofinal in Q(C), we have that this is isomorphic to ^im w*nG{nC/W, so
when considering an element of C we can represent it as a compatible family
(cwW)WeaaiC) of elements with cweC. Of course there is a natural map

01

G • G

coming from the adjointness. As G is pro-C, we have a factorisation via

C >C

and the various universality properties imply that it suffices to prove that (C,G,d) is a
pro-C crossed module in order to prove that C=C. Thus we need to show that the G-
action on C extends to a G-action on C such that d is G-equivariant and the Peiffer
relation holds.
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We need to define therefore a map

This we can attempt to do either topologically or using the identification of the category
Pro-C.Grps with the category pro(Fin.Grps) of projective systems in the category of
finite groups. For this we need for each WeilG(C) to pick a (K, W)eQ(G) xQG(C) such
that there is a map

and that these maps are compatible with the bonding maps of the systems {G/V} and
{C/W}.

We pick W' = W and V = StG(C/W). To see the reason for the latter choice, we note
that since W is G-equivariant, there is a G-action on C/W, a finite group. This gives a
homomorphism

G-Aut c (C/W)

giving V = StG(C/W) as its kernel and we note that K<ifinG, since Autc(C/W) is finite.
We define ipw by the obvious rule

Now assume W a W, W eQG(C), then we get a G-equivariant epimorphism

and since if veStG{C/W), "cc ' e l f we have V' = StG(C/W')c: V and an epimorphism
in qy':G/V'-*G/V. Thus we have a commutative diagram

G/Kx

qv'xPw [
G/Kx

C/W —

C/W' —

—> C/W
} Pw

—> C/W'
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i.e. {\l/w:WeQG(C)} is a map of projective systems. That it is an action is then clear.
To check the axioms we need an explicit description of d:C->G. Given U<3linG, there

is a composed homomorphism C-*G->G/U. Take N to be its kernel then since d is G-
equivariant and G/U is finite, it follows that N is in OG(C) and that Uc=StG(C/N).
These observations readily imply that 3, defined by

is not only well defined, but is G-equivariant.
The proof that the Peiffer relation holds now follows from the Peiffer identity in

(C, G, d) and the descriptions of d and the G-action.

Corollary 3.4. / / G is in C, and (C, G, d) a crossed module then (C, G, d) is a crossed
module, which is the pro-C completion of (C, G, d).

4. Pro-C completions of free crossed modules

Free crossed modules arise naturally in the study of presentations of groups (cf.
Brown-Huebschmann [2]); their existence is also a crucial factor in many of the
homological and cohomological applications of crossed modules (cf. Huebschmann
[10]). Elsewhere, [11], we have discussed more fully the existence and basic properties
of free pro-C crossed modules, here it will suffice to recall the definition of freeness in
both the abstract and the pro-C cases.

Definition 4.1. Let d:C-*B be a crossed B-module. Let S be a set and g:S-*B some
function. Then we say that d:C-*B is a free crossed module on the function g if the
following properties are satisfied:

(i) g lifts to a function f:S-*C so g = df

and

(ii) given any crossed module d':C'-*B and function v: S-+C such that d'v = df, there
is a unique morphism <£:(C, d)->(C',d') of crossed B-modules such that <pf=v.

4.2. The pro-C analogue of this concept is obtained by insisting that all crossed
modules be pro-C, all maps continuous and that one replaces the set S by a profinite
(i.e. compact Hausdorff totally disconnected) space. Explicitly we have:

Given a pro-C crossed module (M,G,d) and a continuous map v:X-*G where X is a
profinite space, we say (M,G,d) is a free pro-C crossed module on v if

(i) v factors as du with u:X-*M continuous

and
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(ii) given any pro-C crossed module (N, G, d') over G and a continuous function
h:X-*N satisfying d'h = du = v there is a unique morphism iff. (M,G,d)-*(N,G,d')
of pro-C crossed modules over G such that h = ipu.

Proposition 4.3. / / d:C-*G is a free crossed module on a function f:S-*G, then
(C,G,S) is the free pro-C crossed module on the profinite completion f:S-*G of f.

Remark. We should remark that / is obtained from the composite continuous map,

where S is given the discrete topology, via the factorisation

The profinite completion of a space can be obtained by taking the Boolean algebra of
clopen (i.e. closed-open) subsets of the space and then forming the maximal ideal space
of that Boolean algebra.

Proof of 4.3. We start by introducing some useful notation. We have already
introduced CMod/G and Pro-CCMod/G for the categories of crossed modules over G
and pro-C crossed modules over G respectively. We also introduce categories: Sets/G
and Spaces/G to denote the category of functions with codomain G (resp. continuous
functions with codomain G and domain a profinite space). There are forgetful functors
from CMod/G (resp. Pro-CCMod/G) to Sets/G (resp. Spaces/G) and the existence of
free crossed modules in the two instances correspond to the existence of left adjoints for
these functors; thus

CMod/G((C(S), G, dff), (D, G, d')) s Sets/G((S, G,f), U(D, G, ff))

where (C(S),G,df) is the free crossed module on (S,G,f) and

Pro-CCMod/,;(C(X), G,df), (E, G, &)) s Spaces/^*, G,/), U(E, G, 8'))

where (C(X),6,df) denotes the free pro-C module on (X,G,f).
Then we have

Pro-CCMod/<;((C(S)> G, dt), (D, G, d)) s CMod/fi((C(S), G, df), U^D, G, 3))

^Spaces/a((S,G,f),U{D,G,d))
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£ Pvo-CCMod/G((C(S), G, df), (D, G, d))

(Here we have used the base restriction functor l/̂ , along the homomorphism cf>:G->6.
This functor is given by pullback along $ (see [11] for more on this construction).)

Thus (C(S),G,df)^(C(S),G,df).

5. Remarks on the non-exactness of C-completions

If G is a group and N o G, it does not follow that Nco Gc, i.e. pro-C completion is
not exact. This causes difficulties in algebraic geometry. Friedlander [7] gives an
example in which the pro-L completion of a covering morphism does not yield an exact
sequence under 7rt as expected. The base of the covering is a surface and the
characteristic is 0, so otherwise the situation is extremely well behaved.

Anderson [1] points out that things can go wrong even for finite groups. Let S/(2,5)
be, as usual, the group of 2 x 2 matrices of determinant 1 over the field Z5. The centre
of S/(2,5) is of order 2. Completing at the prime 2 kills 5/(2,5) but leaves the centre
alone. Thus from

Z(S/(2,5))<iS/(2,5),

one obtains

Z(S/(2,5)H{1}.

Considering this second example from the viewpoint of this article, we note that as
S/(2,5) is finite, the 2-completion of any normal pair A/<S/(2,5) should be a pro-2
crossed module (by 3.2) and of course since Z(S/(2,5)) is cyclic of order 2, this is indeed
so.

Friedlander's example is somewhat deeper. One expects fibrations to yield crossed
modules under nt at least in topological cases, cf. [13]. Thus the fact that on completing
away from the prime 2, a fibration sequence associated with a covering should yield a
crossed module in ny and not a normal inclusion should not be cause for surprise.
Friedlander's results from [6] may perhaps need considering from this viewpoint.

A similar phenomenon occurs in the theory of group presentations. For abstract
groups, one knows that for any one relator group, G, in which the relator is not a
proper power, one has that cd G = 2. However for pro-p groups, Gildenhuys [8] has
given an example of a pro-p presentation with two generators and one relation which is
not a proper power and yet is such that the group thus presented has infinite
cohomological dimension. This in crossed module terms can be explained as follows.
The free crossed module

of Gildenhuy's presentation has d an inclusion. If we pro-p complete this crossed
module, we get the corresponding construction in pro-p and the map in this free pro-p
crossed module is no longer an inclusion, it has a kernel cyclic £p(G)-module with a
periodic resolution (see [12] for a detailed treatment of this).
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