H. Kaneta
Nagoya Math. J.
Vol. 78 (1980), 95-111

DECOMPOSITION OF REPRESENTATIONS OF SL(2, C)
INDUCED BY THE CONTINUOUS SERIES OF E (2)

HITOSHI KANETA

§1. Introduction

Since the representations of SL(2, C) induced by irreducible unitary

v
representations of E(2) = {(eC -w) Le C} appear as the restriction to

the Lorentz group of some irreducible unitary representations of the in-
homogeneous Lorentz group, the decomposition of the induced represen-
tations deserves our investigation. For the representations of SL(2, C)
induced by irreducible unitary representations with discrete spin of E(2),
the decomposition has been obtained by Mukunda [9]. We hope that our
analysis will justify the calculations by Chakrabarti [1], [2] and [3].

As is known (see, for example, § 3 of [6]), the problem to decompose
a unitary representation of SL(2, C) into irreducible ones can be reduced
to the problem to specify the spectral type of certain selfadjoint operators.
In our case we must deal with ordinary differential operators Lg and L¢
(e>0and £=1/2,1,3/2,---):

(1) Ly = —8i+ p%¢™™ in LX(R),

(2) L = —2i()o. + 2ipe™V,  in L(R)y,, = _Zklk ® L(R),

where (v) stands for a diagonal matrix [k, kK~ 1, -+, ,-.--, —k] and V,
is a skew symmetric constant matrix whose (v,v 4 1) component and (v,
v — 1) component are equal to

—V(E— )k +yv+1)2 and (& —v 3 1)(& -+ )2

respectively, remaining components being equal to zero. To study the
spectral type of these operators is itself of our interest.
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§2. Definitions and main theorems

For a positive number p denote by =} (resp. ;) a unitary representation
of E(2) on the Hilbert space

L = {Fe 120, 42): ) = 3, ae™)
(I‘esp. L= {f e L¥0, 4m): f(y) = 23 avei”’})

v+1/2€6 7

defined by

(3) T (o yoovn) JICH) = €22 VO ).

Cez‘wz

In the following, G and G, stands for SL(2, C) and E(2) respectively. One
realization of the induced representation Indg,,q 7z is to be defined. As
is known, °

V, = {y= (y"_—?la Y2 iy’):dety=0, yo>0}
Yo + 21 Yo+ Vs

is a G-homogeneous space with the G-action y-g = g*yg, whose G-invariant
measure dp and the little group at ((1) 8) are dy,dy,dy./y, and G, respec-
tively. Defining the projection p: G— V, by p(g) = g*((l) 8)g, we attach
to an element u of SU(2) a section s,: V,— G such that s, p({z, 8, p>u)
= {z,0,p)u, Where

05 = <ef/2 0 >(cos 92 —sin 0/2><ew/2 0 )
ae 0 e”/\sinfd/2 cosfj2/\0 e "

with (¢, 6, 9) € R X (0, @) X (0, 2x). We denote by U;* (resp. U, **) a unitary
representation of G on the Hilbert space H* = L (L*, V,, 1) (resp. H™ =
LX(L~, V,, p)) defined by

(4) U @f(y) = 7;(8)f(y-8)
( 5) su(y) = gosu(y'g) .

A representation (U, H) of G determines a sequence of mutually
singular o-finite measures {o;, 05, - - -, 0.} On G = >im-0fn (see the preced-
ing paragraph of Lemma 2 of [6]) such that

6 U:Jij,zdol@B]J(:Tm,;daz@~--G—)[}{O]J(ZTm,ldam
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(see the preceding paragraph of Lemma 3 of [6]). Denoting by a,,,.,, the
sum of the absolutely continuous and purely discontinuous parts in
Lebesgue’s decomposition of the measure ¢, a representation U, , of G
is understood to be one which is unitarily equivalent to

Jj Tm,ldal,ac,p @ [2] Jj Tm,ldoz,ac,p C-B e @ [SO] fj Tm,ldam,ac,p .

Similarly, for a selfadjoint operator L, we denote by L,,,, the restriction
of L to the subspace which is orthogonal to the singular continuous
subspace (p. 517, [7]). We also define U,, and L,, similarly. Finally, for
a o-finite measure ¢ on R and a Borel set B, let | Ade denote the self-
adjoint multiplication operator: f(1) — Af(4) in the ﬁilbert space L*(B, a).

THEOREM 1. (1) L§ is unitarily equivalent to J@ Ad2, where R, =
R
(0, ). (i) For a positive half-integer k, L; .., is ur;itarily equivalent to
[k + 1/2]I®Zd2. For a positive integer k, L .,, is unitarily equivalent to
R

® ®
{41 f . D2 D[R] f o A0(dR), where & denotes Dirac’s measure.
0

TaEOREM 2. Under the notation above it holds that

@
Uss= | 8,d1® 3 & S..dz,
l&" m

Mm=2,4,000
Uiio =5 @ S.dz,
M=1,3,00¢ im
where S, , denotes a representation of the so-called continuous series (§ 10,
[10]) and 4§ = {(0, 2): 2 > O}.

Remark. As will be shown in the appendix, corresponding measures
o, of the representation U** are absolutely continuous, so it holds that

Ure= Uy, Ut =Us,.

Consequently it also holds that L; ~ L . .

§3. Derivation of differential operators (1) and (2)

We refer to [6] (especially, § 3) the notations in the following. As is
verified easily, the operators w; corresponding to the representation Uz*
acts on Hpz* = {fe H*: f(y,v¥)e Cy(Y X (0,4n))} as smooth differential
operators, where Y denotes the image of the projection p:{p((z, ¥, ¢)):
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(z,0,9) € R X (0,7) X (0,27)}. After some tedious computation we obtain
their explicit forms in terms of the coordinate (z, 8, ¢, V).

Yoy Y15 Y2, ¥s) = $€°(1, —sin 6 sin ¢, —sin 6 cos ¢, —cos ) ,
dp = € sin 8dzdfdy ,

o; = sin ¢d, + cot d cos pd, — c?s;) B,
sin

w, = cos 0, — cot d sin 99, + s 9 Oy »
sin ¢

0, =0,,

sin ¢

sin

+ ipe~*(cos @ cos ¢ cos » — sin g sin ) ,

w, = —sin @ cos ¢d, — cos 6 cos ¢d, + 9, — cot @ sin o,

cos ¢

sin 6
+ipe *(—cos 6 sin ¢ cos » — cos ¢ sin V) ,

w; = sin § sin ¢d, + cos 6 sin ¢d, + 8, — cot 8 cos ¢d, ,

we = €08 09, — sin 69, -+ ipe " sin d cos ¥ .

Further,

H, = e"“"(i&, + cot o, — ,1 84,) ,
sin 6

H = eif"(iaﬁ — cot 60, + ,1 a¢> s H, = io,,
sin @

-1 2 cos 6 1
4, =& 0% — 2,0 9% + cot 69, ,
’ ot sin?g * sinfg * " + sin’g ' + ’
F, = e‘“"{—sin 03, — cot 69, + .z 9, — i cot 60,
sin @

+ tpe *(cos 6 cos » — isin 1!’)} ,

i
sin 6
+ ipe *(—cos d cos » — isin 1[r)} ,

F. = e“’{sin 690, + cot 60, + 9, — i cot 69,

F; = iow,

A=(F+F—+F—F++2F32)/2+Ao_19

2ipe*
sin

4 = —20.9, + 2ipe" sin 49, — Cos rdy

+ (—2 + 2ipe " cot 6 cos )0, .

For k=0,%,1, ---, denote by W, the k-th heighest weight vectors,
i.e. the solutions of equations
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(7) Hf =k, 4f=—kk+1Df forfeH*

with respect to the representation Uj*. Quite similarly to the §4 of [6],
we obtain the following table.

k: W, = {0} ‘ W,

Ure | 0,1,

{ ST F(0)PE_(cos B)e-i#* v £, e TX(R, ledf)}
v==—FkK

U:e | 1/2,32, -

Denote by W¢ a subspace of W, consisting of functions with f, e C;*(R).
Then making use of formulas on P% , ([6], § 4), we calculate the restrictions
A\ We, 4|\Wp and F, | We.

(8) Afy = [-82 — 20, + p%e™1f;

k

(9) A,f = VZ ["2l(”)arfu - 2f» - iPe_T\/(k - V)(k + v+ 1)fv+l

ey

-+ ipe"\/(k — v+ D + y)]PIIé:)_»e—ikp+i»\l/ ,

w T e ST o, B~y DRy F DO~ H)

+ ioe” (W (k — ) (B — v + Dfyur + V(& + 2)(E + v + 1)f,_)]

< P,Icc:ll e ikt Dotivy
y—v .

Now it is clear that the natural isometry

i Wo o> BBy = 31 @ I(R)
defined by

transforms 4| W, and 4’| W, to (1) and (2) respectively (notice that the
differential operators (1) and (2), with domain C(R) and C;(R),.., respec-
tively, are essentially selfadjoint).

§4. Proof of theorems

4.1. The spectral type of the differential operator (1). Since the
operator Lf is unitarily equivalent to the differential operator

(1) —0: + e*,
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we will calculate the spectral matrix of the latter. Let ¢, (j =1,2) be
solutions of the equation

[ + ¢ — Alpc) =0  with initial value (4";8; 9"38;) - ((1) (1’) :
12} (2}

Here Im 2 is assumed to be positive. By change of variable ¢ = e™", (8
= ¢,(r) satisfies

12) [af + %at + (—1 + %)]% —0.

Two independent solutions of (12) are I,=x(#) and K,—(?) ([8], p. 161). Set
v =+—2 By our convention Imy is negative. Since |I(t)/K,(t)|—0
(resp. ), as t— 0 (resp. o), the functions m_.(1) and m,.(2) are equal
to I/(1)/I,(1) and K/(1)/K(1) respectively (for the definition of m,, see §5
in chap. 9 of [4]). By the aid of the integral representation ([8], pp. 186-187)

1) = = 152{21 5 “ch(zcos ) sin*gds  for Rey > 172,

K(z) = J‘m e~*°t ch ytdt for Rey > —1/2, Rez >0,
0

we deduce that for 1 >0
shev 1 ([~ _ — ..\?
do, (D) = —"-— (L et cos v/ 1 tdt) dz,
T

dpn(A) = ih#l—qm chte*cos + 7tdt)2d2 R
T 0

do(2) = dp,(2)
= ~—Sll-”—:/l(r e "t cos v/ Ttdt) (r ch te=®* cos v/ Ttdt)dl .

T 0 0

Since the rank of the matrix (dp,,/d7) is equal to one almost everywhere
and since the operator L¢ is positive definite, (i) of Theorem 1 is now
proved.

4.2. The spectral type of the differential operator. The next lemma
shows that L contains [%] J@de, where % denotes the greatest integer
R
such that # <k 4+ 1/2.

LemmA 1. For an f=(fi, -+, f-0)" in Co(R)y.s = 2, D C(R) with f,

https://doi.org/10.1017/50027763000018821 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018821

REPRESENTATIONS OF SL(2, C) 101

= 0 for non-positive index v, e"*“e *Hif converges strongly in L*R).., as

{ — oo,

Proof. As is well known ([7], Theorem 3.7 in chap. X) the conver-
gence follows from the integrability of the norm |e*V,e “f|| on some
interval (s, ), where V, is the constant matrix such that Lg= L} +
2ipe *V,. Assume that a finite interval (—c, ¢) contains the support of f
and denote the maximum of the matrix elements of V, (resp. max, . |f.(z)))
by v (resp, a). Since e “%f(r) = (f.(r — 2vt)), we have for any large ¢ an
inequality

e~ Vie “Ef|| < +/2caves~t
which implies the integrability of the left side. Q.E.D.

For the time being % is assumed to be a positive half-integer. We
recall the eigenfunction expansion for L. Suppose a matrix valued
function @(z, 1) satisfies

(13) [—2i(W)a, + 2ipe*V, — ]D(z, ) = 0
with initial value @(0, 1) = E,,, (the unit matrix). Then we have

ProposiTION 1. There exists a spectral matrix (p,,) with the following
properties.

(i) (o, is an hermitian (2k + 1) X (2k + 1)-matrix valued function
on R.

(i) (p,.(A) — p..()) is non-negative definite for i, > A,.

(iil) The total variation of p,, is finite on any finite interval.

(iv) For an fe L*R),,.,, put

Ff(3) = lim LKN ¥z, Hf()de in L¥((ow) -

Then F is a unitary operator on L*R),...,, and it transforms L{ to the self-
adjoint multiplication operator M (Mg(2) = ig(3)) in L*((p,.)). The inverse
F-! of F is given by

W Fe@=ln| SaE0addn,  in DB,
where ¢, is the v-th component column vector of the matrix @ = (¢, -+ +, ©_y).

We may allow to skip the proof of the proposition, because it follows
the same development as the chapter 10 of [4].
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Let (p,,) be the spectral matrix of L{. Then there exist an hermitian
matrix valued function 2 and a locally bounded measure ¢ such that

Z gvgu’dpvv' = Z’ gvgn'hw'do- for any g € LZ((pw’)) .

If the multiplicity of L{ is equal to m, there exist some finite Borel set
B of R, a unitary matrix valued measurable function U and strictly positive
measurable functions A, - - -, A, such that

(15) (hoA2) = UDIAR), - - -5 hu(), 0, - - -, 0JU*(2)

on B almost everywhere with respect to ¢. We may assume that K' <
h; < K for each j for some positive constant K.

ProposiTiON 2. For a positive half-integer k, the multiplicity m of Lt
does not exceed k + 1/2.

Our proof of the proposition is lengthy. Two lemmas will precede
the proof. By change of variable ¢ = e, ¥(t, 1) = O(z, 2) will satisfy

(13) [a, + 0()1V, — ;it (v)“]llf(t, D=0.

We note that ¢ = oo is the irregular singular point of the equation above.

LemmA 2. The matrix (v)™'V, has Jordan’s canonical form

(J(l, k+ 1/2) 0 )
0 J(—1,k + 1/2)/)°

where J(«,j) denotes a Jordan block.

Proof. Define one-parameter groups w; (i = 1, 3) of G by
o) = (cos t/2 —sin t/2) wlf) = ( e ) .

e
sin /2 cos /2 0 er

For a one parameter subgroup «(f) and a finite dimensional continuous
representation T of G, denote & and T(#) the derivatives at £ = 0 of w(f)
and T'(w(¢)) respectively. We know that there exists a (2k + 1)-dimensional
analytic representation T, of G such that the restriction 7,|SU(2) is an
irreducible unitary representation of SU(2) satisfying T.(@,) = i(v) and
T.(@,) = V,. Obviously the characteristic polynomial P(x) of the matrix
(»)'V, is proportional to det((v)x — V). Since there exists an element
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g of G satisfying —ixe, — &, = g 'v/a* — la,g if and only if x*= 1, and
since it holds that T\.(—ixd, — @) = (V)x — V, for any x € C, only —1 and
1 are possible characteristic roots. The multiplicity of them are equal to
k + 1/2, because P(x) is even. As one sees easily, eigen-spaces for eigen-
value —1 or 1 are of dimension one. Q.E.D.

LemmMA 3. For any finite interval of real 2, there exists a positive number
t, (independent of 2) and a (k + 1/2)-dimensional subspace S; of Cy., such
that for any solution  of (13'),

(16) Jw e‘"”J%t)lzdt = oo for any a, B (0<a<20,0<p,

provide ¥(t,) & S,.

Proof. Put 7() = e *"(f). Then 75 satisfies

an |0+ 00 Ve + 20 = 262 |0 = 0.
By Lemma 2, the Theorems 4.1 and 4.3 in the chapter 13 of [4], a non-
zero solution 7 of (17) satisfies

limsup—1£|t77~(—t)—| = —30 or —p.
t—oo
Applying the Theorem 4.4 in the same chapter to the equation (17), we
conclude that there exist a positive number #, and a (k 4+ 1/2)-dimensional
subspace S; of C,,,, such that

18) limsup 181101 — 5, it y(t) € 510}

t—oo

= —p if yt) &S] .

Set t, =t and S, = S;. We claim that ¢, and S, posess the desired property.
In fact, if non-zero solution of (13) with () & S; does not satisfy (16),
then the derivative of the integrand in (16) is also integrable on (¢,, oo)
because 4 satisfies (13’). Thus the integrand converges to zero as {— co,
contradicting to (18). Q.E.D.

Proof of Proposition 2. Let B,U and h; (j =1, ---,m) be so chosen
as stated in the paragraph just before Proposition 2. Set ¥'(t, Hh)UQR) =
(¥4, ). The assumption m > k + 1/2 shall lead to a contradiction. For
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the finite Borel set B, there exist a positive number £, and (k& + 1/2)-
dimensional subspace S, of C,,,, for which Lemma 3 holds. Fix a vector
valued measurable function g, = (g, - - -, &»)" so that |g,()| = 1 and that
>, Dh,g(2) & S,. Then for any g in L*(B, o), the function defined by

L; 2. «Pﬁ%’wgﬁdd ¥

is integrable on (Z,, ) as well as its derivative because of (13’) and (14).
Thus the square of the integral converges to zero as {— co. By the
resonance theorem ([12], p. 69), we have

?gtp J 5 |22 Pt Dhyg (D daft < oo .

This contradicts to Lemma 3. Q.E.D.

From now on k denotes a positive integer. Denote by Lg! the rest-
riction of L¢ to the orthogonal complement L*(R)i,, of the eigenspace
for eigenvalue zero. We shall mention to the eigenfunction expansion
for Lgt. Let @(z,2) = (@us -5 01, 0-1 - -, 01Xz, A) be a (2k + 1) X (2k)-
matrix valued function satisfying (13) with initial value dvi(O, D= (Ge -+
é_w) (0, 2) = E,,, where & denotes the (2k) X (2k)-matrix obtained by ex-
pelling the 0-th row of @.

Prorosition 3. There exists a spectral matrix (p,,) for L{- with the
following properties.

(i) (o.) is an hermitian (2k) X (2k)-matrix valued function on R¥*
= R\{0}

(i1) (p,,(A) — p.A4)) is a non-negative definite for 2, > 2, 42, >0

(ili) The total variation of p,, is finite on any finite interval lying out-
side of a neighborhood of zero.

(iv) For an fe L*(R)s.,, put

F@) =lim[ 0%, fds  in L((pw)

Then F is a unitary operator and transforms L{t to the selfadjoint multipli-
cation operator M (Mg(2) = 2g(2)) in L*((p..)). The inverse F-! of F is given
by the formula:

Fg(x) = lim 220z, 8Adp,.,  in L(R)y.; .

oo J NI RIKN
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The proof of the proposition is almost the same as that of Proposition
1. However, in connection with the proof of Parseval equality, we should
note that the image L{(C;(R)y.,) of L2 is dense in L*(R)$.; and that the
following inequalities hold.

[ rlewrdad <[  le@rda < [ ILsst e,

[ #le@rded <[ xle@Fdo <& [ ILefPds.

ProrositioN 4. For a positive integer k, the multiplicity m of L{* does
not exceed k.

For the proof we again prepare some auxiliary lemmas. By change
of variables t = e * and (f) = ¢(z), (13) takes the form

, A T —
(13") [o})az + oV zit]"’(t) 0.

Since L{ and J,, F.J;' act on C>(R),.,, as smooth differential operators,
denote by f,,'; and F, , their trivial extensions to C=(R),..

Lemma 4. It holds that

( i ) L§+1F+,k = F+,kLI'?:,

(ii) (F, iHis = ipx/52k + D/2k + 3)e”f, for f=(fo, -, f-0)"
(iii) The kernel of F, ; is {0}

Proof. The fact that 4 and F, commute yields (i). The assertions
(i) and (iii) follow from (10). Q.E.D.

LeMmA 5. For A0, the k-th component . of a solution of (13")
satisfies a differential equation

19 |5 @t 2010 = 0,

where the coefficients a,,; are of the form

finite
ak,j(t, ) = ;) ak,j,z('z)t—g

with
(1 ) Qon = 1,
(i1) @y, L2 is a polynomial of A for £>1,
(111) Z?’io Ay, 5,0 2 = (2% — Pz)k-
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Proof. Let + = (y,) be a solution of (183”). Through the recursion
relation

(20) 1!/'9 = ap+lat"l/'v+l + it' u+11!/'u + rv+1\1/|y+2 ’

we can represent v, in terms of +, and its derivatives {’. Clearly (v,)
is a solution of (13”) if and only if +, satisfies

11”'—k=0-

(21) —kor_ — P1/2_k1[’—k+x - =i
2it

It is easy to see that the left side of the equation (21) is of the form

(21) [_kakalc-l te 0‘1‘2250‘—1 ce @000 4 tZ:; bj(t’ Z)a{]‘!’k =0,
where the coefficients b,(t, ) = 3,20 b;,(2)¢™¢ have the properties: 1) b,,
is independent of 4, 2) b,,(2) is a polynomial of 2 such that b,,0) =0
for £>1 and 3) b,,(2) = b;,(0)2. We claim that b,,=0. Indeed, for
= 0 the equation (21") is reduced to an equation with constant coefficient
b,,. If b,,++ 0 for some j, the dimension of the solutions of (13") is finite,
which is a contradiction because the image 15’+_,c_1 e 13'+,°(C°°(R)1) is an in-
finite dimensional subspace of the solutions on account of (i) and (ii) of
Lemma 4. Now (i) and (ii) are selfevident.
Our proof of (iii) is rather lengthy. Obviously Ry.(£) = v.(—¢) satisfies

22 [ (~Dand—t 01| Rysr = 0.

On the other hand both Rvy(f) and (—1)(t) satisfy (18”) provided p is
replaced by —p((—1)* denotes a diagonal matrix whose (v, v) component
is equal to (—1)). Thus a solution of (19) is a solution of (22), from
which it follows that a, ,(—¢%, 2)(—1) = a,,,(¢ ), and in particular that
2. a;,,,% is an even function of x. Put P, = 3 %,a,, ,.&’. We will show
that P, devides P,,,, For this purpose we need

LemmA 6. For positive integers m and n (m > n), consider differential
equations with holomorphic coefficients at t = oo.

@ [Zawafro-0 ® [Sema]o=o.

Assume that a, = b, = 1 and that every solution of (B) is a solution of
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(A). Then the polynomial > %o b, x’ devides > ™, a,x!, where a;, = a’(co)
and bj,O == bj(oo).

Assuming Lemma 6, we continue the proof of (iii). If ¢, is a solution
of (19), ty, satisfies a differential equation

1) |5 @t vt v = 0,

where the coefficients are holomorphic at ¢ = oo with (o, 2) = a ;.
We see, making use of Lemma 4, that £y, is a solution of (19) with the
index k£ + 1. Now applying Lemma 6 to equations (19) with index %2 + 1
and (21”), it follows that P, devides P,,,. Since P,(x) = x* — p* and since
P,(x) is even, the assertion (iii) follows as soon as we verify that a,,,
is equal to (—1)*p*. From (20) and (21) we can deduce that a,,,, is equal to

b ove () 2k — 20)!
T T

Put ¢,=1-3---. - (2v — 1)/(2-4- --- -2v). We shall show that >f ,cc;_,
= 1. This equality is a direct consequence of the relation (1 — x)™' =
{1 — x)¥. Lemma 5 is now proved. Q.E.D.

Proof of Proposition 4. Let a finite Borel set of R*, a unitary (2k)
X (2k)-matrix valued function U(2) and strictly positive bounded functions
h; (j=1,2,---,m) be so chosen as before (see (15)). Put y = (v’)}5 for
a solution 4, of (19). Then y satisfies

@) on =35 arr,

where A, is a smooth function of 2 on R* and

01 \91"\‘\ """"""" 0
P0L 0
A, = | 10
| S0 1
Q0,0 —Qr,1,0 “= = — Q91,0

Conversely, it follows, from (13”) and (20), that there exists a lower tri-
angular matrix valued function W(¢, 2) = (w,,(t, 2)) such that the function
Y = (y,) given as follows is a solution of (13”):
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1!/'” —_ ki"'l W, X ; for lvl S 1’ 2, ceey k i

7=0
(29) P
BN

. + o).

Yry =

Since the matrix A, has characteristic roots +p with multiplicity %, there
exist, for the Borel set B, a positive number ¢, and a k-dimensional sub-
space S‘l of C,, such that for any solution y,

(25) j e“"—lxg—?lz—dt —

to

for any @ and B (0 <a < 2p,0<p),

provided x(Z,) & S, Let S, be the image wi(t,, 2)§1. Since there exist posi-
tive constants ¢ and n such that

W=t D] < at” on (¢, ) X B,

any solution « of (13”) satisfies

26) j " e VAL gy o

to tr

for any « and r (0 <& < 2p,2n <7y)

provided (%, & S,, where v denotes the vector obtained by expelling the
0-th component of . Set (5(t, DHUQ) = (¥4t, 2)). Obviously the column
vectors v; (j =1, - - -, 2k) are independent solutions of the following equation

[an + B—xt + Bo + B1t_l]1l7 =0 s

where B; are some smooth functions of 2 on R*. Assuming that the
multiplicity m of L' exceeds k, take some bounded measurable functions
g (j=1,---,m) on B such that >7, v, Dh,g() &S, On account of
Proposition 3 (iv), the square of the integral

j B fi Vi(t, Dh,g,&(Rdalt

is integrable on (¢, o) provided ge L*(B,s) and y > n. Now the same
reasoning as in the proof of Proposition 2 yields a contradiction to (26).
Q.E.D.

It remains to prove Lemma 6.

Proof of Lemma 6. Denote by S the solutions of the equation (B).
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Put Q,(x) = D i<;<n bj(e0)x’. We consider a class of differential operators
D, = {3 1<;<. P;(t){: p; is holomorphic at ¢ = =} for non-negative integer
h. Observe that for any D e D, there exists a unique differential operator
in D,_, (denote it by r(D)) such that D and r(D) agree on S. To a
differential operator D = > .., p;®)9] in D, we assign a polynomial
> o<i<n Pj(00)x?, which will be denoted by f(D). Finally, for a polynomial
Q(x) (@) stands for the remainder with respect to @,. It suffices to show
that for = nof. The equality clearly holds if 0 < h < n — 1. So we proceed
by induction. Assume that D has a form D = > ;... p,)9{. Put D=
20s3<n Pf(00] — Prsi®01 (o< izn-1 b4(8)9]). Then we have for(D) = fo r(ﬁ)
= rof(D). On the other hand, it holds that

o f(D) = ﬂ({osjz_,;hpj(oo)xf — ph“(oo)( Z—l bj(oo)xj>xh+l—n})

= #({, 3, P + pr(ea)at )
= zof(D). Q.E.D.

Now we are ready to prove the theorems.

Proof of Theorem 1. We have proved (i) in 4.1. From Lemma 1,
Propositions 2 and 4 it follows that Lf . ~ [¥] J@ AdA (kK is the greatest
integer such that 2’ < &+ 1/2). Since the functiorfz e 7 is rapidly decreasing
as ¢ — oo, neither Lf with a positive half-integer nor L{L with a positive
integer k has an eigenvalue (§ 3, [5]). For a positive integer k, L maps an
infinite dimensional space ﬁ+,k—l ﬁ+,0(C;°(R)1) to zero due to Lemma 4.
This completes the proof of (ii) Q.E.D.

Proof of Theorem 2. For the representation U;* it holds that
4 \W O F W, il = F} AdA for a positive integer k. Indeed, the equiva-
lence follows from theRfact that [4"| W].. = [k] fi AdA and that 4'|W,_, ~
4\F,W,_, (I6], Lemma 4). Moreover 4|W, ~ J®2d2 and W, = {0} for a
half-integer k. Therefore the result of § 3 of [6] iRmplies the first assertion
of the theorem. Similarly the second assertion follows from the fact that
4\ W, OF W, lec, = j@ Ad2 for a half-integer k& and that W, = {0} for a
positive integer k. QEIf)
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Appendix

The following proposition as well as an elegant proof of it is due to
Professors T. Hirai and N. Tatsuuma.

ProposiTiON A. It holds that

(1) Indg,en; = Indg, s,

(ii) Indy,eI = [R]Indg, ;¢ 7f @ [WRo] Indg, ;¢ 77,
where I denotes the unit representation of {e}. In particular the associated
measures of the representation Indg ., 7> are absolutely continuous ones on G.

Proof. We consider subgroups
G_1:{<e 0>:e:il,CeC}
e

and

G, = {<§k“ g_l): ke C* e c} :

Note that G, is a semi-direct product group between C and C*. The
representations 7§ ((e C) of G_, will be defined as follows.

(e (s -

where (¢, {) =& + G for £ =6, + i, and {={, + i, From Mackey’s
theorem on irreducible unitary representations of semi-direct product group
it follows that if && = 0,

Ind 7 = Ind %

G-11G1 G-11G1

(in fact, both representations are irreducible representations of G,). From
Mackey’s theorem on the induced representations, we have

Ind 7} =~ Ind(Ind ( Ind y;g)) .

G-11@ G11G \GotG1 \G-11Go

Since the fact that Ind,_,;¢, 7* =~ =¥ is known, (i) has been proved. As
one sees easily

Ind I:J@pgdc‘@f@pgdé.
C c

{e}1G-1

Thus

https://doi.org/10.1017/50027763000018821 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018821

REPRESENTATIONS OF SL(2,C) 111

Ind I = Ind (Ind I) ~ (% md ppat @ " Ind 5zdt

fe}1 @ G_11G \{e}t1G-1 C G-11G C G-11G

= [Ro] Ind UM @[30] Ind Do+
G-11G G-11G

Now, since Inds_,; 67, = Indg, ;¢ 7%, the assertion (ii) follows. The remaining
part of the proposition follows from the fact that Plancherel measure of
G is absolutely continuous with support é\{(o, ) —1<2<0} ([10], 6 in
§14). Q.E.D.
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