ON THE η FUNCTION OF BROWN AND PEARGY AND THE NUMERICAL FUNCTION OF AN OPERATOR

NORBERTO SALINAS

1. Introduction. Throughout this paper \mathfrak{S} will denote an infinite dimensional, separable complex Hilbert space, and \mathfrak{S} will denote the unit sphere of \mathfrak{F} (i.e. $\mathfrak{S}=\{x \in \mathfrak{F}:\|x\|=1\}$). Also $\mathfrak{R}(\mathfrak{W})$ will represent the algebra of all bounded linear operators on \mathfrak{F}, and Ω will represent the ideal of all compact operators on \mathfrak{S}. Furthermore \mathfrak{P} will denote the set of all (orthogonal) projections on \mathfrak{S} and \mathfrak{B}_{f} will denote the sublattice of \mathfrak{P} consisting of all finite rank projections. In most of the cases (especially when limits are involved) \mathfrak{B}_{f} will be regarded as a directed set with the usual order relation inherited from \mathfrak{P}.

Brown and Pearcy in [1] define the non-negative function η on $\mathfrak{R}(\mathfrak{F})$ by

$$
\begin{equation*}
\eta(T)=\inf _{P \in \mathfrak{B},} \sup _{x \in \subseteq} \sup _{(1-P) \Phi}\|T x-(T x, x) x\| . \tag{1.1}
\end{equation*}
$$

They showed [1, Theorem 1] that $\eta(T)=0$ if and only if T can be written as $T=\lambda+K$ where $K \in \Omega$ and $\lambda \in \mathbf{C}$ (as usual, \mathbf{C} denotes the complex field). Following the notation of [3], we denote by (T) the set

$$
(T)=\{K+\lambda: K \in \Omega, \lambda \in \mathbf{C}\}
$$

and we denote the complement of (T) in $\Omega(\mathfrak{S})$ by (F) [1]. Our first task in this paper (§2) is to study some of the properties enjoyed by the function η. In particular we prove (§ 2, Theorem 3) that $\eta(T)=\eta\left(T^{*}\right)$ for every $T \in \mathfrak{Z}(\mathfrak{S})$, which was conjectured by Brown and Pearcy. In § 3 we define the essential numerical range $W_{e}(T)$ of an operator T, and we show (Lemma 3.3) that our definition is equivalent to the one given by Stampfli and Williams in [5]. Also we prove that the diameter $d_{e}(T)$ of $W_{e}(T)$ is zero if and only if $T \in(T)$ (Theorem 4), which constitutes another characterization of the class (T). Finally, in § 4, we introduce the numerical function, ϕ_{T}, of the operator T. This function is defined by the formula

$$
\phi_{T}(x)=(T x, x) /\|x\|^{2}, \quad 0 \neq x \in \mathfrak{S} .
$$

The function ϕ_{T} seems to have an important relation with the operator T; for example, the range of ϕ_{T} is the numerical range $W(T)$ of T.

[^0]Furthermore, let $w^{(1)}(T)$ (the differential numerical radius of T) be defined by

$$
w^{(1)}(T)=\sup _{z \in \mathscr{S}}\left\|D \phi_{T}(z)\right\|
$$

where $D \phi_{T}(z)$ denotes the differential of the function ϕ_{T} at z. Also, set

$$
w_{e}^{(1)}(T)=\inf _{P \in \mathfrak{P}_{f}} w^{(1)}([1-P] T[1-P])
$$

Using some standard techniques provided by the differential calculus on Banach spaces [2, Chapter VIII] we prove in Theorem 6 that

$$
(1 / 2) d_{e}(T) \leqq w_{e}^{(1)}(T) \leqq 2 \eta(T)
$$

This inequality (in conjunction with Theorem 4) produces an alternative proof of the above mentioned theorem of Brown and Pearcy [1, Theorem 1] and gives a sharper estimate for the diameter of the essential numerical range of T, than that given by [1, Lemma 2.2].

In the last part of Section 4 we make some remarks concerning the higher order differentials of the numerical function ϕ_{T}.
2. Properties of the η function. We begin with some preliminary notation and remarks. Since the function $T z-(T z, z) z$ plays an important role in the definition (1.1) of the function η, in what follows we adopt the notation

$$
E_{T}(z)=T z-(T z, z) z
$$

The following are some of the properties enjoyed by the function $E_{T}(z)$, for any $z \in \mathbb{S}$.
(i) $E_{T+\lambda}(z)=E_{T}(z), \quad \lambda \in \mathbf{C}$,
(ii) $E_{T}(z)=0$ if and only if z is an eigenvector of T,
(iii) $\left\|E_{T}(z)\right\| \leqq\|T z\|$.

Given any bounded function $F: \mathfrak{S} \rightarrow \mathfrak{F}$ and any $Q \in \mathfrak{F}$, we will write $\|F\|_{Q}=\sup _{x \in \mathscr{S} \cap Q \mathfrak{S}}\|F(x)\|$, and simply $\|F\|$ if $Q=1 .{ }^{1}$ Then formula (1.1) takes the form

$$
\eta(T)=\inf _{(1-Q) \in \mathfrak{P}_{f}}\left\|E_{T}\right\|_{Q}=\lim _{(1-Q) \in \mathfrak{P}_{f}}\left\|E_{T}\right\|_{Q}
$$

Let $\pi: \mathfrak{R}(\mathfrak{Y}) \rightarrow \mathfrak{R}(\mathfrak{F}) / \mathfrak{R}$ be the canonical projection on to the (Calkin) quotient algebra, and recall that

$$
\|\pi(T)\|=\inf _{K \in \Omega}\|T+K\|
$$

The following lemma gives another characterization of $\|\pi(T)\|$, which will be used without explicit mention.

[^1]Lemma 2.1. If $T \in \mathfrak{R}(\mathfrak{S})$, then

$$
\begin{align*}
\|\pi(T)\| & =\inf _{P \in \mathfrak{P}_{f}}\|(1-P) T(1-P)\| \tag{2.1}\\
& =\lim _{P \in \mathfrak{B}_{f}}\|T\|_{(1-P)} .
\end{align*}
$$

Proof. Let

$$
\nu(T)=\lim _{P \in \mathfrak{P}_{f}}\|T\|_{(1-P)}=\inf _{P \in \mathfrak{P}_{f}}\|T(1-P)\| .
$$

It is clear that

$$
\|\pi(T)\| \leqq \inf _{P \in \mathfrak{R}_{f}}\|(1-P) T(1-P)\| \leqq \nu(T) ;
$$

thus it remains to prove that $\nu(T) \leqq\|\pi(T)\|$. For any $K \in \Omega$, there exists an increasing sequence $P_{n} \in \mathfrak{P}_{f}$ such that $\lim _{n \rightarrow \infty}\left\|K\left(1-P_{n}\right)\right\|=0$. Therefore

$$
\nu(K)=\lim _{P \in \mathfrak{B}_{f}}\|K(1-P)\| \leqq \lim _{n \rightarrow \infty}\left\|K\left(1-P_{n}\right)\right\|=0
$$

 $K \in \Omega$. Thus $\nu(T) \leqq\|T+K\|, K \in \Omega$ and hence $\nu(T) \leqq\|\pi(T)\|$.

Now, we list some elementary properties of the function η,
(i) η is a seminorm on $\mathfrak{R}(\mathfrak{S})$,
(ii) $\eta(T+\lambda)=\eta(T), \lambda \in \mathbf{C}$,
(iii) $\eta(T) \leqq\|\pi(T)\|$,
and hence

$$
\begin{gather*}
\eta(\lambda+K)=0 \text { for all } \lambda \in \mathbf{C}, K \in \Omega \tag{2.2}\\
\eta(T+K)=\eta(T) \text { for all } K \in \Omega \tag{2.3}
\end{gather*}
$$

We remark that nothing like a power inequality is true for the function η. For example, if $\eta\left(T^{2}\right) \leqq C \eta^{2}(T)$ were valid for some constant $C>0$, and every $T \in \mathbb{R}(\mathfrak{S})$, then for every $\lambda \in \mathbf{C}$, we would have that $\eta\left(T^{2}+2 \lambda T\right)=$ $\eta\left[(T+\lambda)^{2}\right] \leqq C \eta^{2}(T+\lambda)=C \eta^{2}(T)$, which is false if we take any $T \in \mathfrak{R}(\mathfrak{S})$ with $\eta(T)>0$ and λ sufficiently large (the same reasoning applies to higher powers). The following result is a geometric lemma, which we will need in the sequel.

Lemma 2.2. Let \mathfrak{M} be a (closed) subspace of $\mathfrak{S c}$. Then
(a) if U is a unitary operator, $U(\mathfrak{M}) \perp=U(\mathfrak{M} \perp)$,
(b) if H is a self-adjoint invertible operator, then $H(\mathfrak{M}) \perp=H^{-1}(\mathfrak{M} \perp)$,
(c) if $S \in \mathfrak{R}(\mathfrak{L})$ is invertible and $S=U H$ is its polar decomposition, then $S(\mathfrak{M}) \perp=U\left(H^{-1}(\mathfrak{M} \perp)\right)$.

Theorem 1. If $T \in \mathbb{R}(\mathfrak{S})$ is invertible, then

$$
\begin{equation*}
\eta(T) /\|\pi(T)\|^{2} \leqq \eta\left(T^{-1}\right)\left\|\pi\left(T^{-1}\right)\right\|^{2} \eta(T) \tag{2.4}
\end{equation*}
$$

Proof. If $x \in \mathbb{S}$ and $y=T x /\|T x\|$, we have

$$
\begin{align*}
\left\|E_{T}(x)\right\|^{2} & =\|T x\|^{2}-|(T x, x)|^{2} \\
& =\|T x\|^{4}\left(1 /\|T x\|^{2}-|(T x, x)|^{2} /\|T x\|^{4}\right) \tag{2.5}\\
& =\|T x\|^{4}\left(\left\|T^{-1} y\right\|^{2}-\left|\left(T^{-1} y, y\right)\right|^{2}\right) .
\end{align*}
$$

On the other hand, given $Q \in \mathfrak{P}$ with $(1-Q) \in \mathfrak{P}_{f}$, by hypothesis we see that $x \in \mathbb{S} \cap Q \mathfrak{F}$ if and only if $y=T x /\|T x\| \in \mathbb{S} \cap T Q \mathfrak{S}$. Therefore, using formula (2.5) we obtain

$$
\begin{equation*}
\left\|E_{T}\right\|_{Q} \leqq\|T\| Q_{Q}^{2}\left\|E_{T}\right\|_{Q_{T}} \tag{2.6}
\end{equation*}
$$

where Q_{T} is the projection onto the subspace $T Q \mathfrak{S}$. Employing Lemma 2.2, we see that since T is invertible, the mapping $Q \rightarrow Q_{T}$ establishes a lattice preserving correspondence in \mathfrak{P}, and also that $(1-Q) \mathfrak{Y}$ is finite dimensional if and only if $\left(1-Q_{T}\right) \mathfrak{S}$ is so. Therefore, taking limits on both sides of (2.6) we conclude that the first inequality of (2.4) is valid. Interchanging T and T^{-1} we see also that the second inequality is valid.

We next state without proof the following characterization of the function η given by Douglas and Pearcy in [3, Theorem 1].

Lemma 2.3. For every $T \in \mathbb{R}(\mathfrak{F})$,

$$
\eta(T)=\lim _{P \in \mathfrak{P}_{f}}\|P T(1-P)\| .
$$

The following lemma tells us that the η function is invariant under unitary equivalences.

Lemma 2.4. For every unitary $U \in \mathfrak{R}(\mathfrak{S})$ and every $T \in \mathfrak{R}(\mathfrak{y})$,

$$
\begin{equation*}
\eta\left(U T U^{*}\right)=\eta(T) . \tag{2.7}
\end{equation*}
$$

Proof. Let $P \in \mathfrak{P}_{f}$. Then

$$
\left\|P U T U^{*}(1-P)\right\|=\left\|\left(U^{*} P U\right) T\left[1-\left(U^{*} P U\right)\right]\right\|
$$

Set $P_{U}=U^{*} P U$. Then the correspondence $P \rightarrow P_{U}$ is bijective and lattice preserving in \mathfrak{P}_{f} (by Lemma 2.2), and therefore using Lemma 2.3, we have

$$
\begin{aligned}
\eta\left(U T U^{*}\right) & =\lim _{P \in \mathfrak{B}_{f}}\left\|P_{U} T\left(1-P_{U}\right)\right\| \\
& =\lim _{P \in \mathfrak{B}_{f}}\|P T(1-P)\| \\
& =\eta(T) .
\end{aligned}
$$

Hence (2.7) is valid.
Theorem 2. If $T \in \mathbb{R}(\mathfrak{S})$ and S is an invertible operator, then

$$
\begin{equation*}
\eta(T) /\left(\left\|S^{-1}\right\|\|\pi(S)\|\right) \leqq \eta\left(S T S^{-1}\right) \leqq\|S\|\left\|\pi\left(S^{-1}\right)\right\| \eta(T) . \tag{2.8}
\end{equation*}
$$

Proof. Let $S=U H$ be the polar decomposition of S. Since S is invertible, U is unitary and H is invertible. From Lemma 2.4, we obtain

$$
\eta\left(S T S^{-1}\right)=\eta\left(U H T H^{-1} U^{*}\right)=\eta\left(H T H^{-1}\right) .
$$

Also it is easy to see that

$$
\begin{gathered}
\|\pi(S)\|=\|\pi(H)\|, \quad\left\|\pi\left(S^{-1}\right)\right\|=\left\|\pi\left(H^{-1}\right)\right\|, \\
\|S\|=\|H\|, \quad\left\|S^{-1}\right\|=\left\|H^{-1}\right\| .
\end{gathered}
$$

Thus it remains to prove (2.8) in the case that S is replaced by an invertible self-adjoint operator H. Let $P \in \mathfrak{ß}_{f}, Q=1-P$. Then

Now, let P_{H}, Q_{H} be the projections onto the subspaces $H P \mathfrak{S}$ and $H^{-1} Q \mathfrak{Y}$ respectively. From Lemma 2.2, we have $P_{H}+Q_{H}=1$ and $P_{H} \in \mathfrak{P}_{f}$. From (2.9) we deduce that

$$
\begin{align*}
\left\|P H T H^{-1} Q\right\| & \leqq\|H\|\left\|H^{-1}\right\|_{Q}^{\sup _{\substack{x \in \subseteq \\
y \in \Theta) \\
\cap P_{H} \\
\mathscr{Y}}}|(T x, y)|} \tag{2.10}\\
& =\|H\|\left\|H^{-1}\right\|_{Q}\left\|P_{H} T Q_{H}\right\| .
\end{align*}
$$

Now using Lemma 2.2, as in Lemma 2.4 and Theorem 1, we observe that the mapping $P \rightarrow P_{H}$ sets up a lattice preserving bijective correspondence in \mathfrak{P}_{f}, and then taking lim sup in (2.10) we get

$$
\begin{aligned}
\eta\left(H T H^{-1}\right) & =\underset{\substack{P \in \mathfrak{B}_{f} \\
Q=1-P}}{ }\left\|P H T H^{-1} Q\right\| \\
& \leqq\|H\| \lim _{P \in \mathfrak{R}_{f}}\left\|H^{-1}\right\|\left\|_{(1-P)} \lim _{\substack{P \in \mathcal{B}_{f} \\
Q=1-P}}\right\| P_{H} T Q_{H} \| \\
& =\|H\|\left\|\pi\left(H^{-1}\right)\right\| \eta(T)
\end{aligned}
$$

This proves the second inequality of (2.8), the first one follows in a similar way.
Theorem 3. For every $T \in \mathfrak{R}(\mathfrak{F})$,

$$
\begin{equation*}
\eta(T)=\eta\left(T^{*}\right) . \tag{2.11}
\end{equation*}
$$

Proof. If \mathfrak{Q} is any subset of \mathfrak{S} we denote by [\mathfrak{Q}] the projection onto the subspace generated by $\mathfrak{\Omega}$. From Lemma 2.3 , for any $\delta>0$ there exists $P \in \mathfrak{P}_{f}$ such that, if $P^{\prime} \in \mathfrak{B}_{f}, P \leqq P^{\prime}$, then $\left\|P^{\prime} T^{*}\left(1-P^{\prime}\right)\right\| \leqq \eta\left(T^{*}\right)+\delta$. Since $\left[T^{*} P \mathfrak{S}\right] \in \mathfrak{P}_{f}$, setting $P_{1}=P \vee\left[T^{*} P \mathfrak{W}\right]$ we see that $P_{1} \in \mathfrak{P}_{f}$. Given $\epsilon>0$,
by definition of the function η there exists $x \in \mathbb{S} \cap\left(1-P_{1}\right) \mathfrak{G}$ such that $\eta(T)-\epsilon<\left\|E_{T}(x)\right\|$. Set $P_{2}=P \vee[x]$. Therefore, $P \leqq P_{2}$ and $P_{2} \in \mathfrak{P}_{f}$. Now we observe that $\left[E_{T}(x)\right]$ is orthogonal to P_{2}. In fact, $\left[E_{T}(x)\right]$ is orthogonal to $[x]$; on the other hand $\left[E_{T}(x)\right]$ is orthogonal to P, for, $y \in P \mathfrak{F}$ implies $\left(E_{T}(x), y\right)=(T x, y)=\left(x, T^{*} y\right)=0$ (because $\left.x \in\left(1-P_{1}\right) \mathscr{y}\right)$. By the above remark, $E_{T}(x) \in\left(1-P_{2}\right) \mathfrak{G}$, and then we have

$$
\begin{aligned}
\eta(T)-\epsilon & <\left\|E_{T}(x)\right\|=\left\|\left(1-P_{2}\right) E_{T}(x)\right\| \\
& =\left\|\left(1-P_{2}\right) E_{T}\left(P_{2} x\right)\right\|=\left\|\left(1-P_{2}\right) T P_{2} x\right\| \\
& \leqq\left\|\left(1-P_{2}\right) T P_{2}\right\|=\left\|P_{2} T^{*}\left(1-P_{2}\right)\right\| \\
& <\eta\left(T^{*}\right)+\delta
\end{aligned}
$$

Since ϵ and δ are arbitrary positive numbers we conclude that $\eta(T) \leqq \eta\left(T^{*}\right)$. Interchanging T and T^{*} in the last inequality we obtain (2.11).

Remark. The sets (T) and (F) are invariant under similarities, and under the maps $S \rightarrow S^{*}$ and $S \rightarrow S^{-1}$ (from [1, Theorem 1]). We observe that Theorems 1,2 and 3 show such invariant properties in a more precise fashion. On the other hand, (T) (and hence (F)) is not invariant under quasi-similarities. ${ }^{2}$ In fact Hoover showed [4, Chapter 1, §4] that there exists a compact weighted shift which is quasi-similar to a noncompact one. Thus we cannot expect that an analogous property to that of (2.8) holds for quasi-similar operators.
3. Some other seminorms on $\mathfrak{R}(\mathfrak{F}) / \Omega$. Let $T \in \mathbb{R}(\mathfrak{F})$. As usual, $W(T)$ will denote the numerical range of T, i.e.

$$
W(T)=\{(T x, x), \quad x \in \mathbb{S}\}
$$

Also, $w(T)$ will represent the numerical radius of T, i.e.

$$
w(T)=\sup _{x \in \mathscr{E}}|(T x, x)|,
$$

and $d(T)$ will denote the numerical diameter of T, i.e.

$$
d(T)=\sup _{x, y \in \mathscr{\subseteq}}|(T x, x)-(T y, y)| .
$$

In what follows we adopt the following notation: if $T \in \mathbb{R}(\mathfrak{S}), Q \in \mathfrak{B}$ then by T_{Q} we mean the restriction of the operator $Q T Q$ to the subspace $Q \mathfrak{L}$. Thus

$$
\left\|T_{Q}\right\|=\|Q T\|_{Q}
$$

[^2]Now, we define the following two seminorms

$$
\begin{aligned}
w_{e}(T) & =\inf _{P \in \mathfrak{B}_{f}} w\left(T_{(1-P)}\right) \\
= & \inf _{P \in \mathfrak{B}_{f}} \sup _{x \in \subseteq_{\cap(1-P) \mathfrak{G}}}|(T x, x)| \\
= & \lim _{P \in \mathfrak{P}_{f}} w([1-P] T[1-P]) ; \\
d_{e}(T)= & \inf _{P \in \mathfrak{B}_{f}} d\left(T_{(1-P)}\right) \\
= & \inf _{P \in \mathfrak{Y}_{f}} \sup _{x, y \in \Theta_{\cap(1-P) \mathfrak{g}}}|(T x, x)-(T y, y)| \\
= & \lim _{P \in \mathfrak{P}_{f}} d\left(T_{(1-P)}\right) .
\end{aligned}
$$

It is easy to verify that the following properties are valid for any $T \in \mathfrak{R}(\mathfrak{S})$.
$\left(a_{1}\right) w_{e}(T)=w_{e}\left(T^{*}\right)$;
$\left(a_{2}\right)(1 / 2)\|\pi(T)\| \leqq w_{e}(T) \leqq\|\pi(T)\| ;$
and hence
$\left(a_{3}\right) w_{e}(K)=0$ if and only if $K \in \Omega$;
$\left(a_{4}\right) w_{e}\left(T^{n}\right) \leqq\left[w_{e}(T)\right]^{n}$;
$\left(a_{5}\right)$ If $w_{e}(1-P)<1$, then $\pi(T)$ is invertible (in $\left.\mathfrak{R}(\mathfrak{S}) / \Omega\right)$. Actually, more is true, i.e. $\operatorname{dim}[$ null $T]=\operatorname{dim}\left[\right.$ null $\left.T^{*}\right]$;
$\left(b_{1}\right) d_{e}(T)=d_{e}\left(T^{*}\right)$;
(b_{2}) $d_{e}(T+\lambda)=d_{e}(T), \lambda \in \mathbf{C}$;
$\left(b_{3}\right) d_{e}(T) \leqq 2 w_{e}(T)$;
and hence
$\left(b_{4}\right) d_{e}(\lambda+K)=0, \lambda \in \mathbf{C}, K \in \Omega$.
Lemma 3.1. If $T \in \mathfrak{R}(\mathfrak{S})$, then
(i) $w_{e}(T)=\inf _{K \in \Omega} w(T+K)$;
(ii) $d_{e}(T)=\inf _{K \in \Omega} d(T+K)$.

Proof. From (a_{3}) and (b_{3}), it follows that

$$
w_{e}(T+K)=w_{e}(T), d_{e}(T+K)=d_{e}(T), K \in \Omega .
$$

Therefore, $w_{e}(T) \leqq \inf _{K \in \mathfrak{R}} w(T+K), d_{e}(T) \leqq \inf _{K \in \Omega} d(T+K)$. Thus it remains to prove the reverse inequalities. But

$$
w_{e}(T)=\inf _{P \in \mathfrak{B}_{f}} w([1-P] T[1-P]) \geqq \inf _{K \in \Omega} w(T+K),
$$

and (i) follows. On the other hand, let $Q \in \mathfrak{P}$ be such that $(1-Q) \in \mathfrak{B}_{f}$, and let $\lambda_{0} \in W\left(T_{Q}\right)=\{(T x, x): x \in \mathbb{S} \cap Q \mathfrak{S}\}$. Then,

$$
\begin{equation*}
W\left(Q T Q+\lambda_{0}(1-Q)\right)=W\left(T_{Q}\right) \tag{3.1}
\end{equation*}
$$

Therefore, $d\left(T_{Q}\right)=d\left(Q T Q+\lambda_{0}(1-Q)\right) \geqq \inf _{K \in \Omega} d(T+K)$, and hence

$$
d_{e}(T) \geqq \inf _{K \in \Omega} d(T+K)
$$

which completes the proof of (ii).
Next, we introduce a set valued function defined on $\mathfrak{Z}(\mathfrak{S})$. For $T \in \mathfrak{Z}(\mathfrak{S})$,

$$
W_{e}(T)=\bigcap_{P \in \mathcal{B},} \overline{W\left(T_{(1-P)}\right)}
$$

Since $\left\{\overline{W\left(T_{(1-P)}\right)}\right\}_{P \in \mathbb{B} f}$ constitutes a filter base of nonempty compact, convex sets, $W_{e}(T)$ is a nonempty compact, convex set.

Lemma 3.2. If $T \in \mathfrak{R}(\mathfrak{H})$, then
(i) $w_{e}(T)=\sup _{\lambda \in W_{e}(T)}|\lambda|$, and
(ii) $d_{e}(T)=\sup _{\lambda, \mu \in W_{e}(T)}|\lambda-\mu|$.

Proof. It is clear that $w_{e}(T) \leqq \sup _{\lambda \in W_{e(T)}}|\lambda|, d_{e}(T) \leqq \sup _{\lambda \in W_{e(T)}}|\lambda-\mu|$. On the other hand, let C be the boundary of any disk whose interior contains $W_{e}(T)$. Also, let δ be the diameter of C, and $\rho=\sup _{\lambda \in C}|\lambda|$. Since $W_{e}(T) \cap C=\emptyset$, there exists $P \in \mathfrak{B}_{f}$ such that $\overline{W\left(T_{(1-P)}\right)} \cap C=\emptyset$. Therefore $w_{e}(T)<\rho$ and $d_{e}(T)<\delta$. These imply that $w_{e}(T) \leqq \sup _{\lambda, \mu \in W_{e}(T)}|\lambda|$, and $d_{e}(T) \leqq \sup _{\lambda, \mu \in W_{e}(T)}|\lambda-\mu|$.

Lemma 3.3. If $T \in \mathbb{R}(\mathfrak{S})$, then

$$
W_{e}(T)=\bigcap_{K \in \Omega} \overline{W(T+K)}
$$

Proof. From (3.1), we see that

$$
\bigcap_{K \in \Omega} \overline{W(T+K)} \subset W_{e}(T)
$$

To prove the other inclusion, let $K \in \Omega$ and $\epsilon>0$. It follows that there exists $P \in \mathfrak{ß}_{f}$ such that

$$
\left\|K_{(1-P)}\right\|=\|(1-P) K(1-P)\| \leqq\|K(1-P)\|<\epsilon .
$$

Therefore, $w\left(K_{(1-P)}\right)<\epsilon$ and hence

$$
\begin{aligned}
W_{e}(T)=W_{e}(T+K-K) & \subset W\left([T+K]_{(1-P)}\right)+W\left(K_{(1-P)}\right) \\
& \subset W(T+K)+\{\lambda:|\lambda|<\epsilon\} \cdot{ }^{3}
\end{aligned}
$$

Since ϵ is arbitrary, $W_{e}(T) \subset W(T+K)$ and hence

$$
W_{e}(T) \subset \bigcap_{K \in \Omega} \overline{W(T+K)}
$$

which completes the proof.

[^3]In view of the above Lemma and according to [5, §3], the set $W_{e}(T)$ will be called the essential numerical range of the operator T. We saw in Lemma 3.2 that $w_{e}(T)$ is the radius of $W_{e}(T)$ and that $d_{e}(T)$ is its diameter. Furthermore, if $\sigma(\pi(T)$) denotes the spectrum of $\pi(T)$ (in $\Omega(\mathfrak{L}) / \Omega$), then

$$
\sigma(\pi(T)) \subset \overline{W(T+K)}
$$

for every $K \in \Omega$ and therefore, $\sigma(\pi(T)) \subset W_{e}(T)$. Also, it can be proved (using the relation $W_{e}(T+S) \subset W_{e}(T)+W_{e}(S)$, which is valid for every $T, S \in \mathfrak{R}(\mathfrak{F}))$ that $W_{e}(T)$ is a continuous set valued function of $\pi(T)$. More precisely, if $S, T \in \mathbb{R}(\mathfrak{S})$ then $\Delta\left(W_{e}(T), W_{e}(S)\right) \leqq\|\pi(T-S)\|$, where $\Delta(.,$.$) denotes the Hausdorff metric for compact subsets of the complex plane.$

Theorem 4. For $T \in \mathbb{R}(\mathfrak{I})$ we have

$$
d_{e}(T)=0 \text { if and only if } T \in(T) .
$$

Proof. If $T \in(T)$, it follows from $\left(b_{3}\right)$ that $d_{e}(T)=0$. Conversely, assume $d_{e}(T)=0$, then $W_{e}(T)=\{\lambda\}$, for some $\lambda \in \mathbf{C}$, and hence $W_{e}(T-\lambda)=\{0\}$. Therefore $w_{e}(T-\lambda)=0$, which, in conjunction with $\left(a_{3}\right)$, proves that $K=T-\lambda \in \Omega$, completing the proof of the theorem.

Remark. From 2.3 we see that

$$
\begin{equation*}
\eta(T) \leqq \inf _{K \in \Omega}\left\|E_{T+K}\right\| \tag{*}
\end{equation*}
$$

where, as before, $\left\|E_{T+K}\right\|=\sup _{\|x\|=1}\left\|E_{T+K}(x)\right\|$. According to Lemma 3.1 it is reasonable to raise the following question, the answer to which is still unknown to us. Is the reverse inequality of $\left({ }^{*}\right)$ valid?
4. Some estimates on the numerical function of an operator. Given an operator T on \mathfrak{S} the complex valued function ϕ_{T}, defined on $\mathfrak{S}-\{0\}$ by the formula

$$
\phi_{T}(x)=(T x, x) /\|x\|^{2}
$$

will be called the numerical function associated with T. The following are some of the properties enjoyed by ϕ_{T}.
(a) $W(T)=$ range of ϕ_{T},
(b) ϕ_{T} is a continuous function on $\mathfrak{S}-\{0\}$ (with the norm topology),
(c) ϕ_{T} is homogeneous of degree zero, i.e. $\phi_{T}(\alpha x)=\phi_{T}(x)$, for every $\alpha>0$.

Definition. Let \mathfrak{U} be an open subset of \mathfrak{S} and let g be a continuous realvalued function defined on \mathfrak{U}. We say that g is differentiable on $\mathfrak{U l}$ if for every $z \in \mathfrak{U}$, there exists a real linear functional, L_{z}, on \mathfrak{F}, such that

$$
\begin{equation*}
\lim _{\|y\| \rightarrow 0}\left\|g(z+y)-g(z)-L_{z} y\right\| /\|y\|=0 \tag{**}
\end{equation*}
$$

If such a real linear functional L_{z} exists, it is the only bounded real linear functional satisfying (${ }^{* *)}$, for each $z \in \mathfrak{U}$, and it is called the differential of g
at $z, D g(z)$. The value $D g(z)$ at $x \in \mathfrak{S}$ is denoted by $D g(z ; x)$. If f is a continuous complex valued function defined on \mathfrak{U}, i.e. $f=g+i h$, where g, h are continuous real-valued functions on \mathfrak{U}, we say that f is differentiable on \mathfrak{U} if g and h are differentiable on \mathfrak{U}. In this case $D f(z)$ is defined by $D f(z)=$ $D g(z)+i D h(z), z \in \mathfrak{U}$. We observe that $D f(z)$ can also be characterized by

$$
\begin{equation*}
\lim _{\|y\| \rightarrow 0}\|f(z+y)-f(z)-D f(z ; y)\| /\|y\|=0 \tag{4.1}
\end{equation*}
$$

where $D f(z ; y)=D g(z ; y)+i D h(z ; y)$.
We will use the next two lemmas to prove that the numerical function ϕ_{T} of $T \in \mathfrak{R}(\mathfrak{S})$ is differentiable on $\mathfrak{S}-\{0\}$ and to compute $D \phi_{T}(z)$ for every $0 \neq z \in \mathfrak{5}$.

Lemma 4.1. Let \mathfrak{U} be an open subset of \mathfrak{S} and let the functions $f: \mathfrak{U} \rightarrow \mathbf{C}$, $g: \mathfrak{U} \rightarrow \mathbf{C}$ be differentiable, such that $g(x) \neq 0$ for all $x \in \mathfrak{U}$. Then the function f / g is differentiable on \mathfrak{U}, and

$$
\begin{equation*}
D(f / g)(z ; x)=[g(z) D f(z ; x)-f(z) D g(z ; x)] / g^{2}(z) \tag{4.2}
\end{equation*}
$$

for all $z \in \mathfrak{U}, x \in \mathfrak{U}$.
Lemma 4.2. For any $T \in \mathbb{R}(\mathfrak{y})$, let $\psi_{T}: \mathfrak{S} \rightarrow \mathbf{C}$ be the function defined by

$$
\begin{equation*}
\psi_{T}(x)=(T x, x) \tag{4.3}
\end{equation*}
$$

Then ψ_{T} is differentiable on $\mathfrak{5}$ and

$$
\begin{equation*}
D \psi_{T}(z ; x)=(T z, x)+\left(x, T^{*} z\right), z, x \in \mathscr{S} . \tag{4.4}
\end{equation*}
$$

Proof. The statement follows from (4.1) and the following identity

$$
(T(z+y), z+y)-(T z, z)-\left[(T z, y)+\left(y, T^{*} z\right)\right]=(T y, y)
$$

valid for $T \in \mathbb{R}(\mathfrak{F}), y, z \in \mathfrak{S}$.
Theorem 5. For any $T \in \mathfrak{R}(\mathfrak{S})$ the numerical function ϕ_{T} is differentiable on $\mathfrak{S}-\{0\}$ and the value of its differential at $0 \neq z \in \mathfrak{S}, x \in \mathfrak{F}$ is given by

$$
\begin{equation*}
D \phi_{T}(z ; x)=\left[\left(E_{T}(z /\|z\|), x\right)+\left(x, E_{T^{*}}(z /\|z\|)\right)\right] /\|z\| . \tag{4.5}
\end{equation*}
$$

Proof. Using formula (4.3) we see that $\phi_{T}(x)=\psi_{T}(x) / \psi_{1}(x)$. Therefore from Lemma 4.1 and Lemma 4.2, ϕ_{T} is differentiable in $\mathfrak{S}-\{0\}$, and

$$
\begin{aligned}
D \phi_{T}(z ; x) & =D\left(\psi_{T} / \psi_{1}\right)(z ; x) \\
& =\left[\psi_{1}(z) D \psi_{T}(z ; x)-\psi_{T}(z) D \psi_{1}(z ; x)\right] / \psi_{1}{ }^{2}(z) \\
& =\left[(T z, x)+\left(x, T^{*} z\right)-\phi_{T}(z)(z, x)-\phi_{T}(z)(x, z)\right] /\|z\|^{2},
\end{aligned}
$$

from which (4.5) follows.
Corollary 4.3. For $T \in \mathbb{R}(\mathfrak{F}), D \phi_{T} z=0$ if and only if z is an eigenvector of both, T and T^{*}.

Proof. The statement is a consequence of (4.5) and the following fact. Let $z_{1}, z_{2} \in \mathfrak{S}$ such that $\left(z_{1}, x\right)+\left(x, z_{2}\right)=0$ for all $x \in \mathfrak{S}$. Then $z_{1}=z_{2}=0$.

Now it is natural to introduce the following terminology. Given $T \in \mathbb{R}(\mathfrak{y})$ we define the first differential numerical radius of T by

$$
w^{(1)}(T)=\sup _{z \in \mathscr{E}}\left\|D \phi_{T}(z)\right\| .
$$

We observe that if $Q \in \mathfrak{P}$, then

$$
w^{(1)}\left(T_{Q}\right)=w^{(1)}(Q T Q)=\sup _{z \in \Subset \cap Q \sqsubseteq}\left\|D \phi_{T}(z)\right\|_{Q}
$$

where $\left\|D \phi_{T}(z)\right\|_{Q}=\sup _{x \in \subseteq \subseteq Q \S}\left|D \phi_{T}(z ; x)\right|$, and as before $T_{Q}=\left.Q T\right|_{Q \S}$. Next we define a new seminorm on $\mathcal{R}(\mathfrak{G})$ by setting

$$
w_{e}^{(1)}(T)=\inf _{(1-Q) \in \mathbb{B}_{f}} w^{(1)}\left(T_{Q}\right) .
$$

It is easy to verify that $w_{e}{ }^{(1)}$ has the following properties:

$$
\begin{align*}
w_{e}^{(1)}(T) & =w_{e}^{(1)}\left(T^{*}\right), \\
w_{e}^{(1)}(T) & \leqq 2\|\pi(T)\|, \\
w_{e}^{(1)}(T+\lambda) & =w_{e}^{(1)}(T), \lambda \in \mathbf{C}, \tag{4.6}\\
w_{e}^{(1)}(K+\lambda) & =0, \lambda \in \mathbf{C}, K \in \Omega \tag{4.7}
\end{align*}
$$

Theorem 6. For any $T \in \mathbb{R}(\mathfrak{y})$ we have

$$
\begin{equation*}
(1 / 2) d_{e}(T) \leqq w_{e}^{(1)}(T) \leqq 2 \eta(T) \tag{4.8}
\end{equation*}
$$

Proof. From (4.5) we see that, for any $z \in \subseteq$,

$$
\left\|D \phi_{T}(z)\right\| \leqq\left\|E_{T}(z)\right\|+\left\|E_{T^{*}}(z)\right\| .
$$

Taking supremum on $z \in \mathfrak{S} \cap(1-P) \mathfrak{S}$ and then infimun over $P \in \mathfrak{P}_{f}$ we get

$$
w_{e}^{(1)}(T) \leqq \eta(T)+\eta\left(T^{*}\right) .
$$

Using Theorem 3, we conclude that the second inequality of (4.8) is valid. To prove the left inequality of (4.8), let $P \in \mathfrak{P}_{f}$ and let $\lambda, \mu \in W\left(T_{(1-P)}\right)$. There exists $x, y \in \mathbb{S} \cap(1-P) \mathfrak{S}$ such that $\phi_{T}(x)=\lambda, \phi_{T}(y)=\mu$. Furthermore (replacing y by $-y$, if necessary) we may assume that

$$
\begin{equation*}
\|x-y\| \leqq \sqrt{ } 2 \tag{4.9}
\end{equation*}
$$

Therefore the segment $[x, y]$ joining x and y lies entirely in $(1-P) \mathfrak{y}-\{0\}$ and we can apply the Mean Value Theorem of Differential Calculus [2, Chapter VIII, Theorem 8.5.4] to obtain

$$
\begin{equation*}
|\lambda-\mu|=\left|\phi_{T}(x)-\phi_{T}(y)\right| \leqq \sup _{z \in[x, y]}\left\|\phi_{T}(z)\right\|_{(1-P)}\|x-y\| . \tag{4.10}
\end{equation*}
$$

On the other hand, from an elementary geometric fact,

$$
\begin{align*}
\sup _{z \in[x, y]}(1 /\|z\|) & =1 /\left(\inf _{z \in[x, y]}\|z\|\right) \tag{4.11}\\
& =2 /\|x+y\| .
\end{align*}
$$

Also, from (4.9) and the parallelogram law, we get

$$
\begin{equation*}
\|x+y\| \geqq \sqrt{ } 2 \tag{4.12}
\end{equation*}
$$

Now from (4.9), (4.10), (4.11), (4.12) and the fact that $\|z\|\left\|D \phi_{T}(z)\right\|$ is homogeneous of degree zero, we can obtain

$$
\begin{aligned}
|\lambda-\mu| & \leqq \sup _{z \in \subseteq} \sup _{(1-P) \subseteq}\left\|D \phi_{T}(z)\right\|_{(1-P)} \sup _{z \in[x, y]}(1 /\|z\|)\|x-y\| \\
& \leqq 2 \sup _{z \in \subseteq \cap(1-P) \mathfrak{פ}}\left\|D \phi_{T}(z)\right\|_{(1-P)},
\end{aligned}
$$

and thus

$$
\begin{equation*}
d\left(T_{(1-P)}\right) \leqq 2 w^{(1)}\left(T_{(1-P)}\right) \tag{4.13}
\end{equation*}
$$

The proof of (4.8) can be completed by taking limits in (4.13), when $P \in \mathfrak{P}_{f}$.
The next corollary is a consequence of (2.2), Theorem 4, and (4.8).
Corollary 4.4 (Brown and Pearcy). For any $T \in \mathfrak{R}(\mathfrak{F}), \eta(T)=0$ if and only if $T=\lambda+K, \lambda \in \mathbf{C}, K \in \Omega$.

We observe that $\|\pi(T)\|^{2} \leqq \eta^{2}(T)+w_{e}{ }^{2}(T)$ (recall that $\|T z\|^{2}=$ $\left\|E_{T}(z)\right\|^{2}+|(T z, z)|^{2}$, for every $\left.z \in \mathbb{S}\right)$ implies that

$$
\begin{aligned}
\|\pi(T-\lambda)\|^{2} & \leqq \eta^{2}(T-\lambda)+w_{e}^{2}(T-\lambda) \\
& \leqq \eta^{2}(T)+d_{e}^{2}(T), \lambda \in W_{e}(T)
\end{aligned}
$$

and therefore, using (4.8) we obtain

$$
\begin{equation*}
\|\pi(T-\lambda)\|^{2} \leqq 17 \eta^{2}(T), \lambda \in W_{e}(T) \tag{4.14}
\end{equation*}
$$

which constitutes a sharper estimate than that given in [1, Lemma 2.3] (in the limit).

Remark. As we did previously for $n=1$, we define the nth differential numerical radius of an operator T by

$$
w^{(n)}(T)=\sup _{z \in \subseteq}\left\|D^{n} \phi_{T}(z)\right\| .
$$

Also we set

$$
d^{(n)}(T)=\sup _{x, y \in \subseteq}\left\|D^{n} \phi_{T}(x)-D^{n} \phi_{T}(y)\right\| .
$$

Here $D^{n} \phi_{T}(z)$ denotes the nth differential of the function ϕ_{T} at z (for definition and properties of higher order differentials of a function, see [2, Chapter VIII, §12]). Now, we define the following essential quantities

$$
w_{e}^{(n)}(T)=\inf _{P \in \mathcal{B}_{f}} W^{(n)}\left(T_{(1-P)}\right),
$$

and

$$
d_{e}^{(n)}(T)=\inf _{P \in \mathfrak{B},} d^{(n)}\left(T_{(1-P)}\right)
$$

Obviously,

$$
d_{e}^{(n)}(T) \leqq 2 w_{e}^{(n)}(T), n=0,1,2, \ldots
$$

Next, we observe that since ϕ_{T} is an even function, i.e. $\phi_{T}(z)=\phi_{T}(-z)$, $z \neq 0, D^{2 k} \phi_{T}$ is also an even function, and $D^{2 k+1} \phi_{T}$ is an odd function (i.e. $\left.D^{2 k+1} \phi_{T}(-z)=-D^{2 k+1} \phi_{T}(z)\right)$. Thus

$$
d_{e}^{(2 k+1)}(T)=2 w_{e}^{(2 k+1)}(T), k=0,1,2, \ldots .
$$

On the other hand, since ϕ_{T} is homogeneous of degree zero, $D^{n} \phi_{T}$ is homogeneous of degree $-n$, and hence $\|z\|^{n} D^{n} \phi_{T}(z)$ is homogeneous of degree zero, $n=0,1,2, \ldots$. It can be proved (with arguments similar to those used to show (4.13)) that for $Q \in \mathfrak{P}$ we have

$$
d^{(2 k)}\left(T_{Q}\right) \leqq 2^{(1+k)} w^{(2 k+1)}\left(T_{Q}\right),
$$

and hence

$$
d_{e}^{(2 k)}(T) \leqq 2^{(1+k)} w_{e}^{(2 k+1)}(T), k=0,1,2, \ldots .
$$

Also it is not difficult to see that for each $n=0,1,2, \ldots$ there exists a constant $C_{n}>0$ such that

$$
w_{e}^{(n)}(T) \leqq C_{n}\|\pi(T)\| .
$$

Therefore for any $n=1,2, \ldots$

$$
w_{e}^{(n)}(\lambda+K)=0, \lambda \in \mathbf{C}, K \in \Omega
$$

Thus it is natural to pose the following problem.
Problem. Let $n \geqq 1$ and $T \in \mathbb{R}(\mathfrak{S})$ such that $w_{e}^{(n)}(T)=0$. Do there exist $\lambda \in \mathbf{C}$ and $K \in \Omega$ such that $T=\lambda+K$? Observe that from (2.2), Theorem 4, and (4.8), Corollary 4.4 may be stated

$$
w_{e}^{(1)}(T)=0 \text { if and only if } T=\lambda+K, \lambda \in \mathbf{C}, K \in \Omega .
$$

Hence Corollary 4.4 tells us that the answer to this problem is yes, in case $n=1$. On the other hand, it can be shown that if $D^{2} \phi_{T}(z)=0$, for every $z \in \mathfrak{S}$, then T is a scalar operator. Thus if $w^{(2)}\left(T_{(1-P)}\right)=0$ for some $P \in \mathfrak{ß}_{f}$, then $T=\lambda+K$ for some $\lambda \in \mathbf{C}, K \in \Omega$.

Note. Let ©f be any nonseparable Hilbert space, and let $\boldsymbol{\aleph}_{\alpha}$ be any (infinite) cardinal number such that $\boldsymbol{\aleph}_{\alpha} \leqq \operatorname{dim}\left(\mathfrak{J}\right.$. We denote by \mathfrak{P}_{α} the set of all (orthogonal) projections $P \in\left\{(\mathbb{F})\right.$ such that, $\operatorname{dim} P(5)<\boldsymbol{\aleph}_{\alpha}$, and we let \Im_{α} be the uniform closed ideal generated by $\mathfrak{ß}_{\alpha}$. Then all the definitions and results of $\S \S 2,3$, and 4 can be extended, without any modifications, to nonseparable spaces, if we replace (in all the cases) \mathfrak{P}_{f} and Ω by \mathfrak{P}_{α} and \Im_{α}, respectively. We omit the details of such extensions to avoid irrelevant repetitions.

References

1. A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112-127.
2. J. Dieudonne, Foundations of modern analysis (Academic Press, New York, 1960).
3. R. G. Douglas and C. Pearcy, A characterization of thin operators, Acta Sci. Math. (Szeged.) 24 (1968), 295-297.
4. T. B. Hoover, Quasi-similarity and hyperinvariant subspaces, thesis, University of Michigan (1970).
5. J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424.

University of Michigan, Ann Arbor, Michigan

[^0]: Received June 26, 1970 and in revised form, March 5, 1971. This paper is a part of the author's doctoral dissertation written at the University of Michigan under the directorship of Professor Carl Pearcy.

[^1]: ${ }^{1}$ The notation $\|$.$\| is usually reserved for the norm of a bounded linear transformation.$ However, since we are working with non-linear functions, like the function E_{T}, we extend such a notation to any bounded function on \Im as indicated.

[^2]: ${ }^{2}$ Two operators T and S on \mathfrak{S} are said to be quasi-similar [4] if there exist two dense range injective operators X and Y satisfying $T X=X S, Y T=S Y$.

[^3]: ${ }^{3}$ If A, B are subsets of \mathbf{C}, then $A+B=\{\alpha+\beta: \alpha \in A, \beta \in B\}$.

