Canad. Math. Bull. Vol. 17 (1), 1974

ON A PROBLEM OF PURDY RELATED TO SPERNER SYSTEMS

BY J. SCHONHEIM

Purdy asked whether the following conjecture is true:

Conjecture. Let E be a set of 2n elements. If $S = \{S_1, S_2, \ldots, S_t\}$ is a Sperner system of E, i.e. $S_i \notin S_j$ for $i \neq j, i, j = 1, 2, \ldots, t$; and if

(1)
$$S_i \cup S_j \neq E \qquad i, j = 1, 2, \dots, t$$

then

$$t \le \binom{2n}{n-1}$$

The proof of the conjecture will be obtained using the following theorem of Katona (Acta Math. 15 (1964), 329–337):

THEOREM. Let $A = \{A_1, A_2, \ldots, A_s\}$ be a set of subsets of M, |M| = m, such that $|A_i| = l$, $|A_i \cap A_j| \ge k$ for $i, j = 1, 2, \ldots, s$. Denote by A^g the set of sets B such that for some $\mu B \subseteq A_{\mu}$ and |B| = g. Then, if $1 \le g \le l$, $1 \le k \le l$, $g+k \ge l$ the following holds:

(2)
$$|A^{g}| \ge s \binom{2l-k}{g} / \binom{2l-k}{l}$$

Proof of the conjecture. First, by an argument [1] involving the decomposition L of the lattice of all subsets of E into mutually disjoint symmetrical chains, the members of S having more than n-1 elements may be replaced by the same number of *n*-sets, This may be done without contracting (1). Namely, if B_1, B_2, \ldots, B_q are the considered members of S, then they are situated on different chains of L. Replace B_i by the member C_i of the chain, containing B_i , which is an *n*-set. Then, since $B_i \supseteq C_i$, the condition $B_i \cup B_j \neq E$ involves $C_i \cup C_j \neq E$, while if $F \in S$ and |F| < n then $|F \cup C_i| < 2n$ and hence $F \cup C_i \neq E$.

 $|F| < n \text{ then } |F \cup C_i| < 2n \text{ and hence } F \cup C_i \neq E.$ The complement of every C_i is also an *n*-set and therefore $q \le \frac{1}{2} \binom{2n}{n}$. Since $\frac{1}{2} \binom{2n}{n} \le \binom{2n}{n-1}$, the conjecture is proved in the case $S = \{B_1, B_2, \dots, B_q\}$. Let $D = \{D_1, D_2, \dots, D_p\}$ be the set of members of S each containing fewer than *n* elements. Then, since $\binom{2n}{n-1}$ is the number of chains in L containing subsets of the considered size and since no two members of S can occur in the same chain,

$$p \le \binom{2n}{n-1}$$
. This proves the case $S = \{D_1, D_2, \dots, D_p\}$

For the general case we shall prove that

$$(3) p \le \binom{2n}{n-1} - q,$$

where the right side is nonnegative by the former inequality on q.

Inequality (3) follows from the fact that if F is a (n-1)-set and for some $\mu F \subseteq C_{\mu}$, then the chain of L containing F, contains no members of D and there are at least q such sets F.

The last statement follows from the theorem, for g=n-1, namely, the sets C_1, C_2, \ldots, C_q satisfy its assumptions with k=1, l=n, s=q. Therefore the number of different sets F is by (2), at least q.

This completes the proof, since in all cases

$$t = q + p \le q + \binom{2n}{n-1} - q = \binom{2n}{n-1}.$$

REMARK. By the same method the assertion of the conjecture can be proved under condition $S_i \cap S_j \neq \emptyset$ instead of (1). This is a result related to Theorem 1 in [2].

ACKNOWLEDGEMENT. Thanks are due to Professor P. Erdös for calling my attention to Purdy's problem and to the Remark.

References

1. N. G. De Bruijn and al. On the set of divisors of a number, Nieuw Arch. Wisk. 23 (1952), 191–193.

2. P. Erdös and al. Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.

TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL

 $\langle - \rangle$