Can. J. Math., Vol. XXVIII, No. 4, 1976, pp. 879-884

A COMBINATORIAL INTERPRETATION OF THE WREATH PRODUCT OF SCHUR FUNCTIONS

GLÂNFFRWD P. THOMAS

1. Introduction. A combinatorial interpretation of Schur functions in terms of Young tableaux is well-known. (For example, see Littlewood [1] or Thomas [4]). The purpose of this paper is to present a combinatorial interpretation of the *wreath product* (or *plethysm*) of two Schur functions.

Read [3] has described a wreath product as analogous to a process of substitution. The main result of this paper shows clearly that, combinatorially speaking, a wreath product is very much a substitution process. The notation used is taken from Read [3].

2. Definitions and notation. Let x_1, x_2, \ldots be an infinite set of indeterminates. We define the *symmetric power sums* of these indeterminates by

$$s_r = \sum_{i=1}^{\infty} x_i^r$$
 for $r = 1, 2, ...$

Let $(\rho) = (1^{\rho_1}, 2^{\rho_2}, \dots, n^{\rho_n})$ be a partition of the integer *n*. We now define $s_{\rho} = s_1^{\rho_1} s_2^{\rho_2} \dots s_n^{\rho_n}$.

In addition, define

$$g_{\rho} = \frac{n!}{1^{\rho_1} \rho_1! \, 2^{\rho_2} \rho_2! \dots n^{\rho_n} \rho_n!},$$

that is, g_{ρ} is the number of elements in the conjugacy class (ρ) of the symmetric group \mathscr{G}_n of degree n.

Finally, for each partition (λ) of *n*, we define the Schur function

$$\{\lambda\} = \frac{1}{n!} \sum_{\rho} \chi^{\lambda}_{\rho} g_{\rho} s_{\rho}$$

where the summation is over all partitions (ρ) of n.

The coefficient χ_{ρ}^{λ} is the characteristic of the conjugacy class (ρ) in the irreducible representation (λ) of \mathscr{S}_n .

3. Young tableaux. Another interpretation of Schur functions is in terms of Young tableaux. Given a partition (λ) of n, we define the *frame of* (λ) as

Received December 15, 1975.

879

a pattern of unit squares or "boxes" as shown below

where the first row contains λ_1 squares, the second row, λ_2 squares, etc., and the rows are aligned on the left hand side. We denote the frame of (λ) by $F(\lambda)$.

We now number the squares of $F(\lambda)$ by placing an indeterminate x_i in each square such that in each row, the suffixes are in non-decreasing order from left to right, and in each column, the suffixes are in strictly increasing order from top to bottom. A frame $F(\lambda)$ with such a numbering will be called a Young tableau of (λ) .

Example. $(\lambda) = (1, 2, 4^2)$. An example of a Young tableau of (λ) would be

<i>x</i> ₁	x_1	<i>x</i> ₁	x_5
x_2	x_3	x_3	<i>x</i> ₇
<i>x</i> ₆	<i>x</i> ₇		
<i>x</i> ₇		-	

Given a Young tableau, Y^{λ} of (λ) , we associate a monomial

$$M(Y^{\lambda}) = x_1^{t(1)} x_2^{t(2)} \dots$$

where, for i = 1, 2, ..., the indeterminate x_i appears t(i) times in Y^{λ} . For example, in the Young tableau in (1) above,

 $M(Y^{\lambda}) = x_1^3 x_2 x_3^2 x_5 x_6 x_7^3.$

We can now say

(2)
$$\{\lambda\} = \sum_{Y^{\lambda}} M(Y^{\lambda})$$

where the summation is over all Young tableaux Y^{λ} of (λ) .

Let D_{λ} denote the set of all Young tableaux of (λ). D_{λ} is countable since it is a subset of a finite product of countable sets. Hence, the summation in (2)

is sensible. Also, because D_{λ} is countable, we may totally order the elements of D_{λ} . Therefore, we may write all the Young tableaux of (λ) in a sequence $Y_1^{\lambda}, Y_2^{\lambda}, Y_3^{\lambda}, \ldots$ and hence we may write

$$\{\lambda\} = \sum_{\tau=1}^{\infty} M(Y_{\tau}^{\lambda})$$

4. Wreath products. Let (λ) and (μ) be partitions of *n* and *m* respectively, and consider the Schur functions

$$\{\lambda\} = \frac{1}{n!} \sum_{\rho} \chi_{\rho}^{\lambda} g_{\rho} s_{\rho}$$

and

$$\{\mu\} = \frac{1}{m!} \sum_{\nu} \chi_{\nu}^{\mu} g_{\nu} s_{\nu} = \frac{1}{m!} \sum_{\nu} \chi_{\nu}^{\mu} g_{\nu} s_{1}^{\nu_{1}} s_{2}^{\nu_{2}} \dots s_{m}^{\nu_{m}}.$$

We form the *wreath product* $\{\lambda\}[\{\mu\}]$ as follows. Firstly, define the functions

(3)
$$S_r = \frac{1}{m!} \sum_{\nu} \chi_{\nu}^{\mu} g_{\nu} s_r^{\nu r} s_{2r}^{\nu 2} \dots s_{rm}^{\nu m}$$
 for $r = 1, 2, \dots$

(i.e. to form S_r , multiply the suffixes of the s_i 's in $\{\mu\}$ by r).

Now define

$$\{\lambda\}[\{\mu\}] = \frac{1}{n!} \sum_{\rho} \chi_{\rho}^{\lambda} g_{\rho} S_{\rho}$$

where $S_{\rho} = S_1^{\rho_1} S_2^{\rho_2} \dots S_n^{\rho_n}$ as before.

This process Read [3] refers to as substituting $\{\mu\}$ into $\{\lambda\}$.

Example. $\{\lambda\} = \frac{1}{2}(s_1^2 + s_2), \{\mu\} = \frac{1}{3}(s_1^3 - s_3)$. The substitution is effected by replacing s_1 by $\frac{1}{3}(s_1^3 - s_3)$ and s_2 by $\frac{1}{3}(s_2^3 - s_6)$ in $\{\lambda\}$. Thus

$$\{\lambda\}[\{\mu\}] = \frac{1}{2} \left(\frac{1}{9} \left(s_1^3 - s_3 \right)^2 + \frac{1}{3} \left(s_2^3 - s_6 \right) \right)$$
$$= \frac{1}{18} \left(s_1^6 - 2s_1^3 s_3 + s_3^2 + 3s_2^3 - 3s_6 \right).$$

The wreath product $\{\lambda\}[\{\mu\}]$ is sometimes written $\{\mu\} \otimes \{\lambda\}$ and is termed a *plethysm*. Read [3] points out that although these two operations have different origins, they are in fact the same.

5. Theorem. Suppose

$$\{\mu\} = \sum_{Y^{\mu}} M(Y^{\mu}) = \sum_{\tau=1}^{\infty} M(Y_{\tau}^{\mu})$$

and suppose

$$\{\lambda\} = \sum_{Y^{\lambda}} M(Y^{\lambda}) = \sum_{Y^{\lambda}} x_1^{t(1)} x_2^{t(2)} \dots$$

Then

$$\{\lambda\}[\{\mu\}] = \sum_{Y^{\lambda}} M(Y_1^{\mu})^{t(1)} M(Y_2^{\mu})^{t(2)} \dots$$

(In other words, the wreath product $\{\lambda\}[\{\mu\}]$ is simply the Schur function $\{\lambda\}$ in which the indeterminates in which it is expressed are Young tableaux of (μ)).

Proof.

$$\{\mu\} = \frac{1}{m!} \sum_{\nu} \chi_{\nu}^{\mu} g_{\nu} S_{\nu} = \sum_{\tau=1}^{\infty} M(Y_{\tau}^{\mu}).$$

Using the notation in (3), $S_1 = \{\mu\}$. Therefore $S_1 = \sum_{r=1}^{\infty} M(Y_r^{\mu})$. Now consider S_k .

$$S_{k} = \frac{1}{m!} \sum_{\nu} \chi^{\mu}_{\nu} g_{\nu} S_{k}^{\nu_{1}} S_{2k}^{\nu_{2}} S_{3k}^{\nu_{3}} \dots S_{mk}^{\nu_{m}}.$$

But $s_{pk} = \sum_{i=1}^{\infty} x_i^{pk} = \sum_{i=1}^{\infty} (x_i^k)^p$ for p = 1, 2, ..., m, that is, S_k is simply $\{\mu\}$ expressed in terms of the indeterminates $x_1^k, x_2^k, x_3^k, ...$ Therefore, $S_k = \sum_{r=1}^{\infty} M(Y_r^{\mu})^k$. Hence

$$\{\lambda\}[\{\mu\}] = \frac{1}{n!} \sum_{\rho} \chi_{\rho}^{\lambda} g_{\rho} S_{\rho} = \sum_{\overline{Y}^{\lambda}} M(\overline{Y}^{\lambda})$$

where the \bar{Y}^{λ} are Young tableaux of (λ) formed in the indeterminates $M(Y_1^{\mu})$, $M(Y_2^{\mu})$, $M(Y_3^{\mu})$, ... and hence the result follows.

Example. Consider $(\lambda) = (2, 1)$, and suppose $\{\lambda\}$ is expressed in terms of the indeterminates y_1, y_2, y_3, \ldots . Therefore $\{\lambda\}$ is formed by summing over tableaux such as

Now consider $(\mu) = (2^2)$. Therefore $\{\mu\}$ is formed by summing over tableaux

882

such as

<i>x</i> ₁	<i>x</i> ₁]	<i>x</i> ₁	<i>x</i> ₁		<i>x</i> ₁	x_2	<i>x</i> ₁	<i>x</i> ₁	<i>x</i> ₁	x_2]	X 2	X_2	lata
x_2	<i>x</i> ₂		x_2	x_3]	x_2	x_3	<i>x</i> 3	Х3	<i>X</i> ₃	x_3		X 3	<i>X</i> 3	ett.

Hence, $\{\lambda\}[\{\mu\}]$ is formed by summing over the tableaux in (4) and making the substitutions

$$y_1 = x_1^2 x_2^2$$
, $y_2 = x_1^2 x_2 x_3$, $y_3 = x_1 x_2^2 x_3$, $y_4 = x_1^2 x_3^2$,
 $y_5 = x_1 x_2 x_3^2$, $y_6 = x_2^2 x_3^2$, etc.

6. Applications. It is well-known that

$$\prod_{i=1}^{\infty} \frac{1}{(1-x_i z)} = 1 + \sum_{r=1}^{\infty} h_r z^r$$

where $h_r = \{r\}$ are the homogenous product sums of the indeterminates x_1, x_2, \ldots .

It follows from the theorem that

$$\prod_{i_1 \leq \ldots \leq i_n} \frac{1}{(1 - x_{i_1} x_{i_2} \ldots x_{i_n} z)} = 1 + \sum_{\tau=1}^{\infty} h_{\tau}[h_n] z^{\tau}.$$

In particular,

$$\prod_{i < j} \frac{1}{(1 - x_i x_j z)} = 1 + \sum_{\tau=1}^{\infty} h_{\tau} [h_2] z^{\tau}$$

$$\prod_{i < j} \frac{1}{(1 - x_i x_j z)} = 1 + \sum_{\tau=1}^{\infty} h_{\tau} [a_2] z^{\tau}$$

$$\prod_{i < j} (1 - x_i x_j z) = 1 + \sum_{\tau=1}^{\infty} (-1)^{\tau} a_{\tau} [h_2] z^{\tau}$$

$$\prod_{i < j} (1 - x_i x_j z) = 1 + \sum_{\tau=1}^{\infty} (-1)^{\tau} a_{\tau} [a_2] z^{\tau}.$$

We may now use results originally stated by Littlewood [1] and later proved completely by McConnell and Newell [2] to obtain the following identities.

(5)
$$h_n[h_2] = \sum \{2\lambda\}$$

,

where the summation is over all partitions of 2n which are composed of even numbers only.

$$h_n[a_2] = \sum \{\widetilde{2\lambda}\}$$

where the summation is over all partitions of 2n in which each number occurs

GLÂNFFRWD P. THOMAS

an even number of times. (i.e. partitions conjugate to those in (5)).

$$a_n[h_2] = \sum \{\xi\}$$

where the summation is over all partitions of 2n which have one of the following forms when expressed in Frobenius notation (see Read [3]).

(6)
$$\binom{a+1}{a}$$
, $\binom{a+1}{a}$, $\binom{b+1}{b}$, $\binom{a+1}{a}$, $\binom{b+1}{b}$, $etc.$
 $a_n[a_2] = \sum \{\tilde{\xi}\}$

where the summation is over the partitions of 2n which are conjugate to those in (6).

References

- 1. D. E. Littlewood, *The theory of group characters*, 2nd edition (Oxford University Press, Great Britain, 1950).
- 2. J. McConnell and M. J. Newell, Expansion of symmetric products in series of Schur functions, Proc. Royal Irish Acad. 73 A No. 18 (1973), 255–274.
- 3. R. C. Read, The use of S-functions in combinatorial analysis, Can. J. Math. 20 (1968), 808-841.
- 4. G. P. Thomas, Baxter algebras and Schur functions, Ph.D. Thesis, University College of Swansea, Sept. 1974.

University College of Wales, Aberystwyth, Great Britain

884