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Abstract

We generalise a result of Hilbert which asserts that the Riemann zeta-function ζ(s) is hypertranscendental
over C(s). Let π be any irreducible cuspidal automorphic representation of GLm(AQ) with unitary
central character. We establish a certain type of functional difference–differential independence for
the associated L-function L(s, π). This result implies algebraic difference–differential independence of
L(s, π) over C(s) (and more strongly, over a certain field Fs which contains C(s)). In particular, L(s, π)
is hypertranscendental over C(s). We also extend a result of Ostrowski on the hypertranscendence of
ordinary Dirichlet series.
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1. Introduction and statement of results

The study of differential independence for Dirichlet series and other allied functions
has a long history. Let F be a field of meromorphic functions on the complex plane.
A meromorphic function f (s) is called hypertranscendental over F if y = f (s) does
not satisfy any nontrivial algebraic differential equation over F (that is, any equation
of the form P(y, y′, . . . , y(n)) = 0, where n is a nonnegative integer and P is a nonzero
polynomial in y, y′, . . . , y(n) whose coefficients belong to F). The field F is usually
required to be a differential field (that is, F is closed under differentiation). It was
proved by Hölder [8] that the Gamma function Γ(s) is hypertranscendental over the
field C(s) of rational functions. The following result was stated by Hilbert [7, page
428] in 1900 in his famous lecture at the ICM in Paris (without detailed proof).

Theorem A [7]. The Riemann zeta-function ζ(s) is hypertranscendental over C(s).

Hilbert’s proof is based on Hölder’s result and the functional equation

ζ(s) = 2(2π)s−1Γ(1 − s) sin( 1
2πs)ζ(1 − s), (1.1)
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as mentioned in [7, pages 428–429]. A detailed proof was written up by Stadigh in
his dissertation [22] and we can also refer to [14, Example 3.2]. Another proof of
Theorem A and a general result for a wide class of Dirichlet series were given by
Ostrowski [17].

Much later, from the viewpoint of the value-distribution of ζ(s), Voronin [25] (see
also [10, page 254]) obtained yet another proof of Theorem A and the following
stronger theorem, which is called functional independence (in the sense of Voronin)
of ζ(s) and its derivatives (see [23, page 196]). Voronin’s proof is based on a result in
his paper [24], which asserts that if σ is a real number with 1/2 < σ < 1, then the set

{(ζ(σ + it), ζ′(σ + it), . . . , ζ(K)(σ + it)) ∈ CK+1 : t ∈ R} (1.2)

is dense in CK+1. We note that this denseness result can be obtained as a consequence
of the so-called universality theorem for ζ(s) (see [23, Section 10.1]).

Theorem B [25]. Let K and N be nonnegative integers. Let H0, . . . ,HN : CK+1 → C be
continuous functions, not all identically zero. Then

N∑
n=0

snHn(ζ(s), ζ′(s), . . . , ζ(K)(s)) = 0

does not hold identically for s ∈ C\{1}.

Let π = ⊗′p≤∞πp be an irreducible cuspidal automorphic representation of GLm(AQ)
with unitary central character, where Q denotes the field of rational numbers and AQ
its ring of adeles. The L-function L(s, π) attached to π is defined as the Euler product
of local factors L(s, πp):

L(s, π) =
∏
p<∞

L(s, πp) (1.3)

(see, for example, [4] and [21]). For each p <∞, we write

L(s, πp) =

m∏
j=1

(
1 −

απ(p, j)
ps

)−1
.

Here απ(p, j) (1 ≤ j ≤ m) are complex numbers defined in terms of suitable parameters
of πp (Satake parameters if πp is unramified and Langlands parameters in general). The
Euler product (1.3) converges absolutely for<s > 1 (see [9, Section 5]).

The generalised Ramanujan conjecture (at non-archimedean places) for π predicts
that if πp (p <∞) is unramified, then

|απ(p, j)| = 1 for all 1 ≤ j ≤ m. (1.4)

This is verified for certain representations π (for example, π of GL2(AQ) corresponding
to a holomorphic Hecke eigen cusp form for SL2(Z)) but not in general.

As mentioned in [23, page 283], if π satisfies the generalised Ramanujan conjecture
(including the archimedean place), then L(s, π) has the universality property on a
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certain strip, which implies an analogous result to Theorem B (Voronin’s functional
differential independence) for L(s, π). We note that for π corresponding to a Maass
cusp form ϕ(z) of SL2(Z), the Ramanujan conjecture (1.4) is still open, but the author
[15, 16] could show the universality theorem and Voronin’s functional differential
independence for the associated L-function L(s, π) = L(s, ϕ). However, at present, the
case of higher rank m = 3, 4, 5, . . . is still open in general for the universality property,
a denseness property as in (1.2) and Voronin’s functional differential independence, as
well as the generalised Ramanujan conjecture.

In this paper, without any assumptions (such as assuming the generalised
Ramanujan conjecture) on π, we show in Theorem 1.1 a certain type of functional
difference–differential independence for the L-function L(s, π). As in Corollary
1.2, this theorem implies the hypertranscendence of L(s, π) over C(s), which is a
generalisation of Theorem A. In the following, let µ be any nonnegative integer,
h0, h1, . . . , hµ any real numbers with h0 < h1 < · · · < hµ and ν0, ν1, . . . , νµ any
nonnegative integers. We set

M :=
µ∑

j=0

(ν j + 1).

Following Reich [19, page 1352] (see also [20, page 29]), we say that a function
Φ : Cn → C is ‘locally not trivial’ if, for every nonempty open set U ⊂ Cn, the
restriction of Φ to U is not identically zero. For example, every holomorphic function
Φ : Cn→ Cwhich is not identically zero is ‘locally not trivial’, by the identity theorem
[6, page 6, Theorem 6].

Theorem 1.1. Let π be an irreducible cuspidal automorphic representation of
GLm(AQ) with unitary central character, where m is any positive integer. Let N be
a nonnegative integer. Let ΦN : CM → C be a continuous and ‘locally not trivial’
function. When N ≥ 1, for each integer 0 ≤ n ≤ N − 1, let Φn : CM → C be a continuous
function. Then

N∑
n=0

snΦn(L(s + h0, π), L′(s + h0, π), . . . , L(ν0)(s + h0, π), L(s + h1, π),

. . . , L(ν1)(s + h1, π), . . . , L(s + hµ, π), . . . , L(νµ)(s + hµ, π)) = 0

does not hold identically for s ∈ C with<s + h0 > 1.

From this theorem we immediately obtain the following result of algebraic
difference–differential independence over C(s) for L(s, π).

Corollary 1.2. Let π be as in Theorem 1.1. Let

P(s; z1, . . . , zM) =
∑

a1,...,aM

Ca1,...,aM (s)za1
1 · · · z

aM
M
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be a nonzero polynomial in M variables z1, . . . , zM whose coefficients Ca1,...,aM (s)
belong to C(s). Then

P(s; L(s + h0, π), L′(s + h0, π), . . . , L(ν0)(s + h0, π), L(s + h1, π),
. . . , L(ν1)(s + h1, π), . . . , L(s + hµ, π), . . . , L(νµ)(s + hµ, π)) = 0

does not hold identically for s ∈ C with <s + h0 > 1. In particular, L(s, π) is
hypertranscendental over C(s).

In order to obtain Theorem 1.1, we will first prove a general result (Theorem 1.4).
For a Dirichlet series F(s) =

∑∞
n=1 ann−s, let σa(F(s)) denote its abscissa of absolute

convergence. Reich [20] introduced the following class of Dirichlet series.

Definition 1.3. Let D denote the class of all Dirichlet series F(s) =
∑∞

n=1 ann−s

satisfying the following two conditions:

(i) σa(F(s)) <∞;
(ii) the set of divisors of indices n with an , 0 contains infinitely many primes.

As mentioned in [20, pages 27, 42], the conditions (i) and (ii) of the class D are
exactly the same as Ostrowski’s [17, Satz 1] when we consider the case of (ordinary)
Dirichlet series. The Riemann zeta-function ζ(s) =

∑∞
n=1 n−s and the Dirichlet series

log ζ(s) =
∑

p

∞∑
k=1

1
k

p−ks =

∞∑
n=2

Λ(n)
log n

n−s

belong to D, where Λ(n) is the von Mangoldt function (Λ(n) = log p if n = pk and
Λ(n) = 0 otherwise). As shown in (3.3), without any assumptions, we will prove that
log L(s, π) belongs toD.

The next theorem is an extension of Reich’s result [20, Satz 1] (the case N = 0).

Theorem 1.4. Let F(s) ∈ D. Let N be a nonnegative integer. Let ΦN : CM → C
be a continuous and ‘locally not trivial’ function. When N ≥ 1, for each integer
0 ≤ n ≤ N − 1 let Φn : CM → C be a continuous function. Then

N∑
n=0

snΦn(F(s + h0), F′(s + h0), . . . , F(ν0)(s + h0), F(s + h1),

. . . , F(ν1)(s + h1), . . . , F(s + hµ), . . . , F(νµ)(s + hµ)) = 0 (1.5)

does not hold identically for s ∈ C with<s + h0 > σa(F(s)).

We note that Theorem 1.4 implies the following result, which is similar to Corollary
1.2. This result is already known and exactly Ostrowski’s result [17, Satz 1] in the case
of (ordinary) Dirichlet series.
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Corollary 1.5 [17]. Let F(s) ∈ D. Let

P(s; z1, . . . , zM) =
∑

a1,...,aM

Ca1,...,aM (s) za1
1 · · · z

aM
M

be a nonzero polynomial in M variables z1, . . . , zM whose coefficients Ca1,...,aM (s)
belong to C(s). Then

P(s; F(s + h0), F′(s + h0), . . . , F(ν0)(s + h0), F(s + h1),
. . . , F(ν1)(s + h1), . . . , F(s + hµ), . . . , F(νµ)(s + hµ)) = 0

does not hold identically for s ∈ C with <s + h0 > σa(F(s)). In particular, F(s) is
hypertranscendental over C(s).

We will also extend Corollaries 1.2 and 1.5 in a certain direction, as in Theorem 1.6
below. Let Fs denote the field of all meromorphic functions φ(s) on C satisfying

T (r, φ) = o(r) as r→∞,

where T (r, φ) is the Nevanlinna characteristic function of φ(s) (for its definition, see
for example [11, Definition 2.1.9]). It is well known (see [11, Theorem 2.2.3]) that
φ(s) is a rational function if and only if T (r, φ) = O(log r) as r→∞. Thus,

C(s) ⊂ Fs. (1.6)

We note that C(s) is a proper subfield of Fs. For example, the entire function

φ0(s) =

∞∑
n=0

sn

(2n)!
= cosh(s1/2) =

1
2

(exp(s1/2) + exp(−s1/2))

belongs to Fs but not to C(s), since T (r, φ0) � r1/2. See also [5, page 86].
Extending Hölder’s result mentioned before, Bank and Kaufman [1, 2] showed

that the Gamma function Γ(s) is hypertranscendental over Fs. Using this result and
(1.1), Liao and Yang [12, Theorem 3.3] deduced that the Riemann zeta-function ζ(s) is
hypertranscendental over Fs, extending Theorem A. See also [3]. In the next theorem,
we further extend the result of Liao and Yang. Our proof is different from theirs. This
theorem is also an extension of Corollaries 1.2 and 1.5, according to (1.6).

Theorem 1.6.

(1) Let π be as in Theorem 1.1. Let

P(s; z1, . . . , zM) =
∑

a1,...,aM

φa1,...,aM (s) za1
1 · · · z

aM
M

be a nonzero polynomial in M variables z1, . . . , zM whose coefficients φa1,...,aM (s) belong
to Fs. Then

P(s; L(s + h0, π), L′(s + h0, π), . . . , L(ν0)(s + h0, π), L(s + h1, π),
. . . , L(ν1)(s + h1, π), . . . , L(s + hµ, π), . . . , L(νµ)(s + hµ, π)) = 0
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does not hold identically for s ∈ C with <s + h0 > 1. In particular, L(s, π) is
hypertranscendental over Fs.
(2) We have a similar result for any F(s) ∈ D. Let

P(s; z1, . . . , zM) =
∑

a1,...,aM

φa1,...,aM (s) za1
1 · · · z

aM
M

be a nonzero polynomial in M variables z1, . . . , zM whose coefficients φa1,...,aM (s) belong
to Fs. Then

P(s; F(s + h0), F′(s + h0), . . . , F(ν0)(s + h0), F(s + h1),
. . . , F(ν1)(s + h1), . . . , F(s + hµ), . . . , F(νµ)(s + hµ)) = 0

does not hold identically for s ∈ C with <s + h0 > σa(F(s)). In particular, F(s) is
hypertranscendental over Fs.

2. Proof of Theorem 1.4

The next lemma is a slight modification of [20, Lemma 2] and [19, Lemma 2].

Lemma 2.1. Let F(s) ∈ D and σ0 ∈ R with σ0 + h0 > σa(F(s)). Define a CM-valued
function g(s) by

g(s) := (F(s + h0), F′(s + h0), . . . , F(ν0)(s + h0), F(s + h1), . . . , F(ν1)(s + h1),
. . . , F(s + hµ), . . . , F(νµ)(s + hµ)).

Then there exist a real number σ1 > σ0 and a nonempty open set V ⊂ CM such that
V ∩ {g(σ1 + i n) : n ∈ N} is dense in V.

Proof. This lemma can be proved by modifying slightly the proof of [20, Lemma 2]
and [19, Lemma 2]. The continuous version of Kronecker’s approximation theorem
was used in the proof of [20, Lemma 2]. Instead of it, we use the discrete version (as
in the proof of [19, Lemma 2]). Thus, we obtain the lemma. �

Proof of Theorem 1.4. Let g(s), σ1 and V be as in Lemma 2.1. By assumption, ΦN

is continuous and not identically zero on V . Hence, there exist a nonempty bounded
open set V0 ⊂ V and a constant c > 0 such that

|ΦN(v0)| > c for any v0 ∈ V0. (2.1)

By Lemma 2.1, there exists a sequence of positive integers {n j : j = 1, 2, . . .} with

lim
j→∞

n j =∞ (2.2)

such that for any j, the value g(σ1 + in j) satisfies

g(σ1 + in j) ∈ V0(⊂ V). (2.3)
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We now consider the case N ≥ 1. By assumption, each Φn (0 ≤ n ≤ N − 1) is
bounded on the bounded set V0. Hence, it follows from the triangle inequality, (2.3),
(2.1) and (2.2) that, for all large j,∣∣∣∣∣ N∑

`=0

(σ1 + in j)`Φ`(g(σ1 + in j))
∣∣∣∣∣

= |(σ1 + in j)N |

∣∣∣∣∣ΦN(g(σ1 + in j)) +
ΦN−1(g(σ1 + in j))

σ1 + in j
+ · · · +

Φ0(g(σ1 + in j))
(σ1 + in j)N

∣∣∣∣∣
≥ |(σ1 + in j)N |

(
|ΦN(g(σ1 + in j))| −

∣∣∣∣∣ΦN−1(g(σ1 + in j))
σ1 + in j

∣∣∣∣∣ − · · · − ∣∣∣∣∣Φ0(g(σ1 + in j))
(σ1 + in j)N

∣∣∣∣∣ )
> |(σ1 + in j)N |

(
c −

∣∣∣∣∣ΦN−1(g(σ1 + in j))
σ1 + in j

∣∣∣∣∣ − · · · − ∣∣∣∣∣Φ0(g(σ1 + in j))
(σ1 + in j)N

∣∣∣∣∣ ) > |(σ1 + in j)N |c1,

where c1 is a positive constant with c ≥ c1. Therefore, in the case N ≥ 1, (1.5) does not
hold identically.

Next we consider the case N = 0. By (2.3) and (2.1), |Φ0(g(σ1 + in j))| > c > 0 for
every j. Thus, Theorem 1.4 is proved. �

We remark that, according to the above proof, we actually have the following
stronger result than Theorem 1.4. See also [19, pages 1351–1352].

Theorem 2.2. Let F(s) ∈ D. Let σ0 be a real number with σ0 + h0 > σa(F(s)). Let
N be a nonnegative integer. Let ΦN : CM → C be a continuous and ‘locally not
trivial’ function. When N ≥ 1, for each integer 0 ≤ n ≤ N − 1 let Φn : CM → C be
a continuous function. Then there exist a real number σ1 with σ1 > σ0 and a sequence
{n j ∈ N : j = 1, 2, . . .} such that

N∑
n=0

snΦn(F(s + h0), F′(s + h0), . . . , F(ν0)(s + h0), F(s + h1),

. . . , F(ν1)(s + h1), . . . , F(s + hµ), . . . , F(νµ)(s + hµ)) = 0

does not hold identically for s ∈ {σ1 + in j : j = 1, 2, . . .}.

3. Proof of Theorem 1.1

For a prime p and a positive integer k, we set

aπ(pk) :=
m∑

j=1

απ(p, j)k. (3.1)

We write

G(s, π) := log L(s, π) =
∑
p,k

aπ(pk)
k pks =

∞∑
n=2

Λ(n)aπ(n)
(log n)ns ,

the series being absolutely convergent for <s > 1 (see [9, page 556]), where Λ(n) is
the von Mangoldt function.
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The next result towards the generalised Ramanujan conjecture (1.4) is due to
Rudnick and Sarnak [21, (2.3), Proposition A.1]. This is sharper than the earlier result
of Jacquet and Shalika that |απ(p, j)| < p1/2.

Lemma 3.1. Let δ = (m2 + 1)−1. For all primes p and 1 ≤ j ≤ m,

|απ(p, j)| ≤ p
1
2−δ.

The next lemma, which is a prime number theorem for π, is obtained in [13, Lemma
5.1] without any assumption. See also Remark 3.3 below.

Lemma 3.2. We have ∑
n≤x

Λ(n)|aπ(n)|2 ∼ x as x→∞.

Proof of Theorem 1.1. We write δ := (m2 + 1)−1. By Lemma 3.1 and (3.1),

|aπ(pk)| ≤ m pk( 1
2−δ). (3.2)

Let P denote the set of all primes. Let Pπ denote the set of all primes p such that
aπ(pk) , 0 for some positive integer k (which depends on p). Then, using (3.2),∑

n≤x

Λ(n)|aπ(n)|2

=
∑

pk≤x,p∈P,k∈N

(log p)|aπ(pk)|2 =
∑

pk≤x,p∈Pπ,k∈N

(log p)|aπ(pk)|2

≤
∑

k≤log x/ log 2

∑
p∈Pπ,p≤x1/k

m2(log p) pk(1−2δ) ≤
∑

k≤log x/ log 2

∑
p∈Pπ,p≤x1/k

m2(log x) x1−2δ

≤
∑

k≤log x/ log 2

(
m2(log x) x1−2δ

∑
p∈Pπ,p≤x

1
)
� m2(log x)2x1−2δ

∑
p∈Pπ,p≤x

1.

This and Lemma 3.2 imply that∑
p∈Pπ,p≤x

1 �
x2δ

m2(log x)2 as x→∞.

Hence, in particular, Pπ is an infinite set of primes. Therefore, since σa(G(s, π)) ≤ 1, it
follows from the definitions ofD and Pπ that

G(s, π) ∈ D. (3.3)

By means of (3.3) and Lemma 2.1 (in which we take σ0 so large that σ0 + h0 > 1),
there exist a real number σ1 > −h0 + 1 and a nonempty open set V ⊂ CM such that
V ∩ {gG(σ1 + i n) : n ∈ N} is dense in V , where

gG(s) := (G(s + h0, π),G′(s + h0, π), . . . ,G(ν0)(s + h0, π),G(s + h1, π),
. . . ,G(ν1)(s + h1, π), . . . ,G(s + hµ, π), . . . ,G(νµ)(s + hµ, π)).
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Therefore, similarly to the proof of Lemma 2.4 of [18], we find that there exists a
nonempty open set U ⊂ CM such that U ∩ {gL(σ1 + i n) : n ∈ N} is dense in U, where

gL(s) := (L(s + h0, π), L′(s + h0, π), . . . , L(ν0)(s + h0, π), L(s + h1, π),
. . . , L(ν1)(s + h1, π), . . . , L(s + hµ, π), . . . , L(νµ)(s + hµ, π)).

Using the argument in the proof of Theorem 1.4 completes the proof. �

Remark 3.3. Expanding the Euler product (1.3) of L(s, π), we write

L(s, π) =

∞∑
n=1

λπ(n)
ns .

Then
λπ(p) = aπ(p) for every prime p. (3.4)

Let P∗π denote the set of all primes p such that aπ(p) , 0. We do not know from
our argument above whether P∗π is an infinite set or not. Rudnick and Sarnak
[21, page 281] introduced a hypothesis named ‘Hypothesis H’ for π. This hypothesis
is much weaker than the generalised Ramanujan conjecture (1.4) and is true
when 1 ≤ m ≤ 4 (see [13, page 137]). If we assume the truth of Hypothesis H for
π, then, as in [13, pages 136–137] and [21, pages 281–282],∑

p≤x

|aπ(p)|2

p
= log log x + O(1) as x→∞

and, in particular, P∗π is an infinite set, which, with (3.4), implies that L(s, π) ∈ D.

4. Proof of Theorem 1.6

We use the next lemma, which is [3, Lemma 4].

Lemma 4.1. Let K be a positive integer. Suppose that the Dirichlet series

G j(s) =

∞∑
n=1

a j(n)
ns j = 1, . . . ,K

are convergent in a half-plane <s > σ0 and that, for each j = 1, . . . , K, φ j(s) is a
meromorphic function on C satisfying T (r, φ j) = o(r) as r→∞. Suppose that

K∑
j=1

φ j(s)G j(s) = 0

identically for<s > σ0. Then, for each positive integer n,

K∑
j=1

a j(n)φ j(s) = 0

identically on C.
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The next proposition is essentially obtained in Chiang and Feng [3]. The weaker
assertion when Fs is replaced by C(s) was given in Ostrowski [17, page 246]. We
recall that C(s) ⊂ Fs, as mentioned in (1.6).

Proposition 4.2. Let N be a positive integer. Let F1(s), . . . , FN(s) be Dirichlet series
which are convergent in a half-plane<s > σ0. Then the following are equivalent:

(i) F1(s), . . . , FN(s) are algebraically dependent over Fs;
(ii) F1(s), . . . , FN(s) are algebraically dependent over C.

Proof. Since C ⊂ Fs, it is trivial that (ii) implies (i).
Next we shall prove that (i) implies (ii). Assume that (i) holds, that is, there exists a

nonzero polynomial P(s; z1, . . . , zN) in N variables z1, . . . , zN whose coefficients belong
to Fs, such that

P(s; F1(s), . . . , FN(s)) = 0 (4.1)
identically for<s > σ0. We write

P(s; F1(s), . . . , FN(s)) =

D∑
j=1

φ j(s) F1(s)k1( j) · · · FN(s)kN ( j), (4.2)

where D (the number of terms) is a positive integer, (k1( j), . . . , kN( j)) (1 ≤ j ≤ D) are
distinct elements in NN

0 with N0 := N ∪ {0} and φ j(s) (1 ≤ j ≤ D) are meromorphic
functions in Fs which are not identically zero. For each j = 1, . . . ,D, we write

F1(s)k1( j) · · · FN(s)kN ( j) =

∞∑
n=1

A j(n)
ns . (4.3)

Then, from (4.1), (4.2) and Lemma 4.1 (with K = D and G j(s) = F1(s)k1( j) · · ·

FN(s)kN ( j)), it follows that for every positive integer n,
D∑

j=1

A j(n)φ j(s) = 0 (4.4)

identically on C. By recalling that each φ j(s) (1 ≤ j ≤ D) is not identically zero and
noting that the set of zeros and poles of φ j(s) is discrete, we can find a complex number
s0 which is not a pole of any φ j(s) and which satisfies

φ j(s0) , 0 for any 1 ≤ j ≤ D. (4.5)

By (4.4),
D∑

j=1

A j(n)φ j(s0) = 0 for every positive integer n. (4.6)

From (4.3) and (4.6),
D∑

j=1

φ j(s0)F1(s)k1( j) · · · FN(s)kN ( j) =

∞∑
n=1

∑D
j=1 φ j(s0)A j(n)

ns = 0

identically for <s > σ0. This and (4.5) imply that F1(s), . . . , FN(s) are algebraically
dependent over C, giving (ii). �
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Proof of Theorem 1.6. According to Corollary 1.2, the Dirichlet series L(s + h0, π),
L′(s + h0, π), . . . , L(ν0)(s + h0, π), L(s + h1, π), . . . , L(ν1)(s + h1, π), . . . , L(s + hµ, π),
. . . , L(νµ)(s + hµ, π) are algebraically independent over C. Hence, by Proposition
4.2, they are algebraically independent over Fs. Thus, we have the assertion (1) of
Theorem 1.6.

Similarly, the assertion (2) is obtained from Corollary 1.5 and Proposition 4.2. �
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