A COUNTEREXAMPLE IN THE PERTURBATION THEORY OF C^{*}-ALGEBRAS

BY
B. E. JOHNSON

Abstract

The strongest positive results in the stability theory of C^{*}-algebras assert that if $\mathfrak{A}, \mathfrak{B}$ are sufficiently close C^{*}-subalgebras of $\mathfrak{L}(H)$ of certain kinds, then there is a unitary operator U on H near I, such that $U^{*} \mathfrak{B} U=\mathfrak{A}$. We give examples of C^{*}-algebras $\mathfrak{A}, \mathfrak{B}$, both isomorphic to the algebra of continuous functions from [0,1] to the algebra of compact operators on Hilbert space, which can be as close as we like, yet for which there is no isomorphism $\alpha: \mathfrak{B} \rightarrow \mathfrak{U}$ with $\|b-\alpha b\| \leq 1 / 70\|b\|(b \in \mathfrak{B})$. Thus the results mentioned do not extend to these C^{*}-algebras.

We shall describe, for each $\varepsilon^{\prime}>0$, two C^{*}-subalgebras \mathfrak{A} and \mathfrak{B} of $\mathscr{L}(K)$, the algebra of bounded operators on a Hilbert space K whose Hausdorff distance

$$
d(\mathfrak{H}, \mathfrak{B})=\max \left(\sup _{a \in \mathfrak{R}_{1}} \inf _{b \in \mathfrak{B}_{1}}\|a-b\|, \sup _{b \in \mathfrak{B}_{1}} \inf _{a \in \mathfrak{Y}_{1}}\|a-b\|\right)
$$

satisfies $d(\mathfrak{A}, \mathfrak{B})<\varepsilon^{\prime}$ yet for which there is no isomorphism $\alpha: \mathfrak{B} \rightarrow \mathfrak{A}$ with $\|b-\alpha(b)\| \leq 1 / 70\|b\|(b \in \mathfrak{B})$. $\left(\mathfrak{H}_{1}, \mathfrak{B}_{1}\right.$ denote the unit balls of the respective algebras.) The algebras \mathfrak{A} and \mathfrak{B} are both isomorphic to the algebra of continuous functions from $[0,1]$ into $\mathscr{L} \mathscr{C}(L)$, the algebra of compact operators on the Hilbert space L. In fact we show that \mathfrak{B} has a subalgebra \Subset isomorphic with $\mathscr{L} \mathscr{C}(L)$ so that $\mathfrak{C}^{\subseteq} \subseteq \mathfrak{A}$ in the notation of [2; Definition 2.1] yet there is no homomorphism $\beta: \mathfrak{C} \rightarrow \mathfrak{A}$ with $\|c-\beta(c)\| \leq 1 / 70\|c\|(c \in \mathfrak{C})$. Replacing 70^{-1} by 1000^{-1} we get the same result for a subalgebra \mathfrak{C}_{0} of \mathfrak{C} isomorphic with c_{0}. Phillips and Raeburn have shown ([7] Theorem 4.22) that there are $s, t>0$ such that if \mathfrak{A} is a unital continuous trace C^{*}-algebra and $d(\mathfrak{H}, \mathfrak{B})<\varepsilon<s$ then there is a isomorphism $\alpha: \mathfrak{B} \rightarrow \mathfrak{A}$ with $\|b-\alpha(b)\| \leq t \varepsilon^{1 / 2}\|b\|(b \in \mathfrak{B})$. Thus our example shows that their theorem cannot be extended to non-unital continuous trace C^{*}-algebras. Christensen [2; Corollary 6.3] has shown that if \mathfrak{C} is a finite
 $\alpha: \mathfrak{C} \rightarrow \mathfrak{H}$ with $\|c-\alpha(c)\|<22 \varepsilon^{1 / 2}\|c\|(c \in \mathbb{C})$. Thus our example also shows that this result does not extend to the case of an $A F$ algebra $\mathbb{C}^{\mathfrak{C}}$.

We denote the set of strictly positive integers by $\mathbb{Z}^{+}, L=\boldsymbol{\ell}^{2}\left(\mathbb{Z}^{+}\right)$and ξ_{1}, ξ_{2}, \ldots is the standard basis of $L . E_{n}$ is the orthogonal projection onto the span of

Received by the editors January 20, 1981.
AMS Subject Classification (1980): 46L05
ξ_{1}, \ldots, ξ_{n}. Any $A \in \mathscr{L}(L)$ is given by a matrix $A_{i j}=\left\langle A \xi_{j}, \xi_{i}\right\rangle$. If $d=\left\{d_{1}, d_{2}, \ldots\right\}$ is a strictly increasing sequence from \mathbb{Z}^{+}and $A \in \mathscr{L}(L)$ we define A_{d} by

$$
\begin{array}{rlrl}
\left(A_{d}\right)_{i j} & =0 & & \text { if for some } k \\
& d_{k-1}<i \leq d_{k} \quad \text { and } \quad d_{k-2}<j \leq d_{k+1} \\
& =A_{i j} & & \text { otherwise }
\end{array}
$$

where $d_{-1}=d_{0}=0$. If we partition the basis into blocks of length $d_{k}-d_{k-1}$ and make a corresponding partition of the matrix for A then A_{d} is obtained from A by replacing the blocks on the main diagonal and the two adjacent diagonals by zero. Since the diagonal maps

$$
A \mapsto \sum_{k}\left(E_{k}-E_{k-1}\right) A\left(E_{k+l}-E_{k+l-1}\right)
$$

have norm $1\left(l \in \mathbb{Z}\right.$ and we put $E_{m}=0$ if $\left.m \leq 0\right)$ we see $A_{d} \in \mathscr{L}(L)$ and $\left\|A_{d}\right\| \leq 4\|A\|$.

Lemma 1. For each $\varepsilon>0$ and each $d_{1}<d_{2}<\cdots$ there exists a self-adjoint element A of $\mathscr{L}(L)$ with

$$
\begin{aligned}
& \|A\| \leq 1 \\
& \left\|A_{d}\right\|=1 \\
& \left\|A E_{n}-E_{n} A\right\| \leq \varepsilon \quad n \in \mathbb{Z}^{+} .
\end{aligned}
$$

Proof. Let $\alpha_{n}(n \in \mathbb{Z})$ be the Fourier coefficients of the function $f\left(e^{i \theta}\right)=$ $i \theta / \pi(-\pi<\theta \leq \pi)$ in $L^{\infty}(\mathbb{T})$. Then $\alpha_{n}=(-1)^{n+1} / n \pi(n \neq 0)$ and $\alpha_{0}=0$. However $\sum \alpha_{|n|} e^{i n \theta}$ is the Fourier series of the L^{2} function $2 \pi^{-1} \log \left|1+e^{i \theta}\right|$ which is not in $L^{\infty}(\mathbb{T})$. Thus [4; p. 135] the matrix [α_{j-i}] represents an operator on $\ell^{2}(\mathbb{Z})$ of norm 1 but $\left[\alpha_{\mid j-i]}\right]$ does not represent a bounded operator. Thus taking only $i, j>0,\left[\alpha_{j-i}\right]$ is an operator on L of norm $1[4 ; \mathrm{p} .139]$ whereas $\left[\alpha_{|j-i|}\right]$ is not because, writing $\ell^{2}(\mathbb{Z})=L \oplus L^{\perp}$ divides $\left[\alpha_{\mid j-i}\right]$ into four blocks of which the off diagonal blocks are the same as the corresponding blocks in $\pm\left[\alpha_{j-i}\right]$ and so represent a bounded operator whereas the two blocks on the main diagonal are in fact the same and so must both represent unbounded operators.

By taking m sufficiently large the matrix $C=E_{m}\left[\alpha_{|i-j|}\right] E_{m}$ represents an element of $\mathscr{L}(L)$ of norm $>\varepsilon^{-1}$. Define $S_{d}, T_{d}: \mathscr{L}(L) \rightarrow \mathscr{L}(L)$ by

$$
\begin{array}{rlrl}
\left(S_{d} B\right)_{i j} & =B_{d_{2 i} d_{2 i}} & & \\
\left(T_{d} B\right)_{i j} & =B_{k l} & & \text { if } i=d_{2 k}, j=d_{2 l} \\
& =0 & & \text { if }(i, j) \text { is not of the form } \\
& & \left(d_{2 k}, d_{2 l}\right) .
\end{array}
$$

T_{d} is an isometry, S_{d} is a contraction and $S_{d} T_{d}=$ identity. Put $A=\|C\|^{-1} T_{d} C$.

Then $A=A^{*}=A_{d}$ and $\|A\|=1$. Also if $d_{2 k} \leq n<d_{2 k+2}$

$$
\begin{aligned}
\left\|A E_{n}-E_{n} A\right\| & =\left\|S_{d}\left(A E_{n}-E_{n} A\right)\right\| \\
& =\left\|\left(S_{d} A\right) E_{k}-E_{k}\left(S_{d} A\right)\right\| \\
& =\|C\|^{-1}\left\|C E_{k}-E_{k} C\right\| \\
& =\|C\|^{-1} \max \left(\left\|\left(I-E_{k}\right) C E_{k}\right\|,\left\|E_{k} C\left(I-E_{k}\right)\right\|\right) \\
& =\|C\|^{-1} \max \left(\left\|\left(I-E_{k}\right) E_{m}\left[\alpha_{j-i}\right] E_{m} E_{k}\right\|,\left\|E_{k} E_{m}\left[\alpha_{j-i}\right] E_{m}\left(I-E_{k}\right)\right\|\right. \\
& \leq\|C\|^{-1}<\varepsilon .
\end{aligned}
$$

We denote the set of self adjoint operators in $\mathscr{L}(L)$ by $\mathscr{L}(L)_{\text {s.a. }}$.
Lemma 2. For each $\varepsilon>0$ there is a function $\mathrm{A}:[0,1] \rightarrow \mathscr{L}(L)_{\text {s.a. }}$ and functions $A_{n}:[0,1] \rightarrow \mathscr{L}(L)_{\text {s.a. }} \quad n \in \mathbb{Z}^{+}$such that

1. $\left\|A_{n}(x)-A(x)\right\| \leq \varepsilon\left(n \in \mathbb{Z}^{+}\right)$
2. $\|A(x)\| \leq 1(x \in[0,1])$
3. A is continuous in the weak operator topology and $x \mapsto A_{n}(x) \xi_{i} i=1, \ldots, n$ are norm continuous.
4. There is no function $A_{\infty}:[0,1] \rightarrow \mathscr{L}(L)$, continuous in the strong * operator topology, for which

$$
\left\|A_{\infty}(x)-A(x)\right\| \leq \frac{1}{5} \quad(x \in[0,1]) .
$$

The strong ${ }^{*}$ operator topology is that determined by the semi norms $\|B \xi\|,\left\|B^{*} \xi\right\|, \xi \in L$.
Proof. Consider the set

$$
\mathscr{A}_{\varepsilon}=\left\{A ; A \in \mathscr{L}(L)_{\text {s.a. }},\|A\| \leq 1,\left\|A E_{n}-E_{n} A\right\| \leq \varepsilon\left(n \in \mathbb{Z}^{+}\right)\right\}
$$

with the weak operator topology. $\mathscr{A}_{\varepsilon}$ is a weak operator closed bounded convex subset of $\mathscr{L}(L)$ and so is compact. It is also metrisable and so if $X \subseteq[0,1]$ is the Cantor set there is a continuous surjection $A_{0}: X \rightarrow \mathscr{A}_{\varepsilon}$ [6, p. 166]. We extend A_{0} to a continuous surjection $A:[0,1] \rightarrow \mathscr{A}_{\varepsilon}$ by linear interpolation on each interval of $[0,1] \backslash X$ whose endpoints are in X. For each n put $A_{n}(x)=E_{n} A(x) E_{n}+\left(I-E_{n}\right) A(x)\left(I-E_{n}\right)$. We have

$$
\begin{aligned}
\left\|A_{n}(x)-A(x)\right\| & =\left\|-E_{n} A(x)\left(I-E_{n}\right)-\left(I-E_{n}\right) A(x) E_{n}\right\| \\
& =\max \left(\left\|E_{n} A(x)\left(I-E_{n}\right)\right\|,\left\|\left(I-E_{n}\right) A(x) E_{n}\right\|\right) \\
& =\left\|A(x) E_{n}-E_{n} A(x)\right\| \leq \varepsilon,
\end{aligned}
$$

giving 1. 2 is obvious and A is weak operator continuous so $x \mapsto A_{n}(x) \xi_{i}$ $(i \leq n)$ is weakly continuous. As its range is in the finite dimensional space $E_{n} L$, on which the weak and norm topologies coincide, it is norm continuous.

Suppose a function A_{∞} as in 4 existed. For each i the sets $\left\{A_{\infty}(x) \xi_{i} ; x \in[0,1]\right\}$ and $\left\{A_{\infty}(x)^{*} \xi_{i} ; x \in[0,1]\right\}$ are norm compact. Thus we can define inductively a
sequence $0<d_{1}<d_{2}<d_{3} \cdots$ of integers such that for each i,

$$
\left\|E_{d_{i}} A_{\infty}(x)\left(I-E_{d_{i+1}}\right)\right\|<\left(5.2^{i+2}\right)^{-1} \quad \text { and } \quad\left\|\left(I-E_{d_{i+1}}\right) A_{\infty}(x) E_{d_{i}}\right\|<\left(5.2^{i+2}\right)^{-1} .
$$

We then have

$$
A_{\infty}(x)_{d}=\sum\left(E_{d_{i}}-E_{d_{i-1}}\right) A_{\infty}(x)\left(I-E_{d_{i+1}}\right)+\sum\left(I-E_{d_{i+1}}\right) A_{\infty}(x)\left(E_{d_{i}}-E_{d_{i-1}}\right)
$$

so that $\left\|A_{\infty}(x)_{d}\right\|<\frac{1}{5}$. As the map $A \mapsto A_{d}$ has norm ≤ 4 we see $\left\|A_{\infty}(x)_{d}-A(x)_{d}\right\| \leq \frac{4}{5}$ so $\left\|A(x)_{d}\right\|<1$. However by Lemma 1 there are values of x with $\left\|A(x)_{d}\right\|=1$.

We denote the C^{*}-algebra of bounded functions $[0,1] \rightarrow \mathscr{L}(L)$ by \mathfrak{D} and the subalgebra of norm continuous functions with values in $\mathscr{L C}(H)$ by \mathfrak{Y}. Given $\varepsilon>0$ let $A \in \mathfrak{D}$ as in Lemma 2 and put $U=\exp i \pi A / 8$ and $\alpha=\operatorname{ad} U$ (that is $\left.\alpha(B)=U^{*} B U\right)$ and $\alpha(x)=\operatorname{ad} U(x)$. We denote the map $C \mapsto C B-B C$ by δB. For $c \in \mathscr{L} \mathscr{C}(L)$ let $j(c) \in \mathfrak{H}$ be the constant function with value c, that is $j(c)(x)=c, 0 \leq x \leq 1$.

Theorem 3. Let $\varepsilon^{\prime}>0$. For $\varepsilon<\min \left\{\frac{1}{2}, \frac{1}{2} \varepsilon^{\prime} \exp -3 \pi / 4\right\}$ we have $d(\mathfrak{l}, \alpha \mathfrak{l})<\varepsilon^{\prime}$ and hence $\mathfrak{C}=\alpha j(\mathscr{L} \mathscr{C}(L)) \stackrel{\&}{\subseteq} \mathfrak{M}$. There is no homomorphism $\beta: \mathfrak{C} \rightarrow \mathfrak{A}$ with $\|c-\beta(c)\| \leq \frac{1}{70}\|c\|(c \in \mathfrak{C})$.

Proof. Let $D=\delta A, a \in \mathfrak{A}$. Then $\|D\| \leq 2$ and $E_{n} a(x) E_{n} \rightarrow a(x)$ uniformly for $0 \leq x \leq 1$ so for some value of $n,\left\|E_{n} a(x) E_{n}-a(x)\right\| \leq \varepsilon\|a\|(x \in[0,1])$. Then $\left\|D a-\left(\delta A_{n}\right)\left(E_{n} a E_{n}\right)\right\| \leq\left\|D\left(a-E_{n} a E_{n}\right)\right\|+\left\|\left(D-\delta A_{n}\right)\left(E_{n} a E_{n}\right)\right\| \leq 4 \varepsilon\|a\|$. However, $\left(\delta A_{n}\right)\left(E_{n} a E_{n}\right)(x)=E_{n} a(x) E_{n} A_{n}(x)-A_{n}(x) E_{n} a(x) E_{n} \in \mathfrak{H}$ because $E_{n} A_{n}$ and $A_{n} E_{n} \in \mathfrak{A}$. Thus for each $a \in \mathfrak{A}$ there is $b \in \mathfrak{H}$ with $\|b-D a\| \leq 4 \varepsilon\|a\|$. Using this we can show by induction that for each n there is $b_{n} \in \mathfrak{H}$ with $\left\|b_{n}-D^{n} a\right\| \leq$ $6^{n} \varepsilon\|a\| \quad$ and \quad hence $\quad \operatorname{dist}(\alpha(a), \mathfrak{R}) \leq \varepsilon\|a\| \exp 3 \pi / 4 \leq \frac{1}{2} \varepsilon^{\prime}\|a\|$. Similarly $\operatorname{dist}\left(\alpha^{-1}(a), \mathfrak{Y}\right)=\operatorname{dist}(a, \alpha(\mathfrak{X})) \leq \frac{1}{2} \varepsilon^{\prime}\|a\|$ and so $d(\mathfrak{H}, \alpha(\mathfrak{X})) \leq \varepsilon^{\prime}$.

If β is as stated then α and $\beta \alpha$ are homomorphisms $j(\mathscr{L} \mathscr{C}(L)) \rightarrow \mathfrak{D}$ with $\|\alpha-\beta \alpha \mid j(\mathscr{L} \mathscr{C}(L))\| \leq 70^{-1}$. For each $x \in[0,1], \gamma(x)(c)=\beta \alpha j(c) x$ defines a homomorphism $\quad \gamma(x) ; \mathscr{L} \mathscr{C}(L) \rightarrow \mathscr{L} \mathscr{C}(L) \quad$ with $\quad\|\alpha(x)-\gamma(x)\| \leq 70^{-1}$. As $\|\alpha-\mathrm{id} \mathfrak{D}\| \leq 2 \sin \pi / 8<\frac{7}{9}$ this implies $\|\gamma(x)-\mathrm{id} \mathscr{L} \mathscr{C}\|<\frac{4}{5}$ so $\gamma(x)$ is an isomorphism. As $x \mapsto \gamma(x)(c)=\beta \alpha j(c)(x)$ defines an element of \mathfrak{A} the map $x \mapsto \gamma(x)$ is continuous with respect to the point-norm topology (that is the topology defined by the semi-norms $\lambda \mapsto\|\lambda(C)\|, C \in \mathscr{L} \mathscr{C}(L)$). Let $\mu(x)=\log \gamma(x)$ (using the principal value). Then $\mu(x)$ is a derivation on $\mathscr{L} \mathscr{C}(L)$ [3; p.313]. If p is a polynomial in one variable then $\lambda \mapsto p(\lambda) ; \mathscr{L}(\mathscr{L} \mathscr{C}(L)) \rightarrow \mathscr{L}(\mathscr{L} \mathscr{C}(L))$ is pointnorm continuous on bounded sets and so $x \mapsto \mu(x)$ is point-norm continuous. We have $\log \alpha(x)=\delta(x)$ where $\delta(x)(a)=i \pi(a A(x)-A(x) a) / 8$. Also $\|\delta(x)-\mu(x)\|$ $=\|\log \alpha(x)-\log \gamma(x)\| \leq \sum_{n>0} n^{-1}\left\|(\alpha(x)-\mathrm{id} \mathscr{L} \mathscr{C})^{n}-(\gamma(x)-\mathrm{id} \mathscr{L} \mathscr{C})^{n}\right\| \leq$ $\sum_{n>0}\left(\frac{4}{5}\right)^{n-1}\|\alpha(x)-\gamma(x)\| \leq 5 \frac{1}{70}<\pi / 40$. For each $x \in[0,1]$ define $B(x) \in \mathscr{L}(L)$ by $B(x) c \xi_{1}=(\delta(x)-\mu(x))\left(c e_{11}\right) \xi_{1}(c \in \mathscr{L} \mathscr{C}(L))$. Then as in [5; Theorem 3.1], $(\delta(x)-\mu(x)) c=c B(x)-B(x) c,\|B(x)\| \leq \pi / 40$ and $\left\langle B(x) \xi_{1}, \xi_{1}\right\rangle=0$. Put $A_{\infty}(x)=$
$A(x)-8 B(x) / \pi i$. Then $\left\|A_{\infty}(x)-A(x)\right\| \leq \frac{1}{5}$ and $\mu(x) a=i \pi\left(a A_{\infty}(x)-A_{\infty}(x) a\right) / 8$. For $\eta, \zeta \in L$ let $\eta \otimes \zeta$ be the rank one operator $\xi \mapsto\langle\xi, \zeta\rangle \eta$ and put $e_{i j}=\xi_{i} \otimes \xi_{j}$. We have

$$
\begin{aligned}
8 e_{i i} \mu(x)\left(e_{i i}\right) & =i \pi \xi_{i} \otimes\left(A_{\infty}^{*}(x) \xi_{i}-\left(A_{\infty}(x)_{i i}\right)^{-} \xi_{i}\right) \\
8 \mu(x)\left(e_{i i}\right) e_{i i} & =i \pi\left(A_{\infty}(x)_{i i} \xi_{i}-A_{\infty}(x) \xi_{i}\right) \otimes \xi_{i} \\
8 e_{i i} \mu(x)\left(e_{i j}\right) e_{i j} & =i \pi\left(A_{\infty}(x)_{i j}-A_{\infty}(x)_{i i}\right) e_{i j} \\
A(x)_{11} & =A_{\infty}(x)_{11}
\end{aligned}
$$

Since the left of the first three equations is a norm continuous function of x and $A(x)_{11}$ is continuous we see that all the $A_{\infty}(x)_{i i}$ are continuous and $x \mapsto A_{\infty}(x)$ is strong * continuous. This contradicts the properties of A in Lemma 2.

By identifying a diagonal matrix with its diagonal sequence we can consider $c_{0} \subseteq \mathscr{L} \mathscr{C}(L)$.

Corollary 4. Let $\mathfrak{F}_{0}=\alpha j\left(c_{0}\right)$ and $\varepsilon^{\prime}<\left(1000^{-1}\right)$. Then there is no * homomorphism $\beta_{0}: \mathfrak{\Im}_{0} \rightarrow \mathfrak{A}$ with $\left\|c-\beta_{0}(c)\right\| \leq 1000^{-1}\|c\|\left(c \in \mathfrak{C}_{0}\right)$.

Proof. We shall use the method of [2; Theorem 6.4] to extend β_{0} to \mathfrak{C}. Consider \mathscr{D} as an algebra of operators on the Hilbert space $K=\ell_{L}^{2}[0,1]$. Then there is a unitary operator W on K with $\|I-W\|<999^{-1}$ [1; Theorem 5.4] and $\beta_{0}(c)=W^{*} c W\left(c \in \mathfrak{C}_{0}\right)$. Put $\mathfrak{C}_{1}=W^{*}\left(\mathbb{C} W\right.$. Then $\mathfrak{C}_{1} \stackrel{\varepsilon}{\subseteq} \subseteq \mathfrak{A}$ where $\varepsilon^{\prime \prime}=3(999)^{-1}$ and $\beta_{0}\left(\mathfrak{C}_{0}\right) \subseteq \mathfrak{C}_{1} \cap \mathfrak{A}$. Put $p_{i j}=W^{*} \alpha j\left(E_{i j}\right) W$. For each $n \in \mathbb{Z}^{+}$let $f_{n}^{\prime} \in \mathfrak{H}$ with $\left\|p_{1 n}-f_{n}^{\prime}\right\| \leq 332^{-1}$ and put $f_{n}=p_{11} f_{n}^{\prime} p_{n n}$ so $\left\|P_{1 n}-f_{n}\right\|<332^{-1}$. Thus $\left\|f_{n} f_{n}^{*}-p_{11}\right\| \leq$ $\left\|f_{n}\right\|\left\|p_{1 n}-f_{n}\right\|+\left\|p_{1 n}-f_{n}\right\|<165^{-1}$ and so $\left(f_{n} f_{n}^{*}\right)^{-1 / 2}$ exists in the algebra $p_{11} 92\left(p_{11}\right.$ and we have $\left\|p_{11}-\left(f_{n} f_{n}^{*}\right)^{-1 / 2}\right\|<\left(1-165^{-1}\right)^{-1 / 2}-1<328^{-1}$ so that $g_{n}=$ $\left(f_{n} f_{n}^{*}\right)^{-1 / 2} f_{n}$ has $\left\|g_{n}-f_{n}\right\| \leq 328^{-1}\left(1+332^{-1}\right)<327^{-1}$. Also $g_{n} \in p_{11}\left\{2 p_{n n}\right.$ and $g_{n} g_{n}^{*}=p_{11} \quad$ so $\quad g_{n}^{*} g_{n} \quad$ is a projection in $p_{n n} \mathfrak{N} p_{n n}$ with $\left\|g_{n}^{*} g_{n}-p_{n n}\right\|<$ $\left\|g_{n}\right\|\left\|g_{n}-p_{1 n}\right\|+\left\|g_{n}-p_{1 n}\right\|<4.327^{-1}$ and so $g_{n}^{*} g_{n}=p_{n n}$. Put $V=\sum_{n} p_{n 1} g_{n}$, the series converging because for each n the nth term is a unitary operator on $p_{n n} K$. As $\sum_{n} j\left(e_{n n}\right)$ converges weakly to I on K we see $\sum p_{n n}$ converges weakly to I and so V is unitary and $\|I-V\|=\sup _{n}\left\|p_{n n}-p_{n 1} g_{n}\right\|=\sup _{n}\left\|p_{1 n}-g_{n}\right\|<$ 2.327^{-1}. Now put $\beta(c)=V^{*} W^{*} c W V(c \in \mathbb{C})$. Then $\beta \alpha\left(j\left(e_{i j}\right)\right)=V^{*} p_{i j} V=$ $g_{i}^{*} p_{11} g_{j} \in \mathscr{A}$, so that

$$
\beta(\mathfrak{C}) \subseteq \mathfrak{N}
$$

and

$$
\|c-\beta(c)\| \leq 2\|I-W V\|\|c\| \leq 2(\|I-W\|+\|I-V\|)\|c\| \leq 70^{-1}\|c\|(c \in \mathbb{C}) .
$$

Although K is not separable the subalgebra of \mathfrak{D} generated by \mathfrak{H} and $\alpha \mathfrak{H}$ is and so could be represented on a separable Hilbert space. The algebras \mathfrak{A} and
$\alpha(\mathfrak{H})$ do not have units but we could adjoin the identity on K to $\mathfrak{A}, \alpha(\mathfrak{H})$ and \mathfrak{C} and the identity on L to $\mathscr{L} \mathscr{C}(L)$ and the proofs would apply. The algebra obtained by adjoining a unit to \mathfrak{H} is postliminal but does not have continuous trace.

References

1. E. Christensen, Perturbation of operator algebras, Invent. Math. 43 (1977), 1-13.
2. E. Christensen, Near inclusions of C^{*}-algebras, Copenhagen preprint series no. 5, 1978.
3. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris 1969.
4. P. R. Halmos, A Hilbert space problem book, Van Nostrand, New Jersey 1967.
5. B. E. Johnson, Perturbations of Banach algebras, Proc. London Math. Soc. 34 (1977), 439-458.
6. J. L. Kelley, General Topology, Van Nostrand, Princeton 1955.
7. J. Phillips and I. Raeburn, Perturbation of operator algebras, II, Proc. London Math. Soc. 43 (1981), 46-72.

The University
Newcastle upon Tyne, England

