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A COMBINATORIAL INTERPRETATION OF THE 
WREATH PRODUCT OF SCHUR FUNCTIONS 

GLÂNFFRWD P. THOMAS 

1. I n t r o d u c t i o n . A combinatorial interpretat ion of Schur functions in 
terms of Young tableaux is well-known. (For example, see Littlewood [1] or 
Thomas [4]). The purpose of this paper is to present a combinatorial interpre
tat ion of the wreath product (or plethysm) of two Schur functions. 

Read [3] has described a wreath product as analogous to a process of sub
st i tut ion. The main result of this paper show^s clearly tha t , combinatorially 
speaking, a wreath product is very much a substi tution process. The notat ion 
used is taken from Read [3]. 

2. Def in i t ions a n d n o t a t i o n . Let be an infinite set of indeter-
minates. We define the symmetric power sums of these indeterminates by 

oo 

sr = S xi for r = 1, 2, . . . . 

Let (p) = ( l P l , 2P2, . . . , nPn) be a part i t ion of the integer n. We now define 
Sp — Si XS2 • • • Sn

 n. 

In addition, define 

n\ 
gp ~ 1 V 2 V . - . ^ V ' 

t ha t is, gp is the number of elements in the conjugacy class (p) of the sym
metric group S^n of degree n. 

Finally, for each part i t ion (X) of n, we define the Schur function 

M = ~, Z ) XpgPsP n. p 

where the summation is over all part i t ions (p) of n. 
The coefficient XPX is the characteristic of the conjugacy class (p) in the 

irreducible representation (X) of 5^n. 

3. Y o u n g tab leaux . Another interpretat ion of Schur functions is in terms 
of Young tableaux. Given a parti t ion (X) of n, we define the frame of (X) as 
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pattern of unit squares or "boxes" as shown below 

'• ".:• 
(i) 

i ! 

:• where the first row contains Xx squares, the second row, X2 squares, etc., and 
the rows are aligned on the left hand side. We denote the frame of (X) by F(\). 

We now number the squares of F(\) by placing an indeterminate xt in 
each square such that in each row, the suffixes are in non-decreasing order 
from left to right, and in each column, the suffixes are in strictly increasing 
order from top to bottom. A frame F(\) with such a numbering will be called 
a Young tableau of (X). 

Example. (X) = (1,2, 42). An example of a Young tableau of (X) would be 

Xi Xi Xi X5 

X2 x3 x3 Xi 1 

Xe X7 

X.7 

Given a Young tableau, Yx of (X), we associate a monomial 

M(Y*) = xS^W™ • . • 

where, for i = 1, 2, . . . , the indeterminate xt appears t(i) times in Yx. For 
example, in the Young tableau in (1) above, 

M(YX) = Xi3X2X32X5X6X73 . 

We can now say 

(2) {X} = Z M(YX) 

where the summation is over all Young tableaux Fx of (X). 
Let D\ denote the set of all Young tableaux of (X). Dx is countable since it 

is a subset of a finite product of countable sets. Hence, the summation in (2) 
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is sensible. Also, because D\ is countable, we may totally order the elements 
of D\. Therefore, we may write all the Young tableaux of (X) in a sequence 
Fix, F 2 \ F 3 \ . . . and hence we may write 

M = £ M(Yr
x) 

T=l 

4. Wreath products. Let (X) and (/i) be partitions of n and m respectively, 
and consider the Schur functions 

71. p 

and 

M = ~ ] L, Xv gvSv = —j 1 , X, g>Sl S2 ...Sn . 

We form the wreath product {X}[{/x}] as follows. Firstly, define the functions 

(3) Sr = ^ Ç x , V r V . • . sm*" for r = 1, 2, . . . . 

(i.e. to form Sr, multiply the suffixes of the st's in {/x} by r). 
Now define 

Î X HÎM1] = r? X xP
xgpSP 

n. p 

where Sp = SiPlS2
P2 . . . Sn

Pn as before. 
This process Read [3] refers to as substituting {JU} into {X}. 

Example. {X} = | (s i2 + ^2), {M} = I0>i3 ~ $3). The substitution is effected 
by replacing Si by | (s i 3 — 53) and s2 by | (52

3 — s6) in {X}. Thus 

= T^ (*1 ~ 2Sl*3 + S% + 352 — 3SQ). 

The wreath product {X}[{/x}] is sometimes written {/xj ® {Xj and is termed 
a plethysm. Read [3] points out that although these two operations have 
different origins, they are in fact the same. 

5. Theorem. Suppose 

M = E M(n = Ë JIW) 

and suppose 

M = E M{YX)= E * i ' ( V ( î ) . . . . 
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Then 

MiM}= £ M(7iT ( 1 )M(r,V ( 2 ) . . . . 

(In other words, the wreath product {X}[{/x}] is simply the Schur function 
{X} in which the indeterminates in which it is expressed are Young tableaux 

of GO). 

Proof. 

1 °° 

m! 

Using the notat ion in (3), Sx = {/*}. Therefore 5 i = ] [ X i M ( F / ) . 
Now consider 5A. 

5* = ̂  ? x'"2'5*'1 V2 vz vm 

Slk $M • • • Smk • 

But spJfc = J2t=i Xipk = X X i (***)* for p = 1, 2, . . . , w, t h a t is, 5 , is simply 
l/ji] expressed in terms of the indeterminates x\k, x2

k, x^k, . . . . Therefore, 
Sk = & M ( F / ) * . Hence 

n\ p yx 

where the F x are Young tableaux of (X) formed in the indeterminates M{Yii), 
M(Y2

fX), M(Y^), . . . and hence the result follows. 

Example. Consider (X) = (2, 1), and suppose {X} is expressed in terms of 
the indeterminates yïy y2, yz, . . . . Therefore {X} is formed by summing over 
tableaux such as 

(4) 

>'l >'i 

y 2 

y i J:\ 

y* 

yi yp2 

y.> 

y-i V.i 

y-A 

3'i y i 

y* 

y i y\ 

>'-» 

yx V2 

y-.i 

yi y 2 

7-i 
etc. 

Now consider (/x) = (22). Therefore {M! is formed by summing over tableaux 
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such as 

Xi Xi 

X:i X-.i 

Xi X-> 

X;i •V;Î 

x-> X-2 

-Vu X;i 

etc. 

Hence, {A}[{M}] is formed by summing over the tableaux in (4) and making 
the substitutions 

yi = XiW, j2 = xi2x2x3, yz = Xix2
2x3, y* = Xi2x3

2, 
2 <v„ = -r«2 V o 2 ^5 = XiX2x3
2, 3̂6 = x2

2x3
2, etc. 

6. Applications. It is well-known that 
OO j OO 

n TT^—T = 1 + E **' 
t=i (1 - x<z) jA 

where hr = {r} are the homogenous product sums of the indeterminates 
Xi, X 2 , . . . . 

It follows from the theorem that 

n 
In particular, 

1 

= 1 + Z Ar[*»]2r. 

t<j (1 - x ^ z ) 
= 1 + £ hr[h2]zr 

n 
1 

= 1 + 2 Ma2]zr 

|<X
;- (1 - XtXjZ) 

n (1 - *«*,*) = 1 + É (-l) ra r[*2]2 r 

i<j r=l 

OO 

I l (1 - XiXjz) = 1 + E ( - 1 ) ^ ^ ^ ] / . 

We may now use results originally stated by Littlewood [1] and later 
proved completely by McConnell and Newell [2] to obtain the following 
identities. 

(5) A» [AJ=Z{2X | 

where the summation is over all partitions of 2n which are composed of even 
numbers only. 

K[a2] = Z {2M 

where the summation is over all partitions of 2n in which each number occurs 
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an even number of times, (i.e. partitions conjugate to those in (5)). 

where the summation is over all partitions of 2n which have one of the follow
ing forms when expressed in Frobenius notation (see Read [3]). 

«> cr). cv 6r). (-v bv c: v -
where the summation is over the partitions of 2n which are conjugate to 
those in (6). 
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