ON A PROBLEM OF PURDY RELATED TO SPERNER SYSTEMS

BY
J. SCHONHEIM

Purdy asked whether the following conjecture is true:
Conjecture. Let E be a set of $2 n$ elements. If $S=\left\{S_{1}, S_{2}, \ldots, S_{t}\right\}$ is a Sperner system of E, i.e. $S_{i} \notin S_{j}$ for $i \neq j, i, j=1,2, \ldots, t$; and if

$$
\begin{equation*}
S_{i} \cup S_{j} \neq E \quad i, j=1,2, \ldots, t \tag{1}
\end{equation*}
$$

then

$$
t \leq\binom{ 2 n}{n-1}
$$

The proof of the conjecture will be obtained using the following theorem of Katona (Acta Math. 15 (1964), 329-337):

Theorem. Let $A=\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$ be a set of subsets of $M,|M|=m$, such that $\left|A_{i}\right|=l,\left|A_{i} \cap A_{j}\right| \geq k$ for $i, j=1,2, \ldots, s$. Denote by A^{g} the set of sets B such that for some $\mu B \subset A_{\mu}$ and $|B|=g$. Then, if $1 \leq g \leq l, 1 \leq k \leq l, g+k \geq l$ the following holds:

$$
\begin{equation*}
\left|A^{g}\right| \geq s\binom{2 l-k}{g} /\binom{2 l-k}{l} \tag{2}
\end{equation*}
$$

Proof of the conjecture. First, by an argument [1] involving the decomposition L of the lattice of all subsets of E into mutually disjoint symmetrical chains, the members of S having more than $n-1$ elements may be replaced by the same number of n-sets, This may be done without contracting (1). Namely, if $B_{1}, B_{2}, \ldots, B_{q}$ are the considered members of S, then they are situated on different chains of L. Replace B_{i} by the member C_{i} of the chain, containing B_{i}, which is an n-set. Then, since $B_{i} \supseteq C_{i}$, the condition $B_{i} \cup B_{j} \neq E$ involves $C_{i} \cup C_{j} \neq E$, while if $F \in S$ and $|F|<n$ then $\left|F \cup C_{i}\right|<2 n$ and hence $F \cup C_{i} \neq E$.
The complement of every C_{i} is also an n-set and therefore $q \leq \frac{1}{2}\binom{2 n}{n}$. Since $\frac{1}{2}\binom{2 n}{n} \leq\binom{ 2 n}{n-1}$, the conjecture is proved in the case $S=\left\{B_{1}, B_{2}, \ldots, B_{q}\right\}$.

Let $D=\left\{D_{1}, D_{2}, \ldots, D_{p}\right\}$ be the set of members of S each containing fewer than n elements. Then, since $\binom{2 n}{n-1}$ is the number of chains in L containing subsets
of the considered size and since no two members of S can occur in the same chain, $p \leq\binom{ 2 n}{n-1}$. This proves the case $S=\left\{D_{1}, D_{2}, \ldots, D_{p}\right\}$.

For the general case we shall prove that

$$
\begin{equation*}
p \leq\binom{ 2 n}{n-1}-q \tag{3}
\end{equation*}
$$

where the right side is nonnegative by the former inequality on q.
Inequality (3) follows from the fact that if F is a ($n-1$)-set and for some $\mu F \subset C_{\mu}$, then the chain of L containing F, contains no members of D and there are at least q such sets F.

The last statement follows from the theorem, for $g=n-1$, namely, the sets $C_{1}, C_{2}, \ldots, C_{q}$ satisfy its assumptions with $k=1, l=n, s=q$. Therefore the number of different sets F is by (2), at least q.

This completes the proof, since in all cases

$$
t=q+p \leq q+\binom{2 n}{n-1}-q=\binom{2 n}{n-1}
$$

Remark. By the same method the assertion of the conjecture can be proved under condition $S_{i} \cap S_{j} \neq \varnothing$ instead of (1). This is a result related to Theorem 1 in [2].

Acknowledgement. Thanks are due to Professor P. Erdös for calling my attention to Purdy's problem and to the Remark.

References

1. N. G. De Bruijn and al. On the set of divisors of a number, Nieuw Arch. Wisk. 23 (1952), 191-193.
2. P. Erdös and al. Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.

Tel Aviv University,
Tel Aviv, Israel

