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Abstract. We describe a method for complete solution of the superelliptic Diophantine equation
ayp = f(x). The method is based on Baker’s theory of linear forms in the logarithms. The character-
istic feature of our approach (as compared with the classical method) is that we reduce the equation
directly to the linear forms in logarithms, without intermediate use of Thue and linear unit equations.
We show that the reduction method of Baker and Davenport [3] is applicable for superelliptic equa-
tions, and develop a very efficient method for enumerating the solutions below the reduced bound.
The method requires computing the algebraic data in number fields of degreepn(n� 1)=2 at most;
in many cases this number can be reduced. Two examples withp = 3 andn = 4 are given.
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1. Introduction

In this paper we propose a method for complete solution of the superelliptic
Diophantine equation

ayp = f(x); (1)

wherea is a nonzero integer,p > 3 andf(x) 2 Z[x] a separable polynomial
of degreen > 2. Recall that the first effective bound for the integral solutions
of this equation was obtained by A. Baker [2] as an application of his theory of
linear forms in logarithms [1]. For further advance and bibliography see [24, 26,
25, 9, 22, 21, 29]. In these papers the equation (1) is reduced to finitely many
Thue equations over certain number fields, each of the latter being then reduced to
finitely many linear unit equations, which can be analyzed using Baker’s theory.
(Voutier [29] reduces (1) directly to linear unit equations, without intermediate use
of Thue equations.) However, this method (call it ‘Thue descent’) does not seem to
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274 YURI F. BILU AND GUILLAUME HANROT

be suitable for practical solution of the superelliptic equation, because the number
of Thue (or linear unit) equations to be solved turns out to be very large, even when
the equation has very moderate coefficients.

In the present paper we develop a different method, reducing the superelliptic
equation directly to the linear forms in logarithms, without intermediate use of
Thue and linear unit equations (as it is done in [6]). For simplicity, we deal with
case whenp is an odd prime. Since the case of an arbitraryp 6= 2k can be reduced to
the case of an odd primep, we almost preserve the generality. With a few changes,
our method extends to thehyperelliptic equationay2 = f(x), wheref(x) is a
separable polynomial of degree at least 3 (see Appendix E).

In accordance with the general ideology of [5], our method can be described as
follows.

(i) Construct functional units in an unramified extension of the fieldQ(x;
(a�1f(x))1=p);

(ii) Using the fact that the specialization of a functional unit at an integral point is
‘almost a unit’ of a certain number field, reduce the equation to finitely many
inequalities of the type

0<
����0�

b1
1 : : : �bnn � 1

��� < exp(�cB); (2)

whereB = max(jb1j; : : : ; jbnj) andc is an effectively computable constant.

(iii) Obtain from (2) an upper bound forB by means of the theory of linear forms
in logarithms.

Successful choice of functional units allowed us to reduce the degrees of number
fields, occurring in the process of solution, frompn(n � 1), as required for the
Thue descent, to12pn(n�1), which is very important from the computational point
of view. (See Subsection 5.5.)

The theoretical bound forB, obtained from the theory of linear forms in loga-
rithms, is very large. As explained in [17, 27], in practical cases the bound forB

can be significantly reduced with the help of the Lenstra–Lenstra–Lovász (further
LLL) algorithm [13]. In [8] we showed that in the case of the Diophantine equations
of Thue, one can replace the LLL by the simple continued fraction algorithm, as
Baker and Davenport [3] did already in 1969. It turns out that the same idea works
for the superelliptic equation, see Subsection 4.6.

Another difficult point in the numerical solution of Diophantine equations is
enumerating all solutions below the reduced bound. Various approaches to this
problem are suggested in [30, 28, 23] and other papers. Here we use the method of
[6, 8], in a somewhat modified form.

We refer to [17, 27] for the history of the numerical solution of Diophantine
equations and extensive bibliography up to 1989. Some of later references most
close to the subject of the present paper are [14, 15, 16, 31, 32].
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SUPERELLIPTIC EQUATIONS 275

2. Notation and conventions

Throughout the paperp is a fixed prime number, andf(x) 2 Z[x]a fixed separable
polynomial of degreen > 2. For the sake of further applications, we do not exclude
the casep = 2 wherever possible. In all cases where we had to assume thatp 6= 2,
this is explicitly specified. We fix a primitive root of unity� of degreep and put

P = f0; : : : ; p� 1g:

Given b 2 Z, we denote bybmodp the uniquely definedb0 2 P such thatb �
b0 (modp).

We fix once and for all an embeddingQ ! C , so that any algebraic number
has a well defined complex value. We use the branches of the functionsz1=p and
logz defined by��=p < argz1=p 6 �=p and�� < Im logz 6 �. We writez�1=p

instead of(z1=p)�1. Note that

Rez1;Rez2 > 0) (z1z
�1
2 )1=p = z

1=p
1 z

�1=p
2 : (3)

Put

Sol= fx 2 Z : (a�1f(x))1=p 2 Zg:

Elements of the set Sol are referred to as ‘solutions’.
For a vectorb= (b1; : : : ; b�) 2 C � put jbj1 = max(jb1j; : : : ; jb�j).
We useO1(: : :) as a quantitative version of the standard notationO(: : :):

A = O1(B)

meansjAj 6 B.
We fix two distinct roots� and� of f(x) and put

c1 = max(j�j; j�j); X1 = 3c1;

wherej�j is the maximum of the absolute values of the conjugates of� overQ,
andj�j is defined similarly.

Solutions satisfyingjxj 6 X1 can be quickly found by direct enumeration. In
the sequel we restrict ourselves on the solutions satisfyingjxj > X1. In particular,
we say simply ‘solution’ instead of ‘solution withjxj > X1’ and write ‘x 2 Sol
instead of ‘x 2 Sol andjxj > X1’.

The assumptionjxj > X1 allows us to avoid certain pathologies that occur for
small solutions. In particular

x 6= 0; �; � and arg
x� �

x� �
6= �: (4)
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Table I. Specific notations

Notation Where introduced Notation Where introduced

K0 Beginning of Subsection 4.1� �(�) Lemma 3.2
M0 Equations (15) and (16) M Equation (17)
K;m; s; t; �i; �i; �i Beginning of Subsection 4.2 s0; t0 Proposition 4.2.1
Sol(K); k(x); ki(x); k(x) After Proposition 4.2.1 '(x) Subsection 4.3
�j ;�; �(x); bj(x); b(x) End of Subsection 4.3 'i(x) Equation (39)
�; k;Sol(K; k; �) Beginning of Subsection 4.4 �i After Equation (39)
�i; �ij ; �i; i Equation (40) A; aij After Equation (40)
�i; �i Equation (41) X4 Corollary 4.4.2
c2–c10, X2; X3 Equation (42) c11 Theorem 4.5.1
i1; i2 Equations (60), (61) and (62) �(x) Equation (63)
c13–c16, B0 End of Subsection 4.5 c12 After Equation (66)
j1; j2;�; � Subsection 4.6.1 k : : : k After Equation (79)
c18; c19 After Equation (78) B0

0 Subsection 4.7
!i; 

0
i, c19–c23, X5 Before Lemma 4.7.1 b0j(x) Equation (87)

K
0
0, � : K00!K

0
0 Beginning of Subsection 5.2 s0; s00 Proposition 5.3.1

K
0, � : K0!K

0 Beginning of Subsection 5.3 X7; X8 Appendix D

�In the case of(�; �)-symmetryK 0 is defined in the beginning of Subsection 5.2.

We shall use properties (4) of the solutions without special reference.
More specific notations are introduced in the course of the paper. For the reader’s

convenience, we give a glossary of the most important notations in Table I.
For the practical implementation of our method one should be able to perform

various operations in certain number fields. We distinguish here four operations:

(PD) find the prime ideal decomposition of a given fractional ideal;

(U) find the group of roots of unity and a system of fundamental units;

(PI) decide whether a given fractional ideal is principal and find its generator
if it is;

(CG) compute the class group, construct a system of representatives of the ideal
classes and find the representative of a given fractional ideal.

(Note that (CG) partially covers (PI).) Fulfilling these operations (which will be
referred to as ‘multiplicative’) in the occurring fields seems to be the main difficulty
of our method.

We do not mention here ‘additive’ operations (finding integral bases, etc.).
Though these operations should also be performed, they are much easier algorith-
mically than the ‘multiplicative’ ones. See, for example, [10, 20, 19].
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3. Classical background

In this section we review some classical facts [2, 25, 22, 21, 29], but in a very
explicit setting. The results of this section do not require the assumptionjxj > X1.

Fix a root� of f(x). A prime idealp of the fieldQ(�) is exclusiveif

either Ordp(a) > 0 or Ordp(�) < 0 or Ordp(f 0(�)) < 0;

wherea is from (1). (Recall that Ordp() is the largest integerm such that 2 p
m.)

PROPOSITION 3.1.Let p be a prime ideal ofQ(�) with Ordp(�) > 0. Then for
anyx 2 Solone has either

0 6 Ordp(x� �) 6 Ordp(f
0(�)); (5)

or1

0 6 (Ordp(a)�Ordp(x� �))modp 6 Ordp(f
0(�)): (6)

In particular, if p is non-exclusive thenpjOrdp(x� �).
Proof. We write Ord instead of Ordp. Denote byOp the local ring of the idealp

(recall thatOp = f 2 Q(�) : Ord() > 0g) and putf�(x) = f(x)=(x��). Since
f 0(�) is the resultant of the polynomialsx�� andf�(x), both having coefficients
in Op, we have

A(x)(x� �) +B(x)f�(x) = f 0(�); (7)

for someA(x); B(x) 2 Op[x].
Now let (x; y) be a solution of (1) with Ord(x � �) > Ord(f 0(�)). Then

Ord(f�(x)) 6 Ord(f 0(�)) by (7). Since

Ord(x� �) = Ord(f(x))�Ord(f�(x))

= Ord(ayp)�Ord(f�(x))

� Ord(a)�Ord(f�(x)) (modp);

we have (6). The proposition is proved.
The following lemma is crucial for the effective study of superelliptic equations.

LEMMA 3.2. There exists a finite effectively constructible set� = �(�) � Q(�)
with the following property. For anyx 2 Sol

x� � = ��p; (8)

1 Recall that for anyb 2 Zwe denote bybmodp the uniqueb0 2 P such thatb � b0(modp).
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with � 2 � and� 2 Q(�).
Proof. We construct the set� as follows. Write the principal ideal(�) as

(�)0=(�)1, where(�)0 and(�)1 are coprime integral ideals of the fieldQ(�).
Let p1; : : : ; pk be all exclusive ideals satisfying Ordp(�) > 0. Consider ideals of
the type

a = a(b1; : : : ; bk) = (�)�1
1 p

b1
1 : : : p

bk
k ; (9)

where everybi 2 P satisfies either

bi 6 Ordpi(f
0(�)); (10)

or

0 6 (Ordpi(a)� bi)modp 6 Ordpi(f
0(�)): (11)

For any sucha let� = �(a) be a maximal set of pairwise non-equivalent2 ideals
b of the fieldQ(�) such thatabp is principal for anyb 2 �. (The set� can happen
to be empty.) Constructing the set� requires the operation (CG) in the fieldQ(�).
If this field has class number 1, then we can put�(a) = f(1)g for anya.

Fix a generator�0 for any principal idealabp, wherea is of the type (9) and
b 2 �(a). (Here the operation (PI) is needed.) Let�0 be the set of all numbers�0

obtained this way. Also, let! generate the group of roots of unity of the fieldQ(�)
and�1; : : : ; �r be a system of basic units (here (U) is needed). We put

� = f�0!
b0�b1

1 : : : �brr : �0 2 �0; b0; : : : ; br 2 Pg:

It is easy to see that the set� is as desired. Letx 2 Sol. By Proposition 3.1
the principal ideal(x � �) can be presented in the formabp1 wherea is an ideal
of the type (9). Letb 2 �(a) be equivalent tob1 and�0 2 �0 generateabp. Then
(x � �) = (�0)(�0)

p with �0 2 Q(�). Therefore we have (8) with� 2 � and
� 2 Q(�). The lemma is proved.

The most important case of Equation (1) is when the polynomialf(x) is irre-
ducible. Under this assumption one has further (severe) restrictions for Ordp(x��),
which considerably reduces the set�.

Indeed, denote byfn the leading coefficient off(x), that is

f(x) = fnx
n + terms of lower degree: (12)

Let p be a prime ideal ofQ(�) and f = fp the residue degree ofp over Q.
That is,NQ(�)=Q(p) = P f , whereP = P (p) is the underlying prime. Since
NQ(�)=Q(x� �) = (a=fn)y

p, we have

fp Ordp(x� �) � OrdP (a=fn) (modp); (13)

2 Recall that idealsb1 andb2 areequivalentif the fractional idealb1b
�1
2 is principal.
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for any solution3 x. This defines Ordp(x � �) uniquely modulop as soon as
fp 6� 0 (modp).

Hence, whenf(x) is irreducible, one can, for everypi with fi := fpi 6
� 0 (modp), define the correspondingbi 2 P uniquely from fibi � OrdPi(a=fn)
(modp), rather than consider all possiblebi satisfying (10) or (11). (HerePi =
P (pi).) In particular,bi = 0 whenever

fi 6� 0 (modp) and OrdPi(a=fn) � 0 (modp): (14)

Therefore the idealspi which satisfy (14) can be excluded from consideration.

4. The general method

4.1. ADMISSIBLE FIELDS

PutK 0 = Q(�; �).

DEFINITION 4.1.1. A number fieldK is admissiblefor a solutionx if

K = K0

 
�k
�
x� �

x� �

�1=p
!
;

for somek 2 P. A system of number fieldsfKg is a complete system of admissible
fieldsif it contains an admissible field for any solutionx.

All conjugates of(x��=x��)1=p overK0 are among the numbers�k(x��=x�
�)1=p, wherek 2 P. Hence any field isomorphic toK overK 0 is admissible for
x as soon asK is admissible forx. A complete system isminimal if it consists of
fields pairwise non-isomorphic overK 0.

By Kummer’s theory [12, Ch. 6, Thm 8.1], either�k(x��=x��)1=p 2 K0 for
somek 2 P, or

"
K 0

 
�k
�
x� �

x� �

�1=p
!

: K 0

#
= p for all k 2 P

and thep fieldsK0(�
k(x��=x��)1=p) are isomorphic overK 0. This prompts the

following procedure for constructing a complete system of admissible fields. Let
�(�) be the set constructed in Lemma 3.2 and�(�) a similar set for the root�. Put

M0 =
�
�0=�00: �0 2 �(�); �00 2 �(�)

	
� Q(�; �): (15)

3 Sometimes (13) even provides a local obstruction for solubility of Equation (1): if fp � 0(modp)
but OrdP (a=fn) 6� 0 (modp) then (1) has no solutions at all.
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If � and� are conjugate overQ and� : Q(�) ! Q(�) is the automorphism taking
� to �, then we can define M0 alternatively as

M0 = f�=�(�): � 2 �(�)g: (16)

Further, put

M = f� 2 M0 : � is not ap-th power inK 0g: (17)

Then the fieldsK 0 and allK0 (�1=p), where� runs the set M, form a complete
system of admissible fields. Testing them for isomorphism, we obtain a minimal
complete system.

It is worth mentioning here that, though the set M can be large, we expect that
the size of the minimal complete system obtained this way would be reasonable,
because distinct� 2 M often give rise toK 0-isomorphic fieldsK0 (�1=p). This
expectation was confirmed in all examples we considered. For instance, in the
second of the examples discussed in Section 6, we hadjMj = 18, while the
minimal complete system included only 4 fields (together withK0).

4.2. AFIXED ADMISSIBLE FIELD

Starting from this subsection we fix an admissible fieldK from the complete
system constructed in the previous subsection. Letm = [K : Q] = s + 2t, where
�1; : : : ; �s: K ! R are the real embeddings ofK , and�s+1; : : : ; �s+2t: K ! C are
the complex ones,�s+i and�s+i+t being complex conjugate. We write�i and�i
instead of�i(�) and�i(�), respectively.

The following observation is immediate.

PROPOSITION 4.2.1.If [K : K 0] = p > 3, then each real embedding ofK0
has exactly one real prolongation toK , andp � 1=2 pairs of complex conjugate
prolongations. In particular, in this cases = s0 andt = pt0+ (p� 1=2)s0, where
s0 and2t0 are the numbers of real and complex embeddings ofK0, respectively.

We denote by Sol(K ) the set of solutionsx such thatK is admissible forx. For
anyx 2 Sol(K ) there existsk(x) 2 P such that�k(x)(x � �=x � �)1=p 2 K . Of
course,k(x) is not well-defined in the case� 2 K0.

Givenx 2 Sol(K ) andi 2 f1; : : : ; mg, defineki(x) 2 P from

�i

 
�k(x)

�
x� �

x� �

�1=p
!
= �ki(x)

�
x� �i

x� �i

�1=p

: (18)

Then

k1(x) = � � � = ks(x) = 0; (19)
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ki(x) + ki+t(x) � 0 (modp) (s < i 6 s+ t): (20)

Therefore there are at mostptpossibilities for the vectork(x) = (k1(x); : : : ; km(x)).
Now assume that[K : K 0] = p. Then any embedding ofK 0 hasp distinct

prolongations toK . If �i1 and�i2 are distinct embeddings ofK coinciding onK0

thenki1 6= ki2. Therefore, in addition to (19)–(20), we have the following:

if �i1; : : : ; �ip are thep distinct prolonga-
tions of a fixed embedding ofK 0, then�
ki1(x); : : : ; kip(x)

	
= P:

(21)

It follows from Proposition 4.2.1 and (19)–(21) that in the case[K : K 0] = p > 3
there at most(2p�1=2(p � 1=2)!)s0 (p!)t0 possibilities fork(x). See Appendix B
for further ideas how to reduce the number of possibilities fork(x).

4.3. FUNCTION'(x) AND SET�

For anyx 2 Sol(K ) put

'(x) = (x� �)

 
�k(x)

�
x� �

x� �

�1=p

� 1

!p

: (22)

PROPOSITION 4.3.1.There exists a finite effectively constructible set�0 � K

with the following property: for anyx 2 Sol(K ) there are�0 2 �0 and a unit� of
the fieldK such that

'(x) = �0�: (23)

Proof. For any prime idealp of K put

u1(p) = max(0;�Ordp(�);�Ordp(�)); (24)

u2(p) = max(0;Ordp(� � �)): (25)

Thenu1 andu2 are non-negative integers both equal to 0 for all but finitely many
p. If the polynomialf(x) is monic thenu1(p) = 0 for all p.

Let�0 be a maximal set of pairwise non-associate�0 2 K satisfying

�u1(p) 6 Ordp(�0) 6 pu2(p) + (p� 1)u1(p); (26)

for all p. (Recall that two algebraic numbers areassociateif their ratio is a unit.)
Note that, in order to construct�0, one should be able to perform the operations
(PD) and (PI) in the fieldK .

Now letx be a solution. Then

'(x) ~'(x) = (� � �)p; (27)
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where

~'(x) =
Y
k02P

k0 6=k(x)

(x� �)

 
�k

0
�
x� �

x� �

�1=p

� 1

!p

:

For somek00 2 P we have

'(x) = ((x� �)1=p � �k
00

(x� �)1=p)p; (28)

~'(x) =
Y
k02P
k0 6=k00

((x� �)1=p � �k
0

(x� �)1=p)p: (29)

Fix a prime idealp of the fieldK . Let j : : : jp be thep-adic valuation onK , extended
somehow to the fieldK (�; (x ��)1=p; (x� �)1=p). As follows from (28) and (29),
we have

j'(x)j
p
6 max

�
1; j�jp; j�jp

�
;

j ~'(x)j
p
6
�
max

�
1; j�jp; j�jp

��p�1
:

Together with (27) this yields

�u1(p) 6 Ordp('(x)) 6 pu2(p) + (p� 1)u1(p): (30)

Thus

'(x) is associate to some�0 2 �0: (31)

The proposition is proved.

Remark4.3.2. In the case[K : K0] = p the set�0 can be made smaller. Indeed,
in this case

NK=K0
('(x)) = (� � �)p: (32)

Hence all�0 such that the principal ideals

(NK=K0
(�0)) and ((� � �)p) (33)

are distinct, can be excluded from the set�0.

Let 
 be the group of roots of unity of the fieldK , and�1; : : : ; �r a system of
fundamental units. (Of courser = s+ t� 1.) Put

� = f�0!: �0 2 �0; ! 2 
g:
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Then for anyx 2 Sol(K ) there exists�(x) 2 � such that

'(x) = �(x)�
b1(x)
1 � � � �br(x)r ; (34)

with b(x) = (b1(x); : : : ; br(x)) 2 Zr.

4.4. FIXED ADMISSIBLE FIELD, � AND k

Starting from this point, we fix� 2 � andk = (k1; : : : ; km) 2 Pm and consider
the set

Sol(K ; k; �) = fx 2 Sol(K ) : k(x) = k; �(x) = �g: (35)

As we have seen in the Subsection 4.2, we have to consider only vectorsk satisfying

k1 = � � � = ks = 0; (36)

ki + ki+t � 0 (modp) (s < i 6 s+ t): (37)

In the case[K : K0] = p we also require that

if �i1; : : : ; �ip are thep distinct prolonga-
tions of a fixed embedding ofK 0, then�
ki1; : : : ; kip

	
= P.

(38)

For anyx 2 Sol(K ; k; �) put

'i(x) = (x� �i)

 
�i

�
x� �i

x� �i

�1=p

� 1

!p

= �i('(x)); (39)

where�i = �ki. We also write

�i = �i(�); �ij = �i(�j);

�i =

(
1� p; ki = 0;

1; ki 6= 0;
i =

8<
:
�
�i��i

p

�p
; ki = 0;

(�i � 1)p ; ki 6= 0;

(40)

where 16 i 6 m. LetA = [aij ]16j;i6r be the inverse for the matrix[logj�ij j]16i;j6r.
For 16 j 6 r put

�i =
rX

j=1

aij�j; �i =
rX

j=1

(aij log jj��1
j j): (41)
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Also, we need some constants

c2 = 4j2�1=p + (2p)�1 � 1j; c3 = 2(1� 2�1=p);

c4 = 2 sin(�=p); c5 = max
16i6m

�
j�ij+ j�ij

�
;

c6 = max
16i6m

j�ij
2+j�ij2

j�i��ij
; c7 = 1:39pmax(c3c

�1
4 c5; pc2c6);

c8 = max
16j6r

j�j j; X2 = max(X1;2c3c
�1
4 c5;2pc2c6);

c9 =
1
20 + max

16j6r
j�j j; c10 = c7 max

16i6r

rX
j=1

jaij j;

X3 = max(X2;20c10):

(42)

PROPOSITION 4.4.1.Suppose thatx 2 Sol(K ; k; �) andjxj > X2. Then

'i(x) = ix
�ieO1(c7jxj

�1) (1 6 i 6 m); (43)

bi(x) = �i log jxj+ �i +O1(c10jxj�1) (1 6 j 6 r); (44)

Also, if jxj > X3 then

jb(x)j1 6 c8 log jxj+ c9: (45)

(Recall thatbj(x) were defined in the previous section, andb(x) = (b1(x); : : : ;
br(x).)

Proof. Let z be a complex number with the conditionjzj 6 1
2. Then

(1+ z)1=p = 1+ p�1z +O1(c2jzj2) = 1+O1(c3jzj); (46)

1+ z = eO1(1:39jzj): (47)

For (47) see [27, p. 106]. For (46), put

 (z) = z�2((1+ z)1=p � 1� p�1z):

Then

j (z)j =
�����
1X
�=2

 
1=p

�

!
z��2

����� 6
1X
�=2

�����
 

1=p

�

!����� (1=2)��2 = j (�1=2)j = c2;

which proves the first equality in (46). The second one can be obtained in the same
manner.

comp4123.tex; 26/05/1998; 11:37; v.7; p.12

https://doi.org/10.1023/A:1000305028888 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000305028888


SUPERELLIPTIC EQUATIONS 285

As follows from (3), forjxj > X1 we have

'i(x) = x(�i(1� �ix
�1)1=p � (1� �ix

�1)1=p)p: (48)

Whenki 6= 0 we have�i 6= 1 and, moreover,j�i � 1j > c4. Therefore

'i(x) = (�i � 1)px(1+O1(c3c
�1
4 c5jxj�1))p:

Sincejxj > X2, theO1-term is bounded by12, and we obtain

'i(x) = ixe
O1(1:39pc3c

�1
4 c5jxj

�1);

which proves (43) in the caseki 6= 0.
Whenki = 0 we have

'i(x) =

�
�i � �i

p

�p
x1�p(1+O1(pc2c6jxj�1))p:

Again theO1-term is bounded by12, and we obtain

'i(x) = ix
1�peO1(1:39p2c2c6jxj

�1);

and (43) is established in the caseki = 0 as well.
Now prove (44). Since

log j��1
i 'i(x)j = b1(x) log j�i1j+ � � � + br(x) log j�irj (1 6 i 6 r); (49)

we have

bi(x) =
rX

j=1

aij log j��1
j 'j(x)j (50)

=

0
@ rX
j=1

aij�j

1
A log jxj+

rX
j=1

(aij log jj��1
j j)

+O1

0
@c7jxj�1

rX
j=1

jaij j

1
A ; (51)

which is (44). Finally, (45) is a direct consequence of (44). The proposition is
proved.

We conclude this subsection observing that in the case

��fi: ki(x) = 0g
�� 6= m=p; (52)
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an upper bound for the solutions follows already from Proposition 4.4.1. Note that,
in view of (38), the inequality (52) can take place only forK = K 0, and that (52)
is always the case whenm 6� 0 (modp).

COROLLARY 4.4.2.Suppose that(52) holds, and put�0 = m�p jfi: ki(x) = 0gj.
Then anyx 2 Sol (K ; k; �) satisfies

jxj 6 X4 := max(X2;3mc7; e
1=(3j�0j) j1 : : : mj�1=�0 j�1 : : : �mj1=�

0

): (53)

Proof. On the one hand

'1(x) : : : 'm(x) = NK=Q('(x)) = ��1 : : : �m: (54)

On the other hand,

'1(x) : : : 'm(x) = 1 : : : mx
�1+���+�meO1(mc7jxj

�1):

Since�1 + � � �+ �m = �0, the result follows.

4.5. ALARGE UPPER BOUND FORjb(x)j1
In this subsection, assuming thatp > 3, [K :Q] > 3 andjxj > X3, we obtain a
large upper bound forjb(x)j as a consequence of Baker’s theory of linear forms in
logarithms. We apply a result of Baker and Wüstholz [4].

THEOREM 4.5.1. [4, p. 20]Let#0; : : : ; #r be complex algebraic numbers distinct
from0 and1, andb= (b1; : : : ; br+1) 2 Zr+1. Also, let

d > [Q(#0; : : : ; #r) : Q]; (55)

hi > max(h(#i); d�1j log#ij; d�1) (0 6 i 6 r); (56)

whereh(: : :) is the absolute logarithmic height. Then either

� = log#0 + b1 log#1 + � � �+ br log#r + br+1�i = 0; (57)

or

j�j > exp(�c11 logB): (58)

HereB = max(jb1j ; : : : ; jbr+1j ; e) and

c11 = 18� � 32r+4(r + 3)!(r + 2)r+3dr+3 log(2d(r + 2))h0 : : : hr:

Remark4.5.2. The parametersn; h0(�1); : : : ; h
0(�n); h

0(L) of the original the-
orem in [4] correspond in Theorem 4.5.1 tor + 2; h0; : : : ; hr; �=d; logB, respec-
tively.
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We have slightly modified the statement in [4], to allow inequalities in (55) and
(56). It is often much easier (and quicker) to find an upper bound for the degree
of a number field or for the height of an algebraic number, than to compute any of
them exactly.

LEMMA 4.5.3. Let z andC1 be positive real numbers andC2 an arbitrary real
number. Suppose that

z 6 C1 logz + C2: (59)

Then

z 6 2(C1 logC1 + C2):

Proof. This is the caseh = 1 of Lemma 2.2 from [18].
Now we can obtain an upper bound forjb(x)j1. By (21), in the case[K : K 0] = p

there existi1; i2 2 f1; : : : ; mg such that

�i1jK0 = �i2jK0; (60)

ki1 6= 0; ki2 6= 0; ki1 6= ki2: (61)

It follows from (60) that

�i1 = �i2; �i1 = �i2:

In the caseK = K0 choosei1 andi2 such that among the numbers

�i1; �i2; �i1; �i2; (62)

there are at least three distinct. The required choice ofi1 andi2 is possible by the
condition[K :Q] > 3.

Let i1 andi2 be as defined above. Put

�(x) =

�i1
i2
'i1(x)

�i2


�i2
i1
'i2(x)

�i1
: (63)

By the choice ofi1 andi2, the equation

�(x) = 1 (64)

has finitely many solutions, which can be easily found in practice (see Appendix C
for the details). Now suppose that

�(x) 6= 1: (65)
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By (43) we have (assumingjxj > X2)

�(x) = eO1(c12jxj
�1); (66)

with c12 = 2pc7. On the other hand

�(x) = #0#
b1(x)
1 � � �#br(x)r ; (67)

where

#0 =

�i1
i2
�
�i2
i1


�i2
i1
�
�i1
i2

; #j =
�
�i2
i1j

�
�i1
i2j

: (68)

Taking the logarithm, we obtain

log�(x) = log#0 + b1(x) log#1 + � � �+ br(x) log#r + br+1(x)�i; (69)

for somebr+1(x) 2 Z. Comparing the imaginary parts in (69), and using (66), we
get

jbr+1(x)j 6 1+ jb1(x)j+ � � �+ jbr(x)j+ ��1c12jxj�1; (70)

6 1+ ��1c12+ r jb(x)j1 : (71)

Apply Theorem 4.5.1 to the right-hand side of (69). Since log�(x) 6= 0, we obtain

j log�(x)j > exp(�c11 logB(x)); (72)

where

B(x) := max
�
b1(x); : : : ; br(x); br+1(x); e

�
6 1+ ��1c12+ r jb(x)j1 (73)

6 c13 log jxj+ c14 (74)

with c13 = rc8 andc14 = max
�
1+ ��1c12+ rc9; e

�
.

Combining (66) and (72), we obtain

log jxj 6 c11 logB(x) + logc12: (75)

Assumingjxj > X3, we deduce from here thatB(x) 6 c15 logB(x) + c16 with
c15 = c11c13 andc16 = c13c12+ c14. By Lemma 4.5.3 we have

jb(x)j1 6 B(x) 6 B0 := 2(c15 logc15+ c16):
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4.6. REDUCTION OFBAKER’S BOUND

4.6.1. Preliminaries

In practice, the value ofB0 is too large for directly enumerating all possibilities
for b(x). However,B0 may be significantly reduced by applying an appropriate
version of the LLL-reduction algorithm, as described in [27]. We use here (see also
[8]) a modification making the reduction process much more efficient; in particular,
LLL can be replaced by the classical continued fractions algorithm, as in [3] (see
also [33]).

Let j1 be defined by the condition

j�j1j = max
16j6r

j�j j = c8: (76)

(Recall that the numbers�j are defined in (41).) We have�j1 6= 0, because the
matrixA is non-degenerated.

The method of reduction we use depends on what we heuristically believe about
the mutual arithmetic behaviour of the numbers�j and�j. We shall distinguish
between the following cases.

(1) Irrational case.For somej2 2 f1; : : : ; rg, we believe that the number�j2�j1�
�j1�j2 is not a linear combination of�j1 and�j2 with rational coefficients.

(2) Semirational case.For somej2 2 f1; : : : ; rg, we believe that the quotient
��1
j1
�j2 is irrational, but the number�j2�j1 � �j1�j2 is a linear combination of

�j1 and�j2 with rational coefficients.
(3) Totally rational case. We believe that for allj 2 f1; : : : ; rg the numbers

��1
j1
�j and��1

j1

�
�j�j1 � �j1�j

�
are rational.

In the first two cases we fix such aj2 and put

� = ��1
j1
�j2; � = ��1

j1

�
�j2�j1 � �j1�j2

�
:

By (44) and by the definition of� and� one has

jbj2(x)� �bj1(x) + �j 6 (1+ j�j)c10jxj�1
6 2c10jxj�1; (77)

because by the choice ofj1 andj2 we havej�j 6 1. Combining this with (45), we
obtain

jbj2(x)� �bj1(x) + �j 6 c18 exp(�c17jb(x)j1); (78)

with c18 = 2c10 exp(c9=c8) andc17 = c�1
8 .

Notice that in the first two casesj1 6= j2, in particularr > 2. On the other hand,
the rational case covers the caser = 1.

comp4123.tex; 26/05/1998; 11:37; v.7; p.17

https://doi.org/10.1023/A:1000305028888 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000305028888


290 YURI F. BILU AND GUILLAUME HANROT

4.6.2. The irrational case

Choose a not very large number� > 2. (We discuss the practical choice of�
in Subsection 4.6.5.) By the theorem of Dirichlet, there exists a positive integer
q 6 �B0 such that

kq�k 6 (�B0)
�1; (79)

wherek : : : k is the distance to the nearest integer. In practiceq can be quickly found
from the continuous fraction expansion of�. Multiplying (78) byq, we obtain

k � bj1(x)kq�k + q�k 6 c18�B0 exp(�c17jbj1); (80)

where ‘�’ should be ‘+’ if q� is smaller than the nearest integer and ‘�’ otherwise.
It follows from (79) thatjbj1(x)j � kq�k 6 ��1. Therefore (80) implies that

kq�k � ��1
6 c18�B0 exp(�c17jb(x)j1): (81)

If kq�k > 2��1, which is heuristically plausible when� is large enough, then we
have a new estimate forjb(x)j1

jb(x)j1 6 c�1
17 (logB0 + log(c18�

2)); (82)

(compare this with the lemma from [3, Section 3]).
The reduced bound forjb(x)j1 can be reduced again, using the same procedure,

etc.

4.6.3. The semirational case

We have

q1 + q2� + q3� = 0; (83)

whereq1, q2 andq3 are integers,q3 6= 0, and gcd(q1; q2; q3) = 1. We expect that
the integersq1, q2 andq3 are ‘very small’ (around 10 or so in absolute value). This
was confirmed in all examples we considered.

Multiplying (78) byq3 and using (83), we obtain

jbj2(x)� q1� �(bj1(x) + q2)j 6 jq3jc18 exp(�c17jb(x)j1):

It follows that

min
b2Z;jbj6B0+jq2j

kb�k 6 jq3jc18 exp(�c17jb(x)j1): (84)
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However, this minimum can be quickly computed using continued fractions, and
we expect it to be(�0B0)

�1, where�0 is a reasonable number. We conclude that

jb(x)j1 6 c�1
17 (logB0 + log(jq3jc18�

0)): (85)

4.6.4. The totally rational case

Since this case requires a rather lengthy case-by-case analysis, and seldom occurs
in practice (whenr > 2), it is treated in Appendix D.

4.6.5. The technology of reduction

Whenr > 2, we pickj2 6= j1 and continue as if it were irrational case. We take
as a starting value� = 10, and try the first reduction. When it iskq�k < 2��1,
we change� by 10� and repeat the process. In most of the cases we obtained
successful reduction in two or three iterations at most.

When we do not obtain successful reduction after seven-eight iterations of�, we
conclude that probably is a linear combination of 1 and�with rational coefficients.
This can be easily verified (see the second comment in Subsection 4.6.6), and this
guess was always confirmed. Now if� is irrational then we continue as in the
semirational case. If� is rational, then we redefinej2 and repeat the process.

If � and are rational for all possiblej2 then we are in the totally rational case,
see Appendix D.

Whenr = 1 we are in the totally rational case from the very beginning.

4.6.6. Computational comments

(1) Since in practice we deal with approximate values of� and�, we usually
obtain, instead of (83), an inequality of the form

jq1 + q2� + q3�j 6 "; (86)

where" is a very small positive number (" = 10�20B�2
0 is typical). Though we

do believe that, whenever (86) is detected with small integersqi, it corresponds
to the actual equality (83), we do not prove this, and in fact we do not need
this: (86) is completely sufficient for our purposes.

For simplicity of exposition we assumed the exact equality (83) in our
treatment of the semirational case. However, in real computations we used (86),
with all constant correspondingly modified.

The similar convention applies to the totally rational case.
(2) It is very easy to verify whether (86) holds with small integersqi. One has to

find, using the three-dimensional LLL, the (almost) shortest vector of the lattice
generated by(C; [C�]; [C�]), (0;1;0) and(0;0;1), whereC is a sufficiently
large positive integer (we usedC = 1010).
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We refer to [8, Subsection 2.4.3] for further computational details and other sub-
tleties.

4.7. FINAL ENUMERATION

Unfortunately, the reduced boundB0
0 may also be too large for the direct enumer-

ation, because one has to check(2B0
0 + 1)r possibilities for the vectorb(x). One

can imagine several ways to overcome this difficulty, for instance:

– sieving modulo several primes, as in [28] and [23];
– use of Fincke–Pohst algorithm for finding all short vectors in a lattice, as in

[30] and [28].

In [6, 8] one further approach to final enumeration was proposed, based on the
inequality (77). In the present paper we use a more efficient version of this method.
For 16 j 6 r put

b0j(x) = ��1
j1
�jbj1(x)� ��1

j1

�
�j�j1 � �j1�j

�
; (87)

wherej1 is defined from (76). Then, replacing in (77) indexj2 by j, we rewrite it
asjbj(x)� b0j(x)j 6 2c10jxj�1. SinceX3 > 20c10, we obtain

jbj(x)� b0j(x)j < 0:1 (1 6 j 6 r) (88)

as soon asjxj > X3. In particular,

kb0j(x)k < 0:1 (1 6 j 6 r): (89)

Now we do as follows. For every integerb such thatjbj 6 B0
0, compute the real

numbersb0j := ��1
j1
�jb���1

j1

�
�j�j1 � �j1�j

�
, and for eachj, check for the condition

kb0jk < 0:1. This condition trivially holds forj = j1, but for j 6= j1 it needs not.
If it is false for at least onej, then there is no solutionx with jxj > X3 such that
bj1(x) = b, and we go to the nextb.

The heuristic probability that the integerb passes this severe test is 51�r, quite
a small number (whenr > 2). For those very fewb that survive after the test, we
used the second test, based on Lemma 4.7.1 below.

Fix i such thatki 6= 0. Forx 2 Z put

!i(x) := �1
i 'i(x)� 0i;

where0i = �i � �i�i=�i � 1. Also, put

c19 = 4(3
2)

p � 4� 2p; c20 = c2(j�ij2 + j�ij2)j�i � 1j�1;

c21 = p�1j0ij+ c20X
�1
3 ; c22 = c21X

�1
3 ;

c23 = c19c21+ pc20; X5 = max(X3;2c22;2c23):
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LEMMA 4.7.1. If jxj > X5 then

jx� !i(x)j < min(1
2; c23=(j!i(x)j � 1

2)): (90)

Proof. For jzj 6 1
2 we have

(1+ z)p = 1+ pz +O(c19z
2); (91)

which can be proved in the same manner as (46). As follows from (91), (46) and
(48), for jxj > X3 we have

'i(x) = ix(1+ 0ix
�1=p+O1(c20x

�2))p;

= ix(1+ 0ix
�1 +O1(c23x

�2));

which yields

jx� !ij 6 c23x
�1: (92)

Sincejxj > 2c23, this provesjx� !ij < 1
2. In particular,j!i(x)j < jxj+ 1

2, which
together with (92) yieldsjx�!i(x)j < c23=(j!i(x)j � 1

2). This proves the lemma.
The second test is: If!i = !i(x) for a solutionx with jxj > X5 then

j!ij > X5 � 1
2 and k!ik < c23=(j!i(x)j � 1

2): (93)

We computedb1; : : : ; br as the nearest integers tob01; : : : ; b
0
r, respectively, and

verified whether

!i := �1
i �i�

b1
i1 � � � �brir � 0i (94)

satisfied (93). If it did, we putx to be the nearest integer to!i and checked whether
it is a solution, just substituting it to the Equation (1).

4.8. THE ALGORITHM

We summarize the contents of this section in the following algorithm for complete
solution of the superelliptic Equation (1), wherep > 3.

Step 1. Construct a complete system of admissible fields, as described in Subsec-
tion 4.1.

Step 2. Fix an admissible fieldK not considered yet. If all admissible fields have
already been considered, go to Step 10.

Step 3. Construct the set�, as described in Subsection 4.2.
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Step 4. Fix � 2 � andk 2 Pm (subject to restrictions formulated in the beginning
of Subsection 4.4). If all possible pairs(�; k) have already been considered, go to
Step 2.

Step 5. If (52) holds, computeX4 and go to Step 4. Otherwise, computeX3 and go
to the next step.

Step 6. Construct the function�(x) and find all integral solutions of (64). For each
of the latter check whether it is a solution of (1).

Step 7. Compute Baker’s boundB0.

Step 8. Find the reduced boundB0
0, as described in Subsection 4.6.

Step 9. Final enumeration (see Subsection 4.7).
Go to Step 4.

Step 10. Find X6 as the maximum of allX4, computed at Step 5, and allX5,
computed at Step 9.4

Step 11. For anyx 2 Z such thatjxj 6 X6 check whetherx is a solution of (1).

Step 12. Collect all solutions obtained at Steps 6, 9, and 11.

Step 13. End.

Note in conclusion that we should be able to perform the operations (PD), (U), (CG)
in the fieldsQ(�) andQ(�), and the operations (PD), (U), (PI) in any admissible
field K constructed on the Step 1 of the algorithm. The last demand seems to be
the most difficult point of the proposed method. Indeed, the maximal degree of
admissible fields will bepn(n � 1) in the worst case. Even for(p; n) = (3;4)
we shall have to perform ‘multiplicative’ operations in fields of degree 36 (in the
worst case), which is beyond the possibilities of the Algorithmic Algebraic Number
Theory at its present state.

In the next section we shall see how to reduce the degrees of the fields occurring
in the process of solution.

5. The(�; �)-symmetry

In this section we assume thatp > 3.

5.1. PRELIMINARY PREPARATIONS

We say that we have an(�; �)-symmetryif there exists an automorphism ofQ(�; �)
sending� to � and� to�. The roots� and� are called in this casesymmetric. We
shall see that, in the case of(�; �)-symmetry, the fieldQ(�; �) can be replaced by

4 If the totally rational case occurred (see Appendix D), then one should also take into account
X7 andX8.
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Q(� + �; ��). Our considerations will be based on the following lemma.

LEMMA 5.1.1. LetK0 � K 1 � K 2 be a tower of number fields with the following
properties

[K 1 : K0] = 2 and [K 2 : K 1] = p;

K2 = K 1(�);

where�p = � 2 K1 and� is conjugate to��1 overK0. Then

(a) [K 0(� + ��1) : K 0] = p.
Furthermore, letK be a number field such thatK0 � K � K2 and[K : K 0] = p.
Then

(b) if � 62 K0 thenK = K0(� + ��1);
(c) if � 2 K0 thenK is one of thep distinct fieldsK 0(�

k� + ��k��1), where
k 2 P;

(d) the compositeK 1K is K 2.

Proof. Clearly,K2 = K 0(�). Further,� and��1 are conjugate overK 0. Define
the automorphism� : K2 ! K 2 by �(�) = ��1. Then� + ��1 is stable with
respect to� , whence the degree[K 0(� + ��1) : K0] divides p. This proves (a),
because� + ��1 62 K0. (If it were � + ��1 2 K0, then we would have had
[K2 : K0] = [K 0(�) : K 0] 6 2, a contradiction).

Assertion (d) is obvious: sincep is odd, we haveK1 6� K , whenceK �
6=
K 1K � K2,

and the single option isK1K = K2.
To prove (b) and (c) note that the fieldsK correspond to non-trivial involutions

of K2 overK0, i.e. automorphisms� : K 2 ! K2 satisfying

� 6= id; �2 = id; � j
K0
= idK0 :

The conjugates of� overK 0 are among the numbers

�; ��; : : : ; �p�1�; ��1; ���1; : : : ; �p�1��1: (95)

Since[K 0(�) : K0] = 2p, all the numbers (95) are conjugate to� overK0.
We distinguish between three cases.

(b)0 � 62 K 1. Then, among the conjugates of� overK0, only ��1 belongs toK2.
Hence the unique involution ofK2 overK0 is the one taking� to ��1, and the
single possibility forK is K0(� + ��1).

(b)00 � 2 K 1nK 0. In this case all the numbers (95) belong toK 2. HenceK2 is
normal overK 0 and the groupG := Gal(K 2=K 0) is generated by� : � ! ��1

and�: � ! ��. Clearly,� j
K1

is the non-trivial involution ofK 1=K 0, whence
�(�) = ��1. Therefore�� = �� , whenceG is abelian, and again� is the
unique involution ofK2=K 0.
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(c) � 2 K0. In this case�� = ��1� , and there are exactlyp distinct involutions
�k := �k���k, wherek 2 P. Indeed, the involutions�k are pairwise distinct
because the numbers�k(�) = ��2k� are distinct for distinctk 2 P. Further,
by the theorem of Sylow, all two-element subgroups ofG are conjugate. Since
there are at most[G: f1; �g] = p subgroups conjugate tof1; �g, there are no
involutions other than�0 = �; �1; : : : ; �p�1. The involutions�k correspond to
thep distinct fieldsK 0(�

k� + ��k��1), which completes the proof.

The lemma is proved.

5.2. ADMISSIBLE FIELDS

In the case of(�; �)-symmetry we define admissible fields in a way different from
the general case. We putK 00 = Q(�; �) and let� : K 00!K 00 be defined by�(�) = �,
�(�) = �. PutK0 = Q(� + �; ��) = (K 00)

� .

DEFINITION 5.2.1. A number fieldK is admissiblefor a solutionx if for some
k 2 P we have

K = K0

 
�k
�
x� �

x� �

�1=p

+ ��k
�
x� �

x� �

��1=p
!
:

A complete systemof admissible fields and aminimal complete systemare defined
as in Subsection 4.1.

Let M be the finite subset ofQ(�; �) defined in (16) and (17).

PROPOSITION 5.2.2.The fieldsK 0 andK 0(�
1=p+��1=p), where� runsM, form

a complete system of admissible fields.
Proof. Suppose first that

�k
�
x� �

x� �

�1=p

2 K
0
0;

for somek 2 P. We shall see that in this caseK 0 is admissible for the solutionx.
We have

�

 
�k
�
x� �

x� �

�1=p
!
= �k

0
�
x� �

x� �

��1=p

;

for somek0 2 P. Therefore

�k+k
0

= NK00=K0

 
�k
�
x� �

x� �

�1=p
!
2 K 0:
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If � 62 K0 thenk0 = �k, whence

�k
�
x� �

x� �

�1=p

+ ��k
�
x� �

x� �

��1=p

= TrK 00=K0

 
�k
�
x� �

x� �

�1=p
!
2 K 0: (96)

When� 2 K 0 we definek00 2 P by 2k00 = k � k0 (modp). Then

�

 
�k

00
�
x� �

x� �

�1=p
!
= �k

00�k�

 
�k
�
x� �

x� �

�1=p
!

= �k
00�k�k

0

�
x� �

x� �

��1=p

= ��k
00
�
x� �

x� �

��1=p

;

and we obtain (96) withk00 instead ofk.
Now suppose that
"
K
0
0

 �
x� �

x� �

�1=p
!

: K 00

#
= p:

Then

�k
�
x� �

x� �

�1=p

��1=p 2 K
0
0;

for somek 2 P and� 2 M. We shall see that the fieldK = K 0(�
1=p + ��1=p) is

admissible forx. By Lemma 5.1.1(a)"
K 0

 
�k
�
x� �

x� �

�1=p

+ ��k
�
x� �

x� �

��1=p
!

: K 0

#
= [K : K 0] = p:

If � 62 K0 then by Lemma 5.1.1(b) we have

K0

 
�k
�
x� �

x� �

�1=p

+ ��k
�
x� �

x� �

��1=p
!
= K :

If � 2 K0 then by Lemma 5.1.1(c) the fieldK coincides with one of thep fields

K0

 
�k

0
�
x� �

x� �

�1=p

+ ��k
0
�
x� �

x� �

��1=p
!
;

wherek0 2 P. The proposition is proved.
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5.3. AFIXED ADMISSIBLE FIELD

Fix an admissible fieldK from the complete system constructed in the previous
subsection and definem, s, t, and�i as in the first paragraph of Subsection 4.2. In
particular

�i() = �i+t() (s+ 1 6 i 6 s+ t); (97)

for any 2 K .
Denote byK 0 the compositeK 00K . Then [K 0 : K ] = 2, and the involution

� : K 00!K 00 (defined in the beginning of the previous section) can be prolonged
to the involution ofK 0=K , which will be also denoted by� . (Thus, starting from
this point,� : K 0!K 0 is the involution ofK 0 satisfying� j

K
= id.)

Further, there are exactly two prolongations of�i to the fieldK 0 . We fix one of
them, also denoting it by�i; then the other is�i� . The prolongations can be defined
to satisfy (97) also for 2 K 0 . Having prolonged�i to K 0 , we can define�i and�i
as in the beginning of Subsection 4.2.

We say that a real embedding ofK is stableif it has real prolongations toK 0 ,
andunstableotherwise. Arrange�i; : : : ; �s so that�1; : : : ; �s0 are stable, while
�s0+1; : : : ; �s are not. Then we have the following analogue of Proposition 4.2.1
(the proof is immediate).

PROPOSITION 5.3.1.Each stable real embedding ofK 0 has exactly one real
prolongation toK , (which is stable as well) andp�1=2pairs of complex conjugate
prolongations. Each unstable real embedding ofK0 hasp real prolongation toK ,
all of them being unstable. In particular,s0 = s00, s � s0 = p(s0 � s00) and
t = pt0 +

p�1
2 s00, wheres0, s00 and2t0 are the numbers of real, stable real, and

complex embeddings ofK 0, respectively.

Again, denote by Sol(K ) the set ofx 2 Sol such thatK is admissible forx. For
anyx 2 Sol(K ) there existsk(x) 2 P such that

�k(x)
�
x� �

x� �

�1=p

2 K
0 :

Since�i are prolonged toK 0 , the numbers

�i

 
�k(x)

�
x� �

x� �

�1=p
!

are well-defined. As in the general case, we definek(x) = (k1(x); : : : ; km(x))
from the relation (18).

Again, as in the general case, we have (20) and (21). However, (19) should be
relaxed as follows

k1(x) = � � � = ks0(x) = 0: (190)
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As in the general case, it is easy to observe from Proposition 5.3.1 and relations
(190), (20), and (21), that there are at most(2p�1=2(p� 1=2)!)s

0
0(p!)t0+s0�s

0
0 possi-

bilities for k(x).

5.4. FUNCTION'(x), ETC.

Define'(x) as in (22). Though'(x) is merely inK 0 , its square'2(x) belongs to
K . To see this, notice first of all that

�k(x)
�
x� �

x� �

�1=p

+ ��k(x)
�
x� �

x� �

��1=p

2 K

and

�k(x)
�
x� �

x� �

�1=p

� ��k(x)
�
x� �

x� �

��1=p

= 1 2 K :

Hence

�k(x)
�
x� �

x� �

�1=p

and ��k(x)
�
x� �

x� �

��1=p

are conjugate overK , which means that

�

 
�k(x)

�
x� �

x� �

�1=p
!
= ��k(x)

�
x� �

x� �

��1=p

:

Therefore

'2(x) = � (x� �)

 
�k(x)

�
x� �

x� �

�1=p

� 1

!p

�(x� �)

 
��k(x)

�
x� �

x� �

��1=p

� 1

!p

= � '(x)�('(x)) 2 K :

Now we have to repeat the material of Subsections 4.3–4.8, just replacing'(x) by
'2(x), and modifying accordingly the arguments and the constants. An interested
reader can find in Appendix A the complete list of all required changes.

5.5. AFINAL REMARK

In the case of(�; �)-symmetry one should deal, in the worst situation, with fields of
degree1

2pn(n� 1). The following proposition shows that, whether there is(�; �)-
symmetry or not, only fields of degree at most1

2pn(n� 1) are to be considered.
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PROPOSITION 5.5.1.Let f(x) 2 Q(x) have at least two distinct roots. Then
either

(i) there exist two distinct roots�; � of f(x) with (�; �)-symmetry, or
(ii) there exist two distinct roots�; � of f(x) such that[Q(�; �) : Q] 6 1

2n(n�1),
wheren = degf .

Proof. Only the case of irreduciblef need to be considered. LetG be the Galois
group of the polynomialf overQ. If jGj is even, then there exists an element� 2 G
of order 2. Since� 6= id, there is a root� such that� = �(�) 6= �. Since�2 = id,
we obtain�(�) = �, whence we have (i).

Now suppose thatjGj is odd. Fix a root�. Theng(x) = f(x)=(x � �) is
reducible overQ(�); otherwisen(n � 1) would divide jGj, which is impossible.
Let nowg1 be an irreducible overQ(�) factor of g of the smallest degree. Then
degg1 6

1
2(n�1), and for any root� of g1 we have (ii). The proposition is proved.

Thus, in any case multiplicative operations should be performed in fields of
degree at most12pn(n � 1). In particular cases this bound can be reduced. For
example, iff(x) has two symmetric roots, generating the same field overQ (as in
the examples below), then fields of degree at most1

2pn are to be dealt with.

6. Examples

To illustrate the efficiency of our method, we have completely solved two con-
crete superelliptic Diophantine equations. The computations were performed by a
program written in C, using the PARI/GP programming library, version 1.917. Its
listing can be obtained by e-mail from the second author.

6.1. THE EQUATIONy3 = x4 � x3� 3x2 + x+ 1

The roots off(x) = x4 � x3 � 3x2 + x+ 1 are

1+
p

5
4

� 1
2

s
11+

p
5

2
;

1�
p

5
4

� 1
2

s
11�

p
5

2
:

We take

� =
1�

p
5

4
� 1

2

s
11�

p
5

2
= �1:355674: : : ;

� =
1�

p
5

4
+

1
2

s
11�

p
5

2
= 0:737640: : : = �3 � �2 � 3�+ 1:
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We have the(�; �)-symmetry, and

K0 = Q(
p

5); K 00 = Q(�; �) = Q(�):

M = f42�3 � 102�2 + 9�+ 32;23�3� 55�2 + 5�+ 17; �2;

6�3 � 10�2 + 3;3�3 � 6�2 + 2;2�3� 4�2 � �+ 2;

�3 + 3�2 � �� 1;�2�3 + 4�2 + �� 2;

�12�3 + 29�2 � 4�� 8g:

A system of fundamental units ofK 00 is given by

�3 � �2 � 2�; �; �3 � 2�2 � �+ 1:

For the admissible fields and data in them see Table II. (We write the fields asQ(�),
and express their elements in terms of the generator�.)

We hadX6 = 295, and (the worst value of) Baker’s boundB0 was 6:18�1029.
After the first reduction we obtainedB0 6 321, after the second reduction we had
B0 6 96, and after the final reduction step it wasB0 6 52 (there were at most 5
reduction steps at each case).

The solutions are(�1;�1), (0;1), (1;�1), (2;�1).
The total computational time on a PC Pentium Pro was 1 minute.

6.2. THE EQUATION 28y3 = x4� 20x2� 32x+ 28

The roots off(x) = x4 � 20x2� 32x+ 28 are

2
p

2�
q

2+ 2
p

2; �2
p

2�
q

2� 2
p

2

and we put

� = 2
p

2�
q

2+ 2
p

2; � = 2
p

2+
q

2+ 2
p

2:

We again have the(�; �)-symmetry, and

K0 = Q(
p

2); K
0
0 = Q(�; �) = Q(�):

Though the set M included 18 elements, there were only 4 admissible fields (to-
gether withK0).

We hadX6 = 873, and (the worst value of) Baker’s boundB0 was 8:29�1035.
After the first reduction we obtainedB0 6 233, and after the final reduction step it
wasB0 6 56 (again, there were at most 5 reduction steps at each case).

The solutions are(�2;1), (0;1).
The computation took 6 minutes on a PC Pentium Pro.
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Appendix

A. MODIFICATIONS FOR THE CASE OF(�; �)-SYMMETRY.

In this appendix we list the changes that should be made in Subsections 4.3–4.8 in
the case of(�; �)-symmetry.

(1) Replace'(x) (with and without index) and�(x) by '2(x) (with the same
index, if there is any) and�2(x), respectively, in the following equations:
(23), (30), (31), (32), (34), (49), (50), (54), (64), (65), (67), (69), (72) and
everywhere in Appendix D.

(2) Modifyu1(p)andu2(p) (see (24–25)) as follows:u1(p) = max(0;�Ordp(��))
andu2(p) = max

�
0;Ordp

�
(�� �)2

��
.

(3) In (32) and (33) replace(� � �)p by (� � �)2p.

(4) Modify �i and�i (see (41)) as follows:�i = 2�r
j=1aij�i and�i = �r

j=1

(aij log j2
j �

�1
j j). Modify the right-hand side of (51) accordingly.

(5) Modify the following constants

c10 = 2c7 max
16j6r

rX
j=1

jaij j; c14 = max
�
1+ 2��1c12+ rc9; e

�
;

c16 = 2c13c12+ c14;

X4 = max(X2; 3mc7; e
1=(3j�0j)

��1 � � � m
���1=�0 ���1 � � � �m

��1=(2�0)):
(6) In Subsections 4.5 it suffices now to assume that[K :Q] > 2. To explain this

point, recall that the assumption[K :Q] > 3 was required only whenK = K0,
to guarantee the existence ofi1 and i2 such that among the numbers (62)
there are at least three distinct. In the case of(�; �)-symmetry, it is enough to
have[K 0 :Q] > 2, because for any two distincti1 andi2, there at least three
distinct among the numbers (62). (Otherwise it would be either�i1 = �i1 and
�i2 = �i2, or�i1 = �i2 and�i2 = �i1. In both the cases�i1 + �i2 = �i1 + �i2
and�i1�i2 = �i1�i2, which means that�i1 = �i2.)

(7) Modify #0 (see (68)) as follows:#0 = (
2�i1
i2

�
�i2
i1
)=(

2�i2
i1

�
�i1
i2
).

(8) Replacec12 by 2c12 in (70), (71), (73), (75) and everywhere in Appendix D.

(9) Rewrite (94) as

!i := ��1
i

�
�i�

b1
i1 � � � �brir

�1=2
� 0i: (98)

(Now there are two possibilities for!i, both being to be considered.)

(10) In Step 1 of the algorithm, replace the reference to Subsection 4.1 by Subsec-
tion 5.2.
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B. ON THE NUMBER OF POSSIBILITIES FOR THE VECTORk(x)

When the number of� 2 M such thatK 0(�
1=p) �= K (or K0(�

1=p + ��1=p) �= K

in the case of(�; �)-symmetry) is not too large, one can reduce the number of
possiblek(x). For brevity, we consider only the general case.

Fix � 2 M such thatK0(�
1=p) �= K . ThenK 0(�

��1=p) = K for some� 2 P.
Put�i = �i(�) and defineli 2 P from the equality�i(���1=p) = � li�i

1=p.
Considerx 2 Sol(K ) such that

�k
�
x� �

x� �

�1=p

��1=p 2 K 0 for somek 2 P: (99)

It follows that

�k(x)
�
x� �

x� �

�1=p

�����1=p 2 K 0: (100)

Indeed, since both�k(x)(x� �=x� �)1=p and���1=p belong toK , we have

�k(x)
�
x� �

x� �

�1=p

�����1=p 2 K : (101)

Therefore�k�k(x)+� 2 K , wherek is defined from (99). It follows that the degree
of �k�k(x)+� overK 0 dividesp. Since it also dividesp� 1, the degree is 1, that is
�k�k(x)+� 2 K 0. Together with (99) this proves (100).

PROPOSITION B.1.Suppose that�ijK0
= �i0 jK0

, that is�i = �i0 and�i = �i0 .
Then for anyx 2 Sol(K ) with the property(99) we have

ki(x)� ki0(x) � li � li0 (modp): (102)

Proof. Put

� = �k(x)
�
x� �

x� �

�1=p

�����1=p; �i = �i(�):

Since� and� belong toK0, we have�i = �i0 and�i = �i0 . Therefore

�ki(x)
�
x� �i

x� �i

�1=p

= � li�
1=p
i �i

= � li�li0 � li0�
1=p
i0 �i0

= � li�li0 �ki0(x)
�
x� �i0

x� �i0

�1=p

= � li�li0 �ki0(x)
�
x� �i

x� �i

�1=p

;
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which proves the proposition.

Given a value ofki(x) for somei, the condition (102) defines uniquelyki0(x) for
thep values ofi0 satisfying�ijK0

= �i0 jK0
. Together with (19) and (20) this leaves

pt0 possibilities fork(x), where 2t0 is the number of complex embeddings ofK0.
Therefore there are at most

pt0jf� 2 M : K0(�
1=p) �= Kgj; (103)

possibilities fork(x). In some cases this number can be smaller than(2p�1=2(p�
1=2)!)s0(p!)t0.

C. SOLVING THE EQUATION�(x) = 1

In Subsection 4.5 the equation�(x) = 1 had to be solved (in the case of(�; �)-
symmetry it should be replaced by�(x) = �1.) In the case[K : K0] = p > 3 both
ki1 andki2 are nonzero. Therefore�i1 = �i2 = 1, and the equation�(x) = �1 can
be rewritten as

�i1(1� �i1x
�1)1=p � (1� �i1x

�1)1=p

= const� (�i2(1� �i1x
�1)1=p � (1� �i1x

�1)1=p);

which can be easily reduced to a linear equation inx.
In the caseK = K 0 we need the following lemma, which is an immediate

consequence of Kummer’s theory [12, Ch. 6, Th. 8.1] over the fieldC (T ).

LEMMA C.1. Let &1; : : : ; &� be distinct nonzero complex numbers and

F (T; T1; : : : ; T�) 2 C [T; T1; : : : ; T� ];

a nonzero polynomial such that

F
�
T; (1� &1T )1=p ; : : : ; (1� &�T )1=p

�
� 0:

ThendegTiF > p for 1 6 i 6 �.

Using this lemma we can prove that the function�(x) is non-constant. Indeed, if
�(x) were a constant, then, depending on whether�i1 and�i2 are equal or distinct,
we would have obtained one of the following identities: either

�i1(1� �i1x
�1)1=p � (1� �i1x

�1)1=p

= const(�i2(1� �i2x
�1)1=p � (1� �i2x

�1)1=p); (104)
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or

x(�i1(1� �i1x
�1)1=p � (1� �i1x

�1)1=p)

�(�i2(1� �i2x
�1)1=p � (1� �i2x

�1)1=p)p�1 = ct: (105)

(We used (48), which holds for sufficiently largex, and in the case of distinct�i1
and�i2 we assumed that�i1 = 1 and�i2 = 1� p.) Since among the radicals
there are at least three distinct, both (104) and (105) contradict to the assertion of
Lemma C.1. Therefore�(x) is non-constant.

We solve the equation�(x) = 1 in the following way. LetK be the field
generated overC (x) by the radicals involved in�(x). ThenNK=C (x)(�(x)� 1)is
rational function inx, and we write it asP (x)=Q(x). Since�(x) is non-constant,
the polynomialP (x) is nonzero, and all the solutions of�(x) = 1 are among the
roots ofP (x).

Thus, finding integral solutions of the algebraic Equation (64) reduces to finding
integral roots of a polynomialP (x). In practice, the coefficients ofP (x) are known
approximately, and we had to estimate the precision of the roots. (Since we were
interested only in integral roots, we did not need very high precision.) The following
lemma was used for estimating the precision.

LEMMA C.2. Let P (x) = a0x
N + a1x

N�1 + � � � + aN andQ(x) = b0x
N +

b1x
N�1 + � � � + bN be polynomials with complex coefficients. Let" be a positive

number with the following property:

(�) for any two rootsz andz0 ofQ one has eitherjz�z0j 6 "=2or jz�z0j > 2".
Put

� = �(") = min
16i6N

jb0j
QN

j=1

��jzj � zij � "
��PN

j=0(jzij+ ")j
; (106)

wherez1; : : : ; zN are the roots ofQ counted with multiplicities. Assume that

jai � bij < � (0 6 i 6 N):

Then for any rootz ofP there is a rootz0 ofQ such thatjz � z0j < ".

(It will follow from the proof that there is a one-to-one correspondencez $ z0

between the roots ofP and the roots ofQ such thatjz � z0j < " for every pair of
corresponding roots.)

Proof. Define an equivalence relation on the set of roots ofQ by z � z0 when
jz � z0j 6 "=2 (transitivity follows from (�)). Letm1; : : : ; mk be the cardinalities
of the the equivalence classes (so thatm1 + � � � +mk = N ), and assume that the
roots are numbered so thatz1; : : : ; zk are respective representatives of the classes.
In particular

jzi � zj j > 2" (1 6 i < j 6 k): (107)
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Fix iwith 1 6 i 6 k. ThenQ hasmi roots in the disc�i := fz 2 C : jz�zij < "g.
For anyz on the circle�i := fz 2 C : jz � zij = "g one has

jQ(z)j = jb0(z � z1) : : : (z � zN )j > jb0j
NY
j=1

jjzj � zij � "j:

Hence, for anyz 2 �i

jP (z)�Q(z)j < �
NX
j=0

(jzij+ ")j 6 jQ(z)j:

By the theorem of Rouch́e,P also hasmi roots in�i.
By (107), the discs�i are pairwise disjoint. Sincem1 + � � � +mk = N , every

root ofP belongs to one of�i. The lemma is proved.

We apply this lemma as follows. Assume we have to find all integral roots of
a polynomialP (x), but instead ofP , we have only an approximationQ(x), with
a known precision�0 (that is, maxi=0;:::; N jai � bij 6 �0). Having computed the
roots ofQ(x), one can easily decide which integers are ‘very close’ to a root of
Q(x). This integers (we call themsuspicious) are probable roots ofP (x).

To see thatP (x) has no integral roots other than suspicious, we do as follows.
For anyz 2 C denote by�(z) the distance to the nearest non-suspicious integer,
and put"0 = 0:1 min(�(z1); : : : ; �(zN )). If "0 meets the condition (�), we put
" = "0; otherwise put"1 = 0:1 minjz�z0j>"0

jz� z0j, wherez andz0 independently
run the set of all roots ofQ. If "1 meets the condition (�), we put" = "1; otherwise
put "2 = 0:1 minjz�z0j>"1

jz � z0j, etc.; in practice, we always found a suitable"
after two–three iterations. When" is found, compute�; if � > �0 thenP (x) indeed
has no integral roots other than suspicious. If� 6 �0 (which never happened in our
practice) then one has to recomputeQ with higher precision.

D. THE TOTALLY RATIONAL CASE

In this appendix we give a detailed treatment of the totally rational case, see
Subsection 4.6.1.

We have

��1
j1
�j = qj=q; �

�1
j1

�
�j�j1 � �j1�j

�
= q0j=q (1 6 j 6 r); (108)

where q is a positive integer,qj, q0j integers, and gcd(q1; : : : ; qr; q) = 1. (To
simplify the notation, we do not excludej = j1, in which caseqj = q andq0j = 0.)
As in the semirational case, we expect that the integersqj , q0j andq are ‘small’.

Replacing in (77) indexj2 by j, and using (108), we obtain

jqbj(x)� qjbj1(x) + q0jj 6 2qc10jxj�1 (1 6 j 6 r): (109)
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If jxj > X7 : max(X3;4qc10) then (109) turns to

qbj(x)� qjbj1(x) + q0j = 0 (1 6 j 6 r): (110)

If gcd(q; qj) does not divideq0j for somej then there are no solutionsx with
jxj > X7. Otherwise, one easily finds integersb1; : : : ; br such that

qbj � qjbj1 + q0j = 0 (1 6 j 6 r): (111)

Then

bj(x) = bj + qjb(x) (1 6 j 6 r); (112)

whereb(x) 2 Z. Substituting this to (67), we obtain

�(x) = #00#
b(x); (113)

where

#00 = #0#
b1
1 � � �#brr ; # = #

q1
1 � � �#qrr :

The further arguments splits into five cases.

(1) j#j 6= 1
In this case (113), together with (66), yields

j log j#00j+ b(x) log j#jj 6 c12jxj�1: (114)

Henceb(x) is the nearest integer to� log j#00j= log j#j wheneverjxj > X8 :=
max(X7;2c12).

(2) j#j = 1, butj#00j 6= 1
We again have (114), which now reduces to

j log j#00jj 6 c12jxj�1: (115)

Thus,jxj 6 X8 := max(X7; c12j log j#00jj�1).
(3) j#j = j#00j = 1, but# is not a root of unity

Again using (113) and (66), we obtain

k(2�)�1 arg#00 + (2�)�1 arg#b(x)k 6 (2�)�1c12jxj�1; (116)

and we continue as in the irrational (respectively, semirational) case if 2�;arg#
and arg#00 are linearly independent (respectively, linearly dependent) overZ.

(4) # is a primitiveN th root of unity andj#00j = 1, but#00 is not anN th root of
unity
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We have

kN(2�)�1 arg#00k 6 N(2�)�1c12jxj�1; (117)

and since the left-hand side is nonzero, we obtain

jxj 6 X8 := max(X7; N(2�)�1c12kN(2�)�1 arg#00k�1):

(5) # is a primitiveN th root of unity and#00 is anN th root of unity

In this case�(x) is also anN th root of unity. Since�(x) 6= 1, we obtain
j log�(x)j > 2�=N . Hencejxj 6 X8 := max(X7; N(2�)�1c12).

E. THE HYPERELLIPTIC EQUATION

In this appendix we briefly explain how our method can be adapted for solving
the hyperelliptic equationy2 = f(x), wheref(x) is a separable polynomial of
degree at least 3. (Probably, it would be more correct to call itelliptic equation
when degf 6 4; for brevity, we extend the termhyperellipticalso to this case.)
What follows is merely a short draft, and many details are left out. In particular, we
make no use in possible symmetry of the roots. For examples and generalization
of (�; �)-symmetry to that case, see [11].

Again, fix two distinct roots�and�off(x), and assume first that[Q(�; �) : Q] >
3. It is easy to see that in this case the method of Section 4 extends also top = 2.
Indeed, the assumptionp > 3 was made in Section 4 only twice: in Proposi-
tion 4.2.1, and in Subsection 4.5. We leave to the reader the reformulation of
Proposition 4.2.1 forp = 2. As for Subsection 4.5, it is indeed impossible to sat-
isfy (60)–(61) whenp = 2. However, since[Q(�; �) : Q] > 3, we can always find
i1 andi2 such that among the numbers (62) there are at least three distinct, which
allows one to compute the Baker’s bound.

It remains to consider the case[Q(�; �) : Q] 6 2. Fix one more root, distinct
from � and �. We may assume that[Q(�; ) : Q] 6 2 and [Q(; �) : Q] 6 2;
otherwise, redefining the roots, we return to the case[Q(�; �) : Q] > 3.

It follows that [Q(�; �; ) : Q] 6 2. Redefining the roots, we can additionally
assume that

(i) either�; �;  2 Q,
(ii) or � and� are quadratic conjugates overQ, and 2 Q(�).

Case (i) is very simple: it can be reduced to two simultaneous Pell equations, see
for instance [33]. In case (ii) putK 0 = Q(�), and say that a number fieldK is
admissible for a solutionx if K = K0((x � �=x � )1=2). One easily constructs
a complete system of admissible fields, which would consist ofK 0 and a finite
amount of its quadratic extensions.
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Now fix an admissible fieldK and put'(x) = (x�)((x��=x�)1=2+1)2.
Then we again have (34), where�(x) belongs to a finite effectively constructible
set.

If K = K0 then we have finitely many possible values for'(x)�('(x)),
where� is the non-trivial automorphism ofK 0. However,�((x� �=x� )1=2) =
�(x� �=x� 0)1=2, where0 = �(). Using Kummer’s theory, as in Appendix C,
we observe that

'(x)�('(x)) = (x� )

 �
x� �

x� 

�1=2

+ 1

!2

(x� 0)

 
�
�
x� �

x� 0

�1=2

+ 1

!2

is a non-constant function ofx, which allows one to compute the set Sol(K 0).
If [K : K 0] = 2, then, putting

�(x) =

(x� )

��
x��
x�

�1=2
+ 1

�2

(x� 0)

��
x��
x�0

�1=2
+ 1

�2 ;

one can compute the Baker’s bound and proceed further as in Section 4. See [31, 32]
for a similar algorithm in the case degf = 3.
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4. Baker, A. and Ẅustholz, G.: Logarithmic forms and group varieties,J. Reine Angew. Math.442
(1993), 19–62.

comp4123.tex; 26/05/1998; 11:37; v.7; p.38

https://doi.org/10.1023/A:1000305028888 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000305028888


SUPERELLIPTIC EQUATIONS 311

5. Bilu, Yu.: Effective analysis of integral points on algebraic curves,Israel J. of Math.90 (1995),
235–252.

6. Bilu, Yu.: Solving superelliptic Diophantine equations by the method of Gelfond–Baker, preprint
94–109, Math́ematiques Stochastiques, Univ. Bordeaux 2, 1994.

7. Bilu, Yu.: Quantitative Siegel’s theorem for Galois coverings,Compositio Math.106 (1997),
125–158.

8. Bilu, Yu. and Hanrot, G.: Solving Thue equations of high degree,J. Number Th.60 (1996),
373–392.

9. Brindza, B.: OnS-integral solutions of the equationym = f(x), Acta Math. Hungar.44 (1984),
133–139.

10. Cohen, H.:A Course in Computational Algebraic Number Theory,Graduate Texts in Math. 138,
Springer, 1993.

11. Hanrot, G.:Résolution effective d’équations diophantiennes: algorithmes et applications, Thèse,
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