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SHARPNESS IN YOUNG’S INEQUALITY
FOR CONVOLUTION PRODUCTS

OLE A. NIELSEN

ABSTRACT.  Suppose that G is a locally compact group with modular function A and
that p, g, r are three numbers in the interval (1, 00) satisfying 1 /p+1/g = 1+ 1/r.
If ¢, 4(G) is the smallest constant ¢ such that ||f * Al g, < clIfllollglly for all func-
tions f, g € C.(G) (here the convolution product is with respect to left Haar measure
and p’ is the exponent which is conjugate to p) then Young’s inequality asserts that
¢pq(G) < 1. This paper contains three results about these constants. Firstly, if G con-
tains a compact open subgroup then ¢, ,(G) = 1 and, as an extension of an earlier result
of J. J. F. Fournier, it is shown that there is a constant ¢, , < 1 such that if G does not
contain a compact open subgroup then ¢, 4(G) < ¢, 4. Secondly, Beckner’s calculation
of ¢, 4(R) is used to obtain the value of ¢, 4(G) for all simply-connected solvable Lie
groups and all nilpotent Lie groups. And thirdly, it is shown that for a nilpotent Lie
group the set L/(G) * AI/P'L‘i(G) is not contained in the union of the spaces L*(G),
s € [1,r)U(r,00).

Consider a locally compact group G with modular function A. Young’s inequality is
the assertion that if p, g, r are three real numbers in the interval (1, 0o) satisfying

1 1

(0 p_l+q_ =1+r

and if f € [P(G) and g € L9(G) then the convolution product f * A‘/”/g is finite a.e. and
satisfies

@) IF * A7 gl < IIfl el

[Here, and throughout this paper, convolution products, Lebesgue spaces, and “a.e.” are
with respect to a left Haar measure on G and, for each number p in the interval (1, 0o),
p’ denotes the index which is conjugate to p.] There is a constant implicit in (2), viz., the
smallest number ¢, ,(G) for which the inequality

3) IIf * Al/p,g“r < g BlIfllsllell

holds for all functions f € L(G) and g € L9(G). The questions of sharpness in Young’s
inequality include, for given values of p and g and for a given group G, the problem of
calculating ¢, 4(G), the problem of characterizing those functions f and g for which (3) is
an equality, and the problem of characterizing the linear span of the set L’ (G)*A! M L9(G)
of convolution products. All of these questions have been studied by a number of authors
(see [1-3, 5, 7-9], for example).
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This paper is divided into two logically independent sections. The first section relates
sharpness to the existence of compact open subgroups and contains two results which
extend to non-unimodular groups some theorems due to J. F. F. Fournier [5] in the uni-
modular case. The second section deals with sharpness for semi-direct products and,
for a class of semi-direct products, contains the proof of a conjecture of A. Klein and
B. Russo [7] as well as some information about the linear span of the set of convolution
products. Consequences of these results are, for certain solvable Lie groups, the calcu-
lation of the value of ¢, 4(G) for all numbers p, g, r in the interval (1, 00) satisfying (1)
and, for certain nilpotent Lie groups, a proof of the fact that LP(G) * AV 1”L"(G) is not
contained in the union of the spaces L*(G), s € [1, r) U (r, 00). This last result is an ex-
tension of the corresponding result of T. S. Quek and L. Y. H. Yap [8] for abelian groups
and is in contrast to the Kunze-Stein phenomenon for semi-simple groups [3].

1. Sharpness and compact open subgroups. It is easy to see that equality holds in
(2) if f = g = 1y for some compact open subgroup H of G, and hence that ¢, 4(G) = 1
for all p and ¢ if G contains a compact open subgroup. The following two theorems are
essentially converses of this observation.

THEOREM 1. Let p, q, r be three numbers in the interval (1, 00) satisfying (1). Then
there is a constant cpq < 1 such that if G is any locally compact group which does not
contain a compact open subgroup then c, ,(G) < cp 4.

THEOREM 2. Let p, g, r be as in Theorem 1, let G be a locally compact group with
modular function A, and suppose that f and g are functions in LP(G) and LY(G), resp.,
such that

0 < [If % Y7 g|l, = IFllpllgll,-

Then there are complex numbers a and b, elements r and s of G, a compact open subgroup
H of G, and a continuous function ¢ from G to C such that ¢ = 0 on G — H, ¢y is a
homomorphism from Hto {z € C : |z| = 1}, andf = ap(r-) a.e. and g = bip(-s) a.e.

As was stated in the preceding section, these two theorems were proven by
Fournier [5] under the assumption that G is unimodular. The proofs of Theorem 1 and
of [5, Theorem 1] both consist of two parts, with the first part being the reduction of the
general case to a special case and the second part being the analysis of this special case.
The proofs of these first parts as well as the proofs of Theorem 2 and [5; Theorem 3] are
similar, with the major difference in each case being the introduction of various powers
of the modular function as factors in a number of expressions. These similarities are such
that after comparing the proofs of the first parts of Theorem 1 and [5, Theorem 1] the
reader will have no difficulty in modifying the proof of [5, Theorem 3] to give a proof
of Theorem 2, and the proof of Theorem 2 is therefore omitted.

PROOF OF THEOREM 1. Let G be a locally compact group with left Haar measure
and modular function A. The first step in the proof is to show that if the theorem is true
for some choice of numbers p, g, r satisfying (1) then it is true for all such choices. To
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see this, let U denote the interior of the triangle in the plane with vertices (1,0), (0, 1),
and (1, 1), let V denote the subset of (0, 00)* consisting of those points (p, g, r) satisfying
(1) and for which the theorem is true, and assume that V is not empty. Notice that putting
w(p,q,r) = (1/p,1/g) for (p,q,r) € V defines a one-one function ¢ from V into U, that
proving the theorem is equivalent to showing that ¢ is onto U and that, in turn, showing
that ¢ is onto U is equivalent to showing that for each point a in the range of ¢ the
horizontal and vertical lines in U through a belong to the range of .

Suppose that (p, g, r) is a point in V. Fix two functions fj and g in C.(G) and consider
the operator S defined by S(g) = fo * AP g for g € C.(G) and, for each complex number
z with 0 < Re(z) < 1, the operator T, defined by T,(f) = f % Aagq for f € C.(G). Then

IS@ll, < Iollllglli and  [IS@)leo < Ifollsllglly
and .
IT5®llg < Ifllillgolly and |71 Plloo < Iflly llgollq

fory € Rand f, g € C.(G) by (2) and it is easy to see that (T,) is an analytic family
of operators of admissible growth in the sense of [10]. Since (1/p, 1/g) belongs to the
range of ¢ it now follows easily from the Riesz-Thorin theorem and Stein’s analytic
interpolation theorem [10; Theorem 2] that the vertical and the horizontal lines in U
through (1/p, 1/g) belongs to the range of .

Put ¢ = 1 — 107'°, The preceding argument shows that it is sufficient to prove that if
f and g are two non-negative-valued functions in L*3(G) with ||f||y 5 = [|g|ls/3 = 1 and

with ||f * A!/4gl|, > ¢ then G contains a compact open subgroup. Accordingly, let f and
g be two such functions and put & = (f*/3 x g*/3)!/2_Then ||h||; = 1 and

(A9 = [F0re™ PP YO AT )™ 01" du)

1/3 _ 1/4
<hlA ([ A0 08207 0 due)
= h(x)
by Holder’s inequality with indices 2, 4, 4, and thus 0 < f x A'/*g < h. Using the
renormalization argument in [5, pp. 389-390], one may assume that i(e) = 1 and that

(f * Al/*g)(e) > c.
Now put k = (FA~3/48)'/3 and a = ||k||. Then ||AY/2&2|, = 1,

¢ < (f % AY4)(e) = (A2, k) < ||AV2R ||k = @ < 1
by Holder’s inequality,
A2k — oK)} = ||AV22)3 — 207 (A2 k) + 1
<201 —c¢),
and
”f2/3 (A—3/4g)2/3”2 ”f2/3”2 2(f2/3,(A_3/4§)2/3) + ”(A—3/4g)2/3“%

<2(1—a?)
<4(1—o).
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Since the graph of k lies between those of f2/3 and (A=3/4)%/? one must then have
k=73 <4t =0 and k- @ 9|3 < a1 - o).

Now put
K={xeG: ") >Qx"}

and ¥ = (k, A™'21)||A"/21k||7% Then ||[YA™'/?1¢||2 < o and
Ik = YA™ P13 < [k — o A7 21k
- —1Al/2, o —132 2
_/KA A%k — o )du+/G_deu
< 40| AV — ok}
<8 —o).
These inequalities imply that

and that
6% =v(1x) 2 < 5(1 —¢)'/2.

Now, just as in [5, p. 390], it follows that
If =728 1gllags < I =A™ Pkl £+ 2 A 1k
<1001 —¢)'/?

and, similarly, that
lg = Y21y ays < 100 = 0)'/2.

Now put f; = ¥}/2A73/41 and g; = ¥3/2(1x)". Then |[fi[la/3 < 1 and ||gi[l4/5 < 1,
hence
Ifi % A4 —f % A4, <2001 — ¢)'/?

by Young’s inequality, and therefore
Ifi % A%y, > ¢ —20(1 — o)'/2.

If one now carries out the renormalization of p described in [5, bottom of p. 390] and
replaces K by K~! one may assume that f = (A¥*1g)"and g = 1 and that

Ifllayz = llgllajz =1 and ||f = AV4gll, > d,

where d = ¢ — 20(1 — ¢)!/2.

Notice that uw(K) = 1. If one puts h = (f*/3 x g*/3)1/2 and w = AY/4(f * A'/*g) then
Al = 1,0 < fx A4 < h, B2(x) = w(K N Kx~!) for x € G, f * All*g = Al/4R2,
(f * A'/4g)? = wh?, and

w=w=A"2r2 <min{A/2,A7'/2} < 1.

https://doi.org/10.4153/CJM-1994-073-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-073-7

SHARPNESS IN YOUNG’S INEQUALITY 1291

Now put o =. 05 and
H, = {x € G:w(x) >aand a®* < A(x) < a~**}

forO0 <a < 1.Thene € H, = (H,)"' and H, is an open subset of G with u(H,) < 00. So
to prove the theorem it is sufficient to find a number a with 0 < a < 1 and (H,)? C H,.

Consider two numbers a and b satisfying 0 < a < b < 1. One has w < b* on the set
where w < b as well as on the set where A ¢ (b**, h~2%), hence

d2</Gwh2du§Lbh2dp,+b"/G . du,
—Hp

and therefore
2 b

d
uHy) > [ W dp > T

On the other hand, one has a < w < a~®h? on the set H,, and hence

WH, —Hy) <a™'= [ K dy

H,—H,
d2 — b
< a‘l“’[l - ]
- 1—bo
_1=d
- (1— b“)a““ '
It now follows easily from these two inequalities that if xH;, C H,— H}, for some element

x € G then |
+ax ],
< l_u_
— l+al*
In view of the values of ¢ and «, this inequality cannot hold fora =.1and b =.9, and
therefore no element x of G can satisfy xH 9 C H | — H . So if one could show that

) ((H7)* —H7)Ho CH, — Hy

then it would follow that H 7 is the required compact open subgroup of G.
The proof of (4) will depend on two inequalities satisfied by the function w. In fact,

one has

®) wixy) > A2 wx) + A2 () wy) — A2 ()
and

©® w(y) < A2 wi) — A7) wiy) + 472 )

for all elements x and y in G, and a moderately lengthy by straightforward calculation
using (5) and (6) and the multiplicativity of A will show that must (4) hold. Now (6) is
easily seen to be a consequence of (5), and the proof of (5) goes as follows:

w(xy) = A C)uK NKy ')
= A20e)[1 — (K — Ky~'x71)]
> A20)[1 = p(K — K1) — p(Kx™" — Ky~'x7)
= A2y [ NKxh) — A7 @11 — w(K N Ky )]
_ Al/z(y)w(x) + A_l/z(x)a)()’) — Al/z(x—ly).
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2. Sharpness for semi-direct products. Letp, g, r be three numbers in the interval
(1, 00) satisfying (1) and consider a locally group G which is the semi-direct product of a
closed normal subgroup N and a closed subgroup H. Then Klein and Russo have shown
that

(N pg(G) < Cpg(N) cpqg(H)

[7; Lemma 2.4]. It is not hard to see that (7) is actually an equality if G is the product of
N and H, and Klein and Russo have conjectured that (7) is always an equality. To the best
of the author’s knowledge, this conjecture has only been verified under the assumption
that G is a Heisenberg group and that p’ is an even integer [7; p. 185].

Quek and Yap have shown that if G is an abelian group which is neither compact nor
discrete then the set of convolution products LP(G) * L9(G) is not contained in the union
of the spaces L°(G), s € [1,r) U (r,00) [8; Theorem 1.1] (see also [9; Corollary 2.5]).
The corollary to the next theorem extends this result to connected and simply connected
nilpotent Lie groups and contains a weaker result for solvable Lie groups. This result of
Quek and Yap cannot be extended to arbitrary groups since it is know that a large class of
semi-simple Lie groups satisfy the Kunze-Stein phenomena: L*(G) * LP(G) C L*(G) for
1 < p < 2. Aninteresting open question is that of characterizing those groups for which
LP(G)*A'/¥ L4(G) fails to be contained in the union of the spaces L*(G), s € [1, )U(r, 00).

THEOREM 3. Let p, q, r be three numbers in the interval (1, 00) satisfying (1) and
let G be a locally compact group which is the semi-direct product of a closed normal
subgroup N and a closed group H which is isomorphic to R" x T" for some integers m
and n. Then

(a) if n =0 then cp4(G) = cp4(N) cp4(H),

(b) LP(G) * AVV LY(G) € U,<scoo L*(G), and

(c) ifm > 1 and if there is a symmetric measurablesetAin N, ab > 0, andac € R"

such that A(A) > 0 and A (A)A) < bel for all (u,v) € R™ x T", where
A is a Haar measure on N and a, is, for each w € H, the restriction to N of
conjugation by w, then LF(G) * AVP'LI(G) Z Ui<s<oo LY(G).

s#r

PutA, = (%)]/2 for each number p € (1, 00) and recall that Beckner has proven
that if p, g, r are three numbers in the interval (1, 00) satisfying (1) then ¢, ,(R") =
(A,A4A)™ for m > 1 [1; Theorem 3] (see also [2; Section 5]).

COROLLARY. Ifp, q, r are as in Theorem 3 and if G is a Lie group then

(@) ¢pqg(G) = (ApA,A) ™D if G is simply-connected and solvable,

(b) ¢po(G) = (ApA,A)I™O=HD) if G is nilpotent, where T is the discrete central
subgroup of the universal covering group G of the connected component Gy of G
for which G /T is isomorphic and homeomorphic to Go and rk(T') is the rank of
T,

(¢) L?(G) x AV L9(G) ¢ Urcs<oo L (G) if G is either nilpotent or else simply con-
nected and solvable, and
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(d) L’(G) x AY/V L4(G) Z Ui<s<oo L*(G) if G is nilpotent and not compact.
s#r

PROOF. Notice that if the connected component Gy of G satisfies the conditions of
the corollary then so does G itself, and hence one may assume that G is connected. Notice
also that part (a) and the second case of part (c) follow easily from the structure of simply-
connected solvable Lie groups [11; Theorem 3.18.6], from the part (a) of the theorem,
and from the theorem of Beckner just quoted. Suppose that G is abelian. Then one may
take G to be R™ x T" for some non-negative integers m and n, and hence G satisfies (b)
by Beckner’s theorem and the above remarks about product groups and satisfies (d) and
the first case of (c) by [8; Theorem 1.1].

Now suppose that G is nilpotent and not abelian. Let G and " be as in the statement of
(b), let 7 denote the mapping of G onto G obtained by composing the quotient mapping
of Gonto G / I" with the isomorphism of G / I" onto G, and let 3 denote the center of the
Lie algebra g of G. Then [g, g]+3 F# g, for otherwise one would have [g, [a, g]] = [g,ql,
a contradiction. This means that there is an ideal n in g which is of co-dimension 1 and
contains 3. Put k = rk(I'), m = dim(3) and n = dim(n), let T be an element of ¢ which
is not in 1, let Z be the center of G, and let N and H be the connected subgroups of G
corresponding to n and RT, respectively. Finally, let Xi,...,X,, T be a Jordan-Holder
basis for g (meaning that ny = RX; +--- + RX} is an ideal in g for 1 < k < n) such that
Xi,..., Xy aZ-basis for I"and 3 = n,,. Then exp is a diffeomorphism of g onto G which
carries 3, n, and RT onto Z, N, and H, resptively. Thus N, H, and Z are all closed in G,
Z is the connected subgroup of G corresponding to 3, H is isomorphic to R, and G is the
semi-direct product of N and H [11; Corollary 3.6.4 and Lemma 3.18.4]. Then n(H) is
isomorphic and homeomorphic to R and closed in G since I' C N, m(N) is closed and
normal in G since G/7r(1\7) is homeomorphic to R [6; Theorems 5.21 and 5.34], and G is
isomorphic to the semi-direct product of (V) and m(H). The first case in (c) now follows
from the theorem while an inductive argument on dim(G) together with the theorem will
complete the proof of (b).

Turning to the proof of (d), let

F={expi X1+ +1,X,): 0<tp<1for1 <j<kands € Rfork <j<n}

and put
Au = {expiXi + - +1,X,) : |4 < a for cach j}

and A, = m(A,) for each @ > 0. The measure X on G which corresponds to Lebesgue
measure on g under exp is a Haar measure on G and the measure A on G defined by

AA) = M(FNr~'(4))

for Borel subsets A of G is a Haar measure on G. Let &, and «,, be conjugation by exp(uT)
and ﬂ(exp(uT)) on G and G, resptively. Recall that as g is nilpotent the multiplication
on G corresponds under exp to a polynomial map from g X g to g which, relative to the
Jordan-Hoélder basis, is additive in the first £ coordinates [11; Theorems 3.6.1 and 3.6.2].
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This implies that there is a polynomial f such that &,(A1)A C A1 sy for all u € R,
and therefore X(d“(AI )/11) < bel“! for some b > 0, some ¢ € R, and all u € R. But then

Mew@nar) = M(Fnr (aanar))

< X(FNadnA)
b

e|cu| ,

and this completes the proof of (d).

PROOF OF THEOREM 3. The first two steps will be to introduce and calculate the
norms of certain functions on G and to reduce the proof of parts (a) and (b) to the case
where H is either R or T. It will be convenient to take T = [—1/2,1/2) with addition
modulo 1 and to let du denote both Lebesgue measure on R and normalized Lebesgue
measure on T.

Suppose, for the moment, that G is a locally compact group which is the semi-direct
product of a closed normal subgroup N and a closed abelian subgroup H. Let 6 and A
[resp., A and u] be the modular function and left Haar measure on N [resp., G]. Put
a,(x) = uxu~" for x € N and u € H and let ¥ be the continuous homomorphism from H
into (0, 0o) such that

J (@) dre) = 8 [ fe0dre)

forall u € H and all f € C.(G). Then one may take G to be the set N X H with the group
multiplication

o u)(y,v) = (xa,,(y), u+ v)

and it is easy to verify that A = § ® ¥ and that one may take du(x, u) = J(u)dA(x)du,
where du is Haar measure on H.

For any function ¢ on N and any function f on H define a function ¢ O f on G by the
formula

(P O 1) = (o)) W)

Now consider two functions ¢ and 9 on N and two functions f and g on H, and assume
that each of these four functions is bounded and integrable. Then it is easy to verify that

le @ 721l = llellifll, and 1w Dglly = I¥lllgle.

that
[(p ® 97/7f) x AP (D g)](x, u)
= /H /N(Lp ® 97 /Pf)(x0u (), u + v)AG, V)P0 g) (o (v, —v)9() dAG) dv
Sy, o
= 97 @)1 © ) %87 P (0 (D) (f * @(w),
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and hence that
le @9™77f) x AP Do)l
= [ 16 0 ) x 8" 1 (@) | % )@ 07 ) dA ) e
= [ It 0 ) x 873 |(f x @ 97 () d

forl <s < oo.

Now suppose that H itself is the product of two closed normal subgroups H; and H,.
Then NH, is closed and normal in G (by [6; Theorem 5.21] and the fact that G/NH1 is
homeomorphic to H,) and G is the semi-direct product of NH; and H,. This observation
and Beckner’s theorem (see above) implies that to prove (a) it is enough to consider the
case in which H is R and to prove (b), the case in which H is either R or T.

Suppose that H = R and that ¢ and 1 are two bounded and integrable functions on N
with ||¢|l, = ||[¢]l; = 1.If ¢ is the number determined by the equation p~! +£~! = 1 457!
then 1 < t < oo and hence Young’s inequality and a standard argument will show
that ||(¢ o a,) * 8'/71||;8~"/P(u) is a continuous function of u bounded by ||%]|;. Put
fu(u) = exp(—au?) for a > 0 and u € R. Then the above calculation together with the
lemma below and Beckner’s theorem implies that the expression

i 100 @ 07 2fy0) % AP Do)
o o @97 o [l 19 O I

J 1o 0 00 % 67 Gl 1 fuy * foYa)| 97 )i

1
= lim —
a0 ”fap’”;J ”gaq’llﬁl

1/p l/‘I,/ s/2 s/2r ,
— 1; p'q 9_ 1/p $.9=s/p 2
= lim (p,l o =) (5)T [ e o ) w8yl exp—ar'su®) du
is equal to
lle x5'/7 Pl (ApA A = ¢ x 87 PlI7cpg®)

if s = randto oo if s > rand || 87|y > 0. This completes the proof of (a)
in the case H = R, and the proof of (b) in this same case will follow from two known
arguments, one due to Zelazko and the other to Fournier.

First of all, if L(G) * AV/P'LY(G) C L*(G) for some s > r then ||f x A'/Pg||, <
cllfllpliglly for all f € LP(G), all g € LI(G), and some ¢ > 0 (¢f [12; Lemma 4]).
But the preceding calculations show that this is not the case for any s > r, and thus
LP(G) x A]/l"L‘i(G) & L*(G) for each s > r. The Baire category theorem then implies
that the set

V=A{(f.g) € L"(G) x LUG) : f x AP g ¢ L"*'/"(G} forn = 1,2,...}

is a dense G subset of L(G) x LY(G) (cf. the proof of the Banach-Steinhaus Theorem).
Now suppose that (f, g) is an element of V with the property that f * A'"'g € L¥(G)
for some s > r. Then f * A'/?'g € L’(G) by Young’s inequality and hence f * A g e
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L™*1/"(G) for some n by a well-known convexity property of the norm. This shows that
the set

{FxaPg:(f,9) eV}

is disjoint from the union |, .., L*(G) and completes the proof of (b) in the case H = R
(cf. [4; p. 268]).

Now suppose that s > r and that H = T, and let ¢ and 1 continue to denote two
bounded integrable functions on N with ||¢||, = ||¢]|; = 1. Notice that ¥(u) = 1 for all
u € T.For0 < a < 1/4putgu(u) = 1{—s4(u) for u € T. Then

(o ® ga) * AP (WO g )|}
”(P ® ga”fz “"nga”;

= ay™=I" [[1l(p 0 ) % 6773 (g * ga)w)]* dit.

Now since ||(¢ o a,) * 8!/7'4)||; is continuous and bounded, since g, * g, = 0 off the

interval [—2a, 2a], and since ||g, * g4||5 = gi_ﬁi it follows easily that

1/p' s ,
lim 1 @ 8 * AP WO _ 1o s2-s/rg1=s/r) g 51/ s = 0.

o0 |le ® galls [¥O gl a—0

Now, just as in the previous case, one can use the arguments of Zelazko and Fournier to
complete the proof of (b) in the case H = T.

Turning now to the proof of (c), let H = R™ x T" for some m > 1 and n > 0. One
may as well assume that A\(A) = 1. Fixans € [I,r)and put ¢ = 14 and ¢ = 5,
and for eachu € R™ and v € T" put

_ s%(u,v)
(s + DA (—qun)(A)A)

Eu,v
and
Suy = {x € N: [(14 0 auyy) * 14](x) > €y }-
Then (14 o o)) * 14 = 0 off @—,,,)(A)A and

B, )= [ 10140 @) * LG AAD + [ (140 o) * 1410 dAR)
< B IS i) + A (A (A)A),
and thus
1014 0 @) * 1ally 2 [ 11014 0 o) * LI dAD)

> () (1= 09t 1) ™ M@ (@4))
_ s*%(u,v)

(s + DA (aun(@)A)°
> byd(u, v)'e sl
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for some constant b; > 0 and all u € R™ and v € T". Now put f,(u,v) = exp(—al|u||*)
fora > 0,u € R",and v € T" (here ||- || is the usual 2-norm on R™). There will be a point
w € R™ such that 9(u,v) = e for all u € R™ and v € T". The preceding calculations
and the fact that inf, exp(ar’s||u[|*> — s|{c,u)|) > 0, where the infimum is over u € R™,
then implies that

N1 @ 97 L)« AVY (h D fo)|
o ® 9=1/Pfylls 1w Ofug Il

1 ,
a3 W 15 Tl /,, 1Cp 0 ) %8 VI3 (For * fag W) B~/ (w) dw
[7 p aq q q

> bya™!¥ /R"' exp(—2ar’s||ull® + (s /p'){w. u)) du

= bya™/D6/r=D exp( S||"-’”22)
8ar'p’
for some positive constants b, and b3 and all a > 0, and this last expression clearly tends
to 0o as a — 0+.
One can now, just as in the proof of part (b), deduce that there is a dense G5 subset W
of I7(G) x Li(G) such that the set

{f * Al/p'g 1 (f,g) € W}

is disjoint from the union {J; <<, L*(G), and this clearly completes the proof of (c).

The formulations of Theorem 3 and its Corollary are not completely satisfactory. One
would obviously like to prove part (a) of the theorem without the hypothesis that n = 0
and part (c) without the hypothesis involving the set A (Notice that in (c) one cannot avoid
the assumption that m > 1). If the first of these desiderata could be achieved then part (b)
of the corollary would be true with nilpotent replaced by solvable (thus eliminating the
need for (a)). Now it is easy to see that part (a) of the theorem is true if, for each ¢ > 0,
there exist bounded integrable functions ¢ and ¢ on N with ||¢||, = ||¢]l; = 1, with
lle %87, > cpqy(N)—€, and with p o, = ¢ forall u € T. This condition is satisfied
in a number of examples, and the author does not know if it is always the case.

LEMMA. Iff is a continuous bounded function on R then
: 1/2 —abu? — 1/2
lim a'/2 [ £ du = fO)(r/b)
forany b > 0.

PROOF. Suppose that an ¢ > 0 is given. Then there will be a § > 0 such that
|f(u) — £(0)| < e whenever |u| < 8, and hence

072 [ pue™ du—1)n/0) 2| < a2 [ Ifw) —FO)e™* du
<a'l? /IM If () = F(O)|e™ du +e( /b))

But since the last integral tends to zero as a tends to infinity by the Lebesgue dominated
convergence theorem the Lemma is clear.
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