A COMBINATORIAL INTERPRETATION OF THE WREATH PRODUCT OF SGHUR FUNCTIONS

GLÂNFFRWD P. THOMAS

1. Introduction. A combinatorial interpretation of Schur functions in terms of Young tableaux is well-known. (For example, see Littlewood [1] or Thomas [4]). The purpose of this paper is to present a combinatorial interpretation of the wreath product (or plethysm) of two Schur functions.

Read [3] has described a wreath product as analogous to a process of substitution. The main result of this paper shows clearly that, combinatorially speaking, a wreath product is very much a substitution process. The notation used is taken from Read [3].
2. Definitions and notation. Let x_{1}, x_{2}, \ldots be an infinite set of indeterminates. We define the symmetric power sums of these indeterminates by

$$
s_{r}=\sum_{i=1}^{\infty} x_{i}{ }^{r} \quad \text { for } r=1,2, \ldots
$$

Let $(\rho)=\left(1^{\rho_{1}}, 2^{\rho_{2}}, \ldots, n^{\rho_{n}}\right)$ be a partition of the integer n. We now define $s_{\rho}=s_{1}{ }^{\rho_{1}} s_{2}{ }^{\rho_{2}} \ldots s_{n}{ }^{\rho_{n}}$.

In addition, define

$$
g_{\rho}=\frac{n!}{1^{\rho_{1} \rho_{1}!2^{\rho_{2}} \rho_{2}!\ldots n^{\rho_{n}} \rho_{n}!}, ~}
$$

that is, g_{ρ} is the number of elements in the conjugacy class (ρ) of the symmetric group \mathscr{S}_{n} of degree n.

Finally, for each partition (λ) of n, we define the Schur function

$$
\{\lambda\}=\frac{1}{n!} \sum_{\rho} \chi_{\rho}^{\lambda} g_{\rho} s_{\rho}
$$

where the summation is over all partitions (ρ) of n.
The coefficient $\chi_{\rho}{ }^{\lambda}$ is the characteristic of the conjugacy class (ρ) in the irreducible representation (λ) of \mathscr{S}_{n}.
3. Young tableaux. Another interpretation of Schur functions is in terms of Young tableaux. Given a partition (λ) of n, we define the frame of (λ) as
a pattern of unit squares or "boxes" as shown below
(1)

where the first row contains λ_{1} squares, the second row, λ_{2} squares, etc., and the rows are aligned on the left hand side. We denote the frame of (λ) by $F(\lambda)$.

We now number the squares of $F(\lambda)$ by placing an indeterminate x_{i} in each square such that in each row, the suffixes are in non-decreasing order from left to right, and in each column, the suffixes are in strictly increasing order from top to bottom. A frame $F(\lambda)$ with such a numbering will be called a Young tableau of (λ).

Example. $(\lambda)=\left(1,2,4^{2}\right)$. An example of a Young tableau of (λ) would be

x_{1}	x_{1}	x_{1}	x_{5}
x_{2}	x_{3}	x_{3}	x_{7}
x_{6}	x_{7}		
x_{7}			

Given a Young tableau, Y^{λ} of (λ), we associate a monomial

$$
M\left(Y^{\lambda}\right)=x_{1}{ }^{t(1)} x_{2}^{t(2)} \ldots
$$

where, for $i=1,2, \ldots$, the indeterminate x_{i} appears $t(i)$ times in Y^{λ}. For example, in the Young tableau in (1) above,

$$
M\left(Y^{\lambda}\right)=x_{1}^{3} x_{2} x_{3}{ }^{2} x_{5} x_{6} x_{7}{ }^{3}
$$

We can now say
(2) $\{\lambda\}=\sum_{Y^{\lambda}} M\left(Y^{\lambda}\right)$
where the summation is over all Young tableaux Y^{λ} of (λ).
Let D_{λ} denote the set of all Young tableaux of (λ). D_{λ} is countable since it is a subset of a finite product of countable sets. Hence, the summation in (2)
is sensible. Also, because D_{λ} is countable, we may totally order the elements of D_{λ}. Therefore, we may write all the Young tableaux of (λ) in a sequence $Y_{1}{ }^{\lambda}, Y_{2}{ }^{\lambda}, Y_{3}{ }^{\lambda}, \ldots$ and hence we may write

$$
\{\lambda\}=\sum_{\tau=1}^{\infty} M\left(Y_{r}^{\lambda}\right)
$$

4. Wreath products. Let (λ) and (μ) be partitions of n and m respectively, and consider the Schur functions

$$
\{\lambda\}=\frac{1}{n!} \sum_{\rho} \chi_{\rho}^{\lambda} g_{\rho} s_{\rho}
$$

and

$$
\{\mu\}=\frac{1}{m!} \sum_{\nu} \chi_{\nu}{ }^{\mu} g_{\nu} s_{\nu}=\frac{1}{m!} \sum_{\nu} \chi_{\nu}{ }_{\nu} g_{\nu} s_{1}{ }^{\nu_{1}} s_{2}{ }^{\nu_{2}} \ldots s_{m}^{\nu_{m}}
$$

We form the wreath product $\{\lambda\}[\{\mu\}]$ as follows. Firstly, define the functions

$$
\begin{equation*}
S_{\tau}=\frac{1}{m!} \sum_{\nu} \chi_{\nu}{ }^{\mu} g_{\nu} \nu_{T}{ }^{\nu_{r}} S_{2 r}{ }^{\nu_{2}} \ldots s_{T m}^{\nu_{m}} \text { for } r=1,2, \ldots \tag{3}
\end{equation*}
$$

(i.e. to form S_{r}, multiply the suffixes of the s_{i} 's in $\{\mu\}$ by r).

Now define

$$
\{\lambda\}[\{\mu\}]=\frac{1}{n!} \sum_{\rho} \chi_{\rho}{ }^{\lambda} g_{\rho} S_{\rho}
$$

where $S_{\rho}=S_{1}{ }^{\rho_{1}} S_{2}{ }^{p_{2}} \ldots S_{n}{ }^{\rho_{n}}$ as before.
This process Read [3] refers to as substituting $\{\mu\}$ into $\{\lambda\}$.
Example. $\{\lambda\}=\frac{1}{2}\left(s_{1}{ }^{2}+s_{2}\right),\{\mu\}=\frac{1}{3}\left(s_{1}{ }^{3}-s_{3}\right)$. The substitution is effected by replacing s_{1} by $\frac{1}{3}\left(s_{1}{ }^{3}-s_{3}\right)$ and s_{2} by $\frac{1}{3}\left(s_{2}{ }^{3}-s_{6}\right)$ in $\{\lambda\}$. Thus

$$
\begin{aligned}
\{\lambda\}[\{\mu\}] & =\frac{1}{2}\left(\frac{1}{9}\left(s_{1}{ }^{3}-s_{3}\right)^{2}+\frac{1}{3}\left(s_{2}{ }^{3}-s_{6}\right)\right) \\
& =\frac{1}{18}\left(s_{1}^{6}-2 s_{1}^{3} s_{3}+s_{3}{ }^{2}+3 s_{2}^{3}-3 s_{6}\right) .
\end{aligned}
$$

The wreath product $\{\lambda\}[\{\mu\}]$ is sometimes written $\{\mu\} \otimes\{\lambda\}$ and is termed a plethysm. Read [3] points out that although these two operations have different origins, they are in fact the same.
5. Theorem. Suppose

$$
\{\mu\}=\sum_{Y^{\mu}} M\left(Y^{\mu}\right)=\sum_{r=1}^{\infty} M\left(Y_{\tau}^{\mu}\right)
$$

and suppose

$$
\{\lambda\}=\sum_{Y^{\lambda}} M\left(Y^{\lambda}\right)=\sum_{Y^{\lambda}} x_{1}{ }^{t(1)} x_{2}{ }^{t(2)} \cdots
$$

Then

$$
\{\lambda\}[\{\mu\}]=\sum_{Y^{\lambda}} M\left(Y_{1}^{\mu}\right)^{t(1)} M\left(Y_{2}^{\mu}\right)^{t(2)} \ldots
$$

(In other words, the wreath product $\{\lambda\}[\{\mu\}]$ is simply the Schur function $\{\lambda\}$ in which the indeterminates in which it is expressed are Young tableaux of (μ)).

Proof.

$$
\{\mu\}=\frac{1}{m!} \sum_{\nu} \chi_{\nu}{ }^{\mu} g_{\nu} s_{\nu}=\sum_{r=1}^{\infty} M\left(Y_{r}{ }^{\mu}\right) .
$$

Using the notation in (3), $S_{1}=\{\mu\}$. Therefore $S_{1}=\sum_{r=1}^{\infty} M\left(Y_{r}^{\mu}\right)$. Now consider S_{k}.

$$
S_{k}=\frac{1}{m!} \sum_{\nu} \chi_{\nu}^{\mu} g_{\nu} s_{k}^{\nu_{1}} s_{2 k}^{\nu_{2}} s_{3 k}^{\nu_{3}} \ldots s_{m k}^{{ }^{\nu_{m}}}
$$

But $s_{p k}=\sum_{i=1}^{\infty} x_{i}{ }^{p k}=\sum_{i=1}^{\infty}\left(x_{i}{ }^{k}\right)^{p}$ for $p=1,2, \ldots, m$, that is, S_{k} is simply $\{\mu\}$ expressed in terms of the indeterminates $x_{1}{ }^{k}, x_{2}{ }^{k}, x_{3}{ }^{k}, \ldots$. Therefore, $S_{k}=\sum_{r=1}^{\infty} M\left(Y_{r}^{\mu}\right)^{k}$. Hence

$$
\{\lambda\}[\{\mu\}]=\frac{1}{n!} \sum_{\rho} \chi_{\rho}{ }^{\lambda} g_{\rho} S_{\rho}=\sum_{\bar{Y}^{\lambda}} M\left(\bar{Y}^{\lambda}\right)
$$

where the \bar{Y}^{λ} are Young tableaux of (λ) formed in the indeterminates $M\left(Y_{1}{ }^{\mu}\right)$, $M\left(Y_{2}{ }^{\mu}\right), M\left(Y_{3}{ }^{\mu}\right), \ldots$ and hence the result follows.

Example. Consider $(\lambda)=(2,1)$, and suppose $\{\lambda\}$ is expressed in terms of the indeterminates $y_{1}, y_{2}, y_{3}, \ldots$. Therefore $\{\lambda\}$ is formed by summing over tableaux such as

(4)

etc.

Now consider $(\mu)=\left(2^{2}\right)$. Therefore $\{\mu\}$ is formed by summing over tableaux
such as

x_{1}	x_{1}
x_{2}	x_{2}

x_{1}	x_{1}
x_{2}	x_{3}

x_{1}	x_{2}
x_{2}	x_{3}

x_{1}	x_{1}
x_{3}	x_{3}

x_{1}	x_{2}
x_{3}	x_{3}

x_{2}	x_{2}
x_{3}	x_{3}

Hence, $\{\lambda\}[\{\mu\}]$ is formed by summing over the tableaux in (4) and making the substitutions

$$
\begin{aligned}
& y_{1}=x_{1}^{2} x_{2}^{2}, y_{2}=x_{1}^{2} x_{2} x_{3}, y_{3}=x_{1} x_{2}^{2} x_{3}, y_{4}=x_{1}^{2} x_{3}^{2} \\
& y_{5}=x_{1} x_{2} x_{3}^{2}, y_{6}=x_{2}^{2} x_{3}^{2}, \text { etc. }
\end{aligned}
$$

6. Applications. It is well-known that

$$
\prod_{i=1}^{\infty} \frac{1}{\left(1-x_{i} z\right)}=1+\sum_{r=1}^{\infty} h_{r} z^{r}
$$

where $h_{r}=\{r\}$ are the homogenous product sums of the indeterminates x_{1}, x_{2}, \ldots.

It follows from the theorem that

$$
\prod_{i_{1} \leqslant \ldots \leqslant i_{n}} \frac{1}{\left(1-x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} z\right)}=1+\sum_{r=1}^{\infty} h_{r}\left[h_{n}\right] z^{r} .
$$

In particular,

$$
\begin{aligned}
& \prod_{i \leqslant j} \frac{1}{\left(1-x_{i} x_{j} z\right)}=1+\sum_{r=1}^{\infty} h_{r}\left[h_{2}\right] z^{r} \\
& \prod_{i<j} \frac{1}{\left(1-x_{i} x_{j} z\right)}=1+\sum_{r=1}^{\infty} h_{r}\left[a_{2}\right] z^{r} \\
& \prod_{i \leqslant j}\left(1-x_{i} x_{j} z\right)=1+\sum_{r=1}^{\infty}(-1)^{r} a_{r}\left[h_{2}\right] z^{r} \\
& \prod_{i<j}\left(1-x_{i} x_{j} z\right)=1+\sum_{r=1}^{\infty}(-1)^{r} a_{r}\left[a_{2}\right] z^{r} .
\end{aligned}
$$

We may now use results originally stated by Littlewood [1] and later proved completely by McConnell and Newell [2] to obtain the following identities.
(5) $h_{n}\left[h_{2}\right]=\sum\{2 \lambda\}$
where the summation is over all partitions of $2 n$ which are composed of even numbers only.

$$
h_{n}\left[a_{2}\right]=\sum\{\widetilde{2 \lambda}\}
$$

where the summation is over all partitions of $2 n$ in which each number occurs
an even number of times. (i.e. partitions conjugate to those in (5)).

$$
a_{n}\left[h_{2}\right]=\sum\{\xi\}
$$

where the summation is over all partitions of $2 n$ which have one of the following forms when expressed in Frobenius notation (see Read [3]).
(6) $\quad\binom{a+1}{a}, \quad\left(\begin{array}{cc}a+1 & b+1 \\ a & b\end{array}\right), \quad\left(\begin{array}{ccc}a+1 & b+1 & c+1 \\ a & b & c\end{array}\right)$, etc.

$$
a_{n}\left[a_{2}\right]=\sum\{\tilde{\xi}\}
$$

where the summation is over the partitions of $2 n$ which are conjugate to those in (6).

References

1. D. E. Littlewood, The theory of group characters, 2nd edition (Oxford University Press, Great Britain, 1950).
2. J. McConnell and M. J. Newell, Expansion of symmetric products in series of Schur functions, Proc. Royal Irish Acad. 73 A No. 18 (1973), 255-274.
3. R. C. Read, The use of S-functions in combinatorial analysis, Can. J. Math. 20 (1968), 808-841.
4. G. P. Thomas, Baxter algebras and Schur functions, Ph.D. Thesis, University College of Swansea, Sept. 1974.

University College of Wales,
Aberystwyth, Great Britain

