Canad. Math. Bull. Vol. 25 (3), 1982

A COUNTEREXAMPLE IN THE PERTURBATION THEORY OF C*-ALGEBRAS

ΒY

B. E. JOHNSON

ABSTRACT. The strongest positive results in the stability theory of C*-algebras assert that if $\mathfrak{A}, \mathfrak{B}$ are sufficiently close C*-subalgebras of $\mathfrak{Q}(H)$ of certain kinds, then there is a unitary operator U on H near I, such that $U^*\mathfrak{B}U=\mathfrak{A}$. We give examples of C*-algebras $\mathfrak{A}, \mathfrak{B}$, both isomorphic to the algebra of continuous functions from [0, 1] to the algebra of compact operators on Hilbert space, which can be as close as we like, yet for which there is no isomorphism $\alpha: \mathfrak{B} \to \mathfrak{A}$ with $||b-\alpha b|| \le 1/70 ||b|| (b \in \mathfrak{B})$. Thus the results mentioned do not extend to these C*-algebras.

We shall describe, for each $\varepsilon' > 0$, two C^* -subalgebras \mathfrak{A} and \mathfrak{B} of $\mathscr{L}(K)$, the algebra of bounded operators on a Hilbert space K whose Hausdorff distance

 $d(\mathfrak{A},\mathfrak{B}) = \max\left(\sup_{a\in\mathfrak{A}_1}\inf_{b\in\mathfrak{B}_1}\|a-b\|,\sup_{b\in\mathfrak{B}_1}\inf_{a\in\mathfrak{A}_1}\|a-b\|\right)$

satisfies $d(\mathfrak{A},\mathfrak{B}) < \varepsilon'$ yet for which there is no isomorphism $\alpha : \mathfrak{B} \to \mathfrak{A}$ with $\|b-\alpha(b)\| \le 1/70 \|b\| (b \in \mathfrak{B})$. $(\mathfrak{A}_1, \mathfrak{B}_1 \text{ denote the unit balls of the respective})$ algebras.) The algebras \mathfrak{A} and \mathfrak{B} are both isomorphic to the algebra of continuous functions from [0, 1] into $\mathscr{L}\mathscr{C}(L)$, the algebra of compact operators on the Hilbert space L. In fact we show that \mathfrak{B} has a subalgebra \mathfrak{C} isomorphic with $\mathscr{LC}(L)$ so that $\mathfrak{C} \subseteq \mathfrak{A}$ in the notation of [2; Definition 2.1] yet there is no homomorphism $\beta: \mathfrak{C} \to \mathfrak{A}$ with $||c - \beta(c)|| \le 1/70 ||c|| (c \in \mathfrak{C})$. Replacing 70^{-1} by 1000^{-1} we get the same result for a subalgebra \mathfrak{C}_0 of \mathfrak{C} isomorphic with c_0 . Phillips and Raeburn have shown ([7] Theorem 4.22) that there are s, t > 0such that if \mathfrak{A} is a unital continuous trace C^* -algebra and $d(\mathfrak{A}, \mathfrak{B}) < \varepsilon < s$ then there is a isomorphism $\alpha: \mathfrak{B} \to \mathfrak{A}$ with $||b - \alpha(b)|| \le t \varepsilon^{1/2} ||b|| \ (b \in \mathfrak{B})$. Thus our example shows that their theorem cannot be extended to non-unital continuous trace C^* -algebras. Christensen [2; Corollary 6.3] has shown that if \mathfrak{C} is a finite dimensional abelian C*-algebra and $\mathfrak{C} \stackrel{\flat}{\subseteq} \mathfrak{A}$ then there is a * homomorphism $\alpha: \mathfrak{C} \to \mathfrak{A}$ with $\|c - \alpha(c)\| < 22\varepsilon^{1/2} \|c\| \ (c \in \mathfrak{C})$. Thus our example also shows that this result does not extend to the case of an AF algebra \mathfrak{C} .

We denote the set of strictly positive integers by \mathbb{Z}^+ , $L = \ell^2(\mathbb{Z}^+)$ and ξ_1, ξ_2, \ldots is the standard basis of *L*. E_n is the orthogonal projection onto the span of

AMS Subject Classification (1980): 46L05

Received by the editors January 20, 1981.

 ξ_1, \ldots, ξ_n . Any $A \in \mathcal{L}(L)$ is given by a matrix $A_{ij} = \langle A\xi_j, \xi_i \rangle$. If $d = \{d_1, d_2, \ldots\}$ is a strictly increasing sequence from \mathbb{Z}^+ and $A \in \mathcal{L}(L)$ we define A_d by

$$(A_d)_{ij} = 0$$
 if for some k
 $d_{k-1} < i \le d_k$ and $d_{k-2} < j \le d_{k+1}$
 $= A_{ii}$ otherwise

where $d_{-1} = d_0 = 0$. If we partition the basis into blocks of length $d_k - d_{k-1}$ and make a corresponding partition of the matrix for A then A_d is obtained from A by replacing the blocks on the main diagonal and the two adjacent diagonals by zero. Since the diagonal maps

$$A \mapsto \sum_{k} (E_k - E_{k-1}) A (E_{k+l} - E_{k+l-1})$$

have norm $1 \ (l \in \mathbb{Z} \text{ and we put } E_m = 0 \text{ if } m \le 0)$ we see $A_d \in \mathscr{L}(L)$ and $||A_d|| \le 4 ||A||$.

LEMMA 1. For each $\varepsilon > 0$ and each $d_1 < d_2 < \cdots$ there exists a self-adjoint element A of $\mathcal{L}(L)$ with

$$\|A\| \le 1$$

$$\|A_d\| = 1$$

$$\|AE_n - E_n A\| \le \varepsilon \qquad n \in \mathbb{Z}^+.$$

Proof. Let α_n $(n \in \mathbb{Z})$ be the Fourier coefficients of the function $f(e^{i\theta}) = i\theta/\pi(-\pi < \theta \le \pi)$ in $L^{\infty}(\mathbb{T})$. Then $\alpha_n = (-1)^{n+1}/n\pi(n \ne 0)$ and $\alpha_0 = 0$. However $\sum \alpha_{|n|}e^{in\theta}$ is the Fourier series of the L^2 function $2\pi^{-1}\log|1+e^{i\theta}|$ which is not in $L^{\infty}(\mathbb{T})$. Thus [4; p. 135] the matrix $[\alpha_{j-i}]$ represents an operator on $\ell^2(\mathbb{Z})$ of norm 1 but $[\alpha_{|j-i|}]$ does not represent a bounded operator. Thus taking only $i, j > 0, [\alpha_{j-i}]$ is an operator on L of norm 1 [4; p. 139] whereas $[\alpha_{|j-i|}]$ is not because, writing $\ell^2(\mathbb{Z}) = L \oplus L^{\perp}$ divides $[\alpha_{|j-i|}]$ into four blocks of which the off diagonal blocks are the same as the corresponding blocks in $\pm [\alpha_{j-i}]$ and so represent a bounded operator whereas the two blocks on the main diagonal are in fact the same and so must both represent unbounded operators.

By taking *m* sufficiently large the matrix $C = E_m[\alpha_{|i-j|}]E_m$ represents an element of $\mathscr{L}(L)$ of norm $>\varepsilon^{-1}$. Define $S_d, T_d: \mathscr{L}(L) \to \mathscr{L}(L)$ by

$$(S_d B)_{ij} = B_{d_{2i}d_{2i}}$$

$$(T_d B)_{ij} = B_{kl} \quad \text{if } i = d_{2k}, j = d_{2l}$$

$$= 0 \quad \text{if } (i, j) \text{ is not of the form}$$

$$(d_{2k}, d_{2l}).$$

 T_d is an isometry, S_d is a contraction and $S_d T_d$ = identity. Put $A = ||C||^{-1} T_d C$.

Then $A = A^* = A_d$ and ||A|| = 1. Also if $d_{2k} \le n < d_{2k+2}$

$$\begin{split} \|AE_{n} - E_{n}A\| &= \|S_{d}(AE_{n} - E_{n}A)\| \\ &= \|(S_{d}A)E_{k} - E_{k}(S_{d}A)\| \\ &= \|C\|^{-1} \|CE_{k} - E_{k}C\| \\ &= \|C\|^{-1} \max(\|(I - E_{k})CE_{k}\|, \|E_{k}C(I - E_{k})\|) \\ &= \|C\|^{-1} \max(\|(I - E_{k})E_{m}[\alpha_{j-i}]E_{m}E_{k}\|, \|E_{k}E_{m}[\alpha_{j-i}]E_{m}(I - E_{k})\| \\ &\leq \|C\|^{-1} < \varepsilon. \end{split}$$

We denote the set of self adjoint operators in $\mathscr{L}(L)$ by $\mathscr{L}(L)_{s.a.}$.

LEMMA 2. For each $\varepsilon > 0$ there is a function $A : [0, 1] \rightarrow \mathscr{L}(L)_{s.a.}$ and functions $A_n : [0, 1] \rightarrow \mathscr{L}(L)_{s.a.} n \in \mathbb{Z}^+$ such that

- 1. $||A_n(x) A(x)|| \le \varepsilon \ (n \in \mathbb{Z}^+)$
- 2. $||A(x)|| \le 1$ ($x \in [0, 1]$)
- 3. A is continuous in the weak operator topology and $x \mapsto A_n(x)\xi_i$ i = 1, ..., n are norm continuous.
- There is no function A_∞:[0, 1]→ L(L), continuous in the strong * operator topology, for which

$$||A_{\infty}(x) - A(x)|| \le \frac{1}{5}$$
 ($x \in [0, 1]$).

The strong * operator topology is that determined by the semi norms $||B\xi||, ||B^*\xi||, \xi \in L.$

Proof. Consider the set

$$\mathscr{A}_{\varepsilon} = \{A; A \in \mathscr{L}(L)_{s.a.}, \|A\| \le 1, \|AE_n - E_nA\| \le \varepsilon \ (n \in \mathbb{Z}^+)\}$$

with the weak operator topology. $\mathscr{A}_{\varepsilon}$ is a weak operator closed bounded convex subset of $\mathscr{L}(L)$ and so is compact. It is also metrisable and so if $X \subseteq [0, 1]$ is the Cantor set there is a continuous surjection $A_0: X \to \mathscr{A}_{\varepsilon}$ [6, p. 166]. We extend A_0 to a continuous surjection $A: [0, 1] \to \mathscr{A}_{\varepsilon}$ by linear interpolation on each interval of $[0, 1] \setminus X$ whose endpoints are in X. For each n put $A_n(x) = E_n A(x) E_n + (I - E_n) A(x) (I - E_n)$. We have

$$\begin{split} \|A_n(x) - A(x)\| &= \|-E_n A(x)(I - E_n) - (I - E_n)A(x)E_n\| \\ &= \max(\|E_n A(x)(I - E_n)\|, \|(I - E_n)A(x)E_n\|) \\ &= \|A(x)E_n - E_n A(x)\| \le \varepsilon, \end{split}$$

giving 1. 2 is obvious and A is weak operator continuous so $x \mapsto A_n(x)\xi_i$ $(i \le n)$ is weakly continuous. As its range is in the finite dimensional space E_nL , on which the weak and norm topologies coincide, it is norm continuous.

Suppose a function A_{∞} as in 4 existed. For each *i* the sets $\{A_{\infty}(x)\xi_i; x \in [0, 1]\}$ and $\{A_{\infty}(x)^*\xi_i; x \in [0, 1]\}$ are norm compact. Thus we can define inductively a

[September

sequence $0 < d_1 < d_2 < d_3 \cdots$ of integers such that for each *i*,

$$\|E_{d_i}A_{\infty}(x)(I-E_{d_{i+1}})\| < (5.2^{i+2})^{-1} \text{ and } \|(I-E_{d_{i+1}})A_{\infty}(x)E_{d_i}\| < (5.2^{i+2})^{-1}.$$

We then have

$$A_{\infty}(x)_{d} = \sum \left(E_{d_{i}} - E_{d_{i-1}} \right) A_{\infty}(x) \left(I - E_{d_{i+1}} \right) + \sum \left(I - E_{d_{i+1}} \right) A_{\infty}(x) \left(E_{d_{i}} - E_{d_{i-1}} \right)$$

so that $||A_{\infty}(x)_d|| < \frac{1}{5}$. As the map $A \mapsto A_d$ has norm ≤ 4 we see $||A_{\infty}(x)_d - A(x)_d|| \leq \frac{4}{5}$ so $||A(x)_d|| < 1$. However by Lemma 1 there are values of x with $||A(x)_d|| = 1$.

We denote the C*-algebra of bounded functions $[0, 1] \rightarrow \mathcal{L}(L)$ by \mathfrak{D} and the subalgebra of norm continuous functions with values in $\mathcal{L}(H)$ by \mathfrak{A} . Given $\varepsilon > 0$ let $A \in \mathfrak{D}$ as in Lemma 2 and put $U = \exp i\pi A/8$ and $\alpha = \operatorname{ad} U$ (that is $\alpha(B) = U^*BU$) and $\alpha(x) = \operatorname{ad} U(x)$. We denote the map $C \mapsto CB-BC$ by δB . For $c \in \mathcal{L}(L)$ let $j(c) \in \mathfrak{A}$ be the constant function with value c, that is $j(c)(x) = c, 0 \le x \le 1$.

THEOREM 3. Let $\varepsilon' > 0$. For $\varepsilon < \min\{\frac{1}{2}, \frac{1}{2}\varepsilon' \exp{-3\pi/4}\}$ we have $d(\mathfrak{A}, \alpha\mathfrak{A}) < \varepsilon'$ and hence $\mathfrak{C} = \alpha j(\mathscr{LC}(L)) \subseteq \mathfrak{A}$. There is no homomorphism $\beta: \mathfrak{C} \to \mathfrak{A}$ with $\|c - \beta(c)\| \le \frac{1}{70} \|c\| (c \in \mathfrak{C})$.

Proof. Let $D = \delta A$, $a \in \mathfrak{A}$. Then $||D|| \leq 2$ and $E_n a(x)E_n \to a(x)$ uniformly for $0 \leq x \leq 1$ so for some value of n, $||E_n a(x)E_n - a(x)|| \leq \varepsilon ||a|| (x \in [0, 1])$. Then $||Da - (\delta A_n)(E_n a E_n)|| \leq ||D(a - E_n a E_n)|| + ||(D - \delta A_n)(E_n a E_n)|| \leq 4\varepsilon ||a||$. However, $(\delta A_n)(E_n a E_n)(x) = E_n a(x)E_n A_n(x) - A_n(x)E_n a(x)E_n \in \mathfrak{A}$ because $E_n A_n$ and $A_n E_n \in \mathfrak{A}$. Thus for each $a \in \mathfrak{A}$ there is $b \in \mathfrak{A}$ with $||b - Da|| \leq 4\varepsilon ||a||$. Using this we can show by induction that for each n there is $b_n \in \mathfrak{A}$ with $||b_n - D^n a|| \leq 6^n \varepsilon ||a||$ and hence $\operatorname{dist}(\alpha(a), \mathfrak{A}) \leq \varepsilon ||a|| \exp 3\pi/4 \leq \frac{1}{2}\varepsilon' ||a||$. Similarly $\operatorname{dist}(\alpha^{-1}(a), \mathfrak{A}) = \operatorname{dist}(a, \alpha(\mathfrak{A})) \leq \frac{1}{2}\varepsilon' ||a||$ and so $d(\mathfrak{A}, \alpha(\mathfrak{A})) \leq \varepsilon'$.

If β is as stated then α and $\beta \alpha$ are homomorphisms $i(\mathscr{LC}(L)) \to \mathfrak{D}$ with $\|\alpha - \beta \alpha | i(\mathscr{LC}(L))\| \le 70^{-1}$. For each $x \in [0, 1], \gamma(x)(c) = \beta \alpha j(c)x$ defines a homomorphism $\gamma(x)$; $\mathscr{L}\mathscr{C}(L) \to \mathscr{L}\mathscr{C}(L)$ with $\|\alpha(x)-\gamma(x)\|\leq 70^{-1}.$ As $\|\alpha - id\mathfrak{D}\| \le 2 \sin \pi/8 < \frac{7}{9}$ this implies $\|\gamma(x) - id\mathcal{L}C\| < \frac{4}{5}$ so $\gamma(x)$ is an isomorphism. As $x \mapsto \gamma(x)(c) = \beta \alpha j(c)(x)$ defines an element of \mathfrak{A} the map $x \mapsto \gamma(x)$ is continuous with respect to the point-norm topology (that is the topology defined by the semi-norms $\lambda \mapsto ||\lambda(C)||, C \in \mathscr{LC}(L)$. Let $\mu(x) = \log \gamma(x)$ (using the principal value). Then $\mu(x)$ is a derivation on $\mathcal{LC}(L)$ [3; p. 313]. If p is a polynomial in one variable then $\lambda \mapsto p(\lambda)$; $\mathscr{L}(\mathscr{L}(L)) \to \mathscr{L}(\mathscr{L}(L))$ is pointnorm continuous on bounded sets and so $x \mapsto \mu(x)$ is point-norm continuous. We have $\log \alpha(x) = \delta(x)$ where $\delta(x)(a) = i\pi (aA(x) - A(x)a)/8$. Also $\|\delta(x) - \mu(x)\|$ $= \left\| \log \alpha(x) - \log \gamma(x) \right\| \le \sum_{n>0} n^{-1} \left\| (\alpha(x) - \operatorname{id} \mathscr{L} \mathscr{C})^n - (\gamma(x) - \operatorname{id} \mathscr{L} \mathscr{C})^n \right\| \le$ $\sum_{n>0} {4 \choose 5}^{n-1} \| \alpha(x) - \gamma(x) \| \le 5\frac{1}{70} < \pi/40$. For each $x \in [0, 1]$ define $B(x) \in \mathcal{L}(L)$ by $B(x)c\xi_1 = (\delta(x) - \mu(x))(ce_{11})\xi_1(c \in \mathscr{LC}(L))$. Then as in [5; Theorem 3.1], $(\delta(x) - \mu(x))c = cB(x) - B(x)c, ||B(x)|| \le \pi/40 \text{ and } \langle B(x)\xi_1, \xi_1 \rangle = 0. \text{ Put } A_{\infty}(x) =$

 $A(x)-8B(x)/\pi i$. Then $||A_{\infty}(x)-A(x)|| \leq \frac{1}{5}$ and $\mu(x)a = i\pi(aA_{\infty}(x)-A_{\infty}(x)a)/8$. For $\eta, \zeta \in L$ let $\eta \otimes \zeta$ be the rank one operator $\xi \mapsto \langle \xi, \zeta \rangle \eta$ and put $e_{ij} = \xi_i \otimes \xi_j$. We have

$$8e_{ii}\mu(x)(e_{ii}) = i\pi\xi_i \otimes (A_{\infty}^*(x)\xi_i - (A_{\infty}(x)_{ii})^-\xi_i)$$

$$8\mu(x)(e_{ii})e_{ii} = i\pi(A_{\infty}(x)_{ii}\xi_i - A_{\infty}(x)\xi_i)\otimes\xi_i$$

$$8e_{ii}\mu(x)(e_{ij})e_{jj} = i\pi(A_{\infty}(x)_{jj} - A_{\infty}(x)_{ii})e_{ij}$$

$$A(x)_{11} = A_{\infty}(x)_{11}$$

Since the left of the first three equations is a norm continuous function of x and $A(x)_{11}$ is continuous we see that all the $A_{\infty}(x)_{ii}$ are continuous and $x \mapsto A_{\infty}(x)$ is strong * continuous. This contradicts the properties of A in Lemma 2.

By identifying a diagonal matrix with its diagonal sequence we can consider $c_0 \subseteq \mathscr{LC}(L)$.

COROLLARY 4. Let $\mathfrak{C}_0 = \alpha j(c_0)$ and $\varepsilon' < (1000^{-1})$. Then there is no * homomorphism $\beta_0: \mathfrak{C}_0 \to \mathfrak{A}$ with $||c - \beta_0(c)|| \le 1000^{-1} ||c|| (c \in \mathfrak{C}_0)$.

Proof. We shall use the method of [2; Theorem 6.4] to extend β_0 to \mathfrak{C} . Consider \mathcal{D} as an algebra of operators on the Hilbert space $K = \ell_L^2[0, 1]$. Then there is a unitary operator W on K with $||I-W|| < 999^{-1}$ [1; Theorem 5.4] and $\beta_0(c) = W^* c W \ (c \in \mathbb{G}_0).$ Put $\mathbb{G}_1 = W^* \mathbb{G} W.$ Then $\mathbb{G}_1 \subseteq \mathbb{A}$ where $\varepsilon'' = 3(999)^{-1}$ and $\beta_0(\mathfrak{C}_0) \subseteq \mathfrak{C}_1 \cap \mathfrak{A}$. Put $p_{ii} = W^* \alpha j(E_{ii}) W$. For each $n \in \mathbb{Z}^+$ let $f'_n \in \mathfrak{A}$ with $||p_{1n} - f'_n|| \le 332^{-1}$ and put $f_n = p_{11}f'_n p_{nn}$ so $||P_{1n} - f_n|| < 332^{-1}$. Thus $||f_n f^*_n - p_{11}|| \le 1200$ $||f_n|| ||p_{1n} - f_n|| + ||p_{1n} - f_n|| < 165^{-1}$ and so $(f_n f_n^*)^{-1/2}$ exists in the algebra $p_{11} \mathfrak{A} p_{11}$ and we have $\|p_{11} - (f_n f_n^*)^{-1/2}\| < (1 - 165^{-1})^{-1/2} - 1 < 328^{-1}$ so that $g_n = 1$ $(f_n f_n^*)^{-1/2} f_n$ has $||g_n - f_n|| \le 328^{-1}(1 + 332^{-1}) < 327^{-1}$. Also $g_n \in p_{11} \mathfrak{A} p_{nn}$ and $g_n g_n^* = p_{11}$ so $g_n^* g_n$ is a projection in $p_{nn} \mathfrak{A} p_{nn}$ with $||g_n^* g_n - p_{nn}|| < ||g_n^* g_n - g_{nn}|| < ||g_n^* g_n - g_{nn}||$ $||g_n|| ||g_n - p_{1n}|| + ||g_n - p_{1n}|| < 4.327^{-1}$ and so $g_n^* g_n = p_{nn}$. Put $V = \sum_n p_{n1} g_n$, the series converging because for each n the nth term is a unitary operator on $p_{nn}K$. As $\sum_{n} j(e_{nn})$ converges weakly to I on K we see $\sum p_{nn}$ converges weakly to I and so V is unitary and $||I-V|| = \sup_n ||p_{nn} - p_{n1}g_n|| = \sup_n ||p_{1n} - g_n|| < \infty$ 2.327⁻¹. Now put $\beta(c) = V^* W^* c W V (c \in \mathfrak{C})$. Then $\beta \alpha(j(e_{ij})) = V^* p_{ij} V = V^* p_{ij} V$ $g_i^* p_{11} g_i \in \mathcal{A}$, so that

$$\beta(\mathfrak{C}) \subseteq \mathfrak{A}$$

and

$$c - \beta(c) \| \le 2 \|I - WV\| \|c\| \le 2(\|I - W\| + \|I - V\|) \|c\| \le 70^{-1} \|c\| (c \in \mathbb{G}).$$

Although K is not separable the subalgebra of \mathfrak{D} generated by \mathfrak{A} and $\alpha \mathfrak{A}$ is and so could be represented on a separable Hilbert space. The algebras \mathfrak{A} and

B. E. JOHNSON

 $\alpha(\mathfrak{A})$ do not have units but we could adjoin the identity on K to \mathfrak{A} , $\alpha(\mathfrak{A})$ and \mathfrak{C} and the identity on L to $\mathscr{LC}(L)$ and the proofs would apply. The algebra obtained by adjoining a unit to \mathfrak{A} is postliminal but does not have continuous trace.

References

1. E. Christensen, Perturbation of operator algebras, Invent. Math. 43 (1977), 1-13.

2. E. Christensen, Near inclusions of C^* -algebras, Copenhagen preprint series no. 5, 1978.

3. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris 1969.

4. P. R. Halmos, A Hilbert space problem book, Van Nostrand, New Jersey 1967.

5. B. E. Johnson, Perturbations of Banach algebras, Proc. London Math. Soc. 34 (1977), 439-458.

6. J. L. Kelley, General Topology, Van Nostrand, Princeton 1955.

7. J. Phillips and I. Raeburn, Perturbation of operator algebras, II, Proc. London Math. Soc. 43 (1981), 46-72.

THE UNIVERSITY

NEWCASTLE UPON TYNE, ENGLAND