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On functoriality of Zelevinski involutions

Kaoru Hiraga

ABSTRACT

In this paper, we present a conjecture on a relation between the Zelevinski involutions
for reductive groups over a p-adic field and the conjectural A-packets. As evidence for
this conjecture, we prove that the Zelevinski involutions, which are regarded as operators
on the space of virtual characters, commute with the endoscopic transfers under the
assumption of the fundamental lemma for groups and for Lie algebras.

1. Introduction

Let F be a p-adic field and G a connected reductive algebraic group defined over F'. We denote by
Wr the Weil group of F. Let /G = G x Wg be the L-group of G. We denote by £ the set of
standard Levi subgroups of G. For M € L%, we denote by 7(M) the semisimple split F-rank of M.
Let II(G) be the set of equivalence classes of irreducible admissible representations of G(F') and let
C[II(GQ)] be the space of virtual characters of G(F'). The parabolic induction defines a homomor-
phism i, : C[II(M)] — C[II(G)] and the (normalized) Jacquet functor defines a homomorphism
r{, . C[II(G)] — C[I(M)]. Following Kato [Kat93], we define the Zelevinski involution D¢ by

Do = Y (—1)™if o rf).
MeLG

Let {M} be the set of associate standard Levi subgroups of M. We say that 7= € II(G) is of type
{M} if r§;(7) is a non-zero linear combination of supercuspidal representations of M (F). If 7 is of
type {M}, then we put r, = r(M). For w € II(G), we define

dg(m) = (—1)""Dg(n).

Aubert [Aub95, Aub96| proved that dg () is irreducible. Thus the Zelevinski involution preserves
the irreducibility. It seems natural to consider the relation between the Zelevinski involution and the
conjectural Langlands functoriality. Nevertheless, the Zelevinski involution does not preserve
the L-packets. We consider the A-packets conjectured by Arthur [Art89, Conjecture 6.1]. (In this
paper, we follow the formulation of [Art89, Conjecture 6.1], although we can find a modified
conjecture due to Vogan in [Vog93]). For a Langlands parameter ¢ : Wp x SU3(C) — £G,
we denote by II4(G) the corresponding conjectural L-packet. Although SU,(C) is isomorphic to
SLy(C), we denote the second factor of this group by SUs(C) in order to distinguish it from the
factor SLy(C) used to define the Arthur parameters in [Art89]. Let

Y Wr x SU(C) x SLy(C) — L@
be an Arthur parameter. We put
Sy = Cent(1), G),
Sy = Su/5}),
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where Sg} is the identity component of Sy. Let II,(G) be the conjectural A-packet of ¢ and p =
py © Sy — C* the conjectural normalizing function. For 5 € S, and 7 € I1,,(G), we define (5, 7|p)
as in [Art89, Conjecture 6.1]. Then it is conjectured that

§— <§7 7T|p>

is a virtual character of Sy,. We say that a virtual character § € C[II(G)] is stable if 6 is stable as a
distribution on G(F). Let C[II(G)]* be the space of stable virtual characters of G(F) and C[IL,(G)]
the subspace of C[II(G)] generated by I, (G). We put C[IL;(G)]* = C[II(G)]* N C[IL,(G)].
In the case that G is quasi-split, we put
* 0 r

where Zg is the subgroup of the center Zy of G consisting of the elements fixed by I' = Gal(F/F).
We fix Whittaker data x for G (see [KS99, § 5.3]). We determine the base point my € Iy, (G) as
in [Art89, § 6], where Il (G) is the L-packet corresponding to ¢. We define (3, 7|y ) as in [Art89,
Conjecture 6.1]. Then it is conjectured that (-,m|my) is an irreducible character of Sy. As F' is a
p-adic field, the following hypothesis is believed.
HypoTHESIS 1.1. We have
dim C[IL,(G)]** = 1.
In the following, we assume the Arthur conjecture [Art89, Conjecture 6.1] and Hypothesis 1.1.
Now we turn to the Zelevinski involution. We identify SUs(C) with SLy(C) and define d(1)) by
d)(w xtxu)=1(wxuxt), wxtxuecWpx SUy(C)x SLy(C).
Then d(v)) is the Arthur parameter constructed from 1 by interchanging the role of SUs(C) and
SLy(C).
CONJECTURE 1.2. We have
dg (I (G)) = g (G).

Since Sy = Sj(y), we may identify Sy with Sq(,). Let pg be the conjectural normalizing function
of d(¢). In the case that G is quasi-split, we denote the base point in Ily,  (G) by 7q .

CONJECTURE 1.3. There exists a one-dimensional character yi of Sy, such that

(s,da(m)|pa) = n(5)(s, 7lp)
for all's € Sy,.

If G is quasi-split, then the above formula is equal to

(5,dc(m)[ma) = p(5)(S, 7lmy)-

(In the general case, the character ;1 may not be determined by the above relation.) The following
conjecture is a special case of Conjecture 1.2.

CONJECTURE 1.4. If G is quasi-split and if S, = {1}, then
de Iy, (G)) = gy (G).
As F'is a p-adic field, it is believed that the condition G = G* and S;, = {1} implies that Il (G) =
{7y} and Mg (G) = {mq,y}. If we assume this, then Conjecture 1.4 asserts that dg(my) = 74,y

In general, nevertheless, dg(my) may not be equivalent to mg,. In fact, even in the case that
G = SLy, there exists ¢ such that S, # {1} and that dg(my) # 74,y (see [LL79]).
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In the case that G = GL,, Conjecture 1.2 follows from the results of Moeglin and Waldspurger
[MWS86].

Recently, Takuya Konno and Kazuko Konno checked that Conjecture 1.2 is compatible with
their candidates for the A-packets on the quasi-split unitary group in four variables in [Kon03].

Conjecture 1.3 implies that the Zelevinski involutions behave well under the endoscopic transfers.
In this paper, we discuss the relation between the Zelevinski involutions and the endoscopic
transfers. By Corollary 3.4, we have

D¢ (CIL(G)]) = C[IL(G)]*.
Let (H,H,s,§) be a set of (standard) endoscopic data. For the sake of brevity, we assume that
H =2 L H. Unfortunately the existence of the endoscopic transfer is still hypothetical. In this paper,

we assume the fundamental lemma for groups [Art96, Hypothesis 3.1] and for Lie algebras
[Wal97, Conjecture 1.3] to define the endoscopic transfer

Tran$; : C[II(H)]** — C[II(G)]
of virtual characters (see Proposition 4.6). Let Ag be a maximal split torus of G and let Ag o be

a maximal split torus of H. We put a(G) = dim(Ap) and a(H) = dim(Agp). Then we have the
following theorem (see Theorem 6.6).

THEOREM 1.5. Assume the fundamental lemma for groups and for Lie algebras. Then we have
D¢ o Tran§ = (—1)& =) TranG o Dy

(In the case that H % “H, we take a z-pair (Hy,&p,) as in [KS99, § 2.2]; see the formula in
Theorem 6.7.)

By using this theorem, we can reduce Conjecture 1.2 to Conjecture 1.4 (see Lemma 7.2).
Moreover, if GG is quasi-split, then by using Theorem 1.5, we can show that Conjecture 1.4
implies the following formula (see Proposition 7.4):

<§7 de (W)‘Wd,x> = <§7 de (Wx)‘ﬂd,x> <§7 7T|7TX>7

where (-,dg(my)|m4,y) is a one-dimensional character of S,,. This is Conjecture 1.3. In the case that
G is not quasi-split, Conjecture 1.4 implies the following formula:

(I,7lp) = (I, da()|pa)-

In the theory of endoscopy, some relations are defined modulo inner automorphisms. To avoid
this ambiguity, we fix endoscopic data, an inner twisting and splittings in the following way.
Let ¢ : G — G* be a quasi-split inner twisting of G and Aj a maximal split torus of G*.
We fix an F-splitting (Bg, 15, {Xa}) of G*, an F-splitting (Bpo,TH0,{Ya}) of H, a I-splitting
(B,T,{Xs}) of G and a T-splitting (B, T, {Va}) of H. Then we may identify Ty with 7 and
Ty, with Tz, We may assume that Aj C T¢ and that Ay C Tyo. We say that a subtorus of A%
is standard if it is equal to the split component of the center of a standard Levi subgroup of G*.
We assume that s € 7, {(7y) = 7 and {(By) C B. Let i : T o — 1§ be the dual homomorphism
of &1 T — Ty. We may assume that ij(Ap ) is a standard subtorus of A} (see § 4). We choose
an inner twisting ¢ such that ¢(Ap) is a standard subtorus of Ajj. We define a positive root system
of G by the pullback of the positive root system of G*. For M € LY, we have o(M) € L&,

In § 2, we collect the properties of double cosets of Weyl groups with respect to endoscopic
groups and standard Levi subgroups, which is a generalization of [Car93, § 2.7]. The proofs of the
results in § 2 are contained in the Appendix. Assume that G = G*. Let

Q(G) = Norm(Ay, G)/ Cent(Ag, G),
Q(H) = Norm(Apo, H)/ Cent(Apn o, H),
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be the Weyl groups. We denote the set of roots of (G, Ag) by R(G) = R(G, Ap) and the set of
roots (H,Apo) by R(H) = R(H, Ap,). We identify Ago with the image ij(Amo) in Ay = Aj.
By Lemma 4.3, we may regard Q(H) as a subgroup of Q(G). For M € L%, we put

Q@A) ma ={w € QUG) | w(Ano) D Aum},
where Ay is the split component of the center of M. Let

Dy ={w € Q(G)3} y | w(RT(M)) > 0}.
Then by Lemma 2.1, we can define Dy g by

Dy ={w e D]T/Il | w(RT(H)) > 0}.
Proposition 2.2 asserts that Dy g is a system of representatives for
QMNUG) v, /QUH ).
For w € Dy, let R = R(H) Nresa,  (w ' (R(M))), then by Lemma 2.3, R is a root system of a
standard Levi subgroup M,, of H. For L € £ we put
Dy ={w € Dypu | M, =L}
and
an,a,L = DM H,L-

Then we have the following formula, which is a generalization of [Car93, Proposition 2.7.7]:

> (=1 Mapg g g, = (1)U (—q)rd), (1.1)
MecLC

We turn to the general G. For M € L%, let M* = (M) and Dy = D+ . For w € Dy g,
we put M, = (M*),. Let M, be the L-group of M,,. Then we may regard LM, as a standard
Levi subgroup of “H. We choose a representative 7, € Norm(7, G) for

we QG C QG T) = QG,T).

We put s/, = Int 7, (s) and &, = Int A, o & Then Lemma 5.1 asserts that (M,,, "M, s',,€,) is a set
of endoscopic data for M. The following formula in Theorem 5.6 is an analogue of the formula of
Bernstein and Zelevinski [BZ77, Lemma 2.12]:

r{; o Tran$ = Z Tran%m orAHh. (1.2)
wEDMyH
Note that Dy, r depends on the choice of a set of endoscopic data, an inner twisting and splittings.

In §§ 4 and 5, we prove this formula. In § 6, we prove Theorem 1.5 by using (1.1) and (1.2). In § 7,
we discuss the conjectural relation between the Zelevinski involutions and the Arthur conjecture.

2. Cosets of Weyl groups

Properties of the double cosets of Weyl groups with respect to standard Levi subgroups are well
known [Car93, § 2.7]. In this section, we collect results on the double cosets of Weyl groups with
respect to endoscopic groups and standard Levi subgroups. Proofs of the results in this section are
contained in the Appendix.

Let a“ be a finite-dimensional vector space over the real number field R and let (a“)’ be the
vector space of linear forms of a®. In this paper, we allow a root system to have a center. Therefore, a
subset R C (a“)’ is called a root system on a® if R is a (non-reduced) root system in the vector space
generated by R. Let R(G) be a root system on a. We denote by Q(G) the Weyl group of R(G).
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We fix a positive definite Q(G)-invariant symmetric bilinear form (, ) on (a“)’. This defines an
isomorphism from (a“) to a® and a positive definite symmetric bilinear form on a“. For & € R(G),
we denote the corresponding reflection on a® by s5. We fix a positive root system. We denote the
set of positive roots by RT(G) and the set of negative roots by R™(G). The set of simple roots
is denoted by S(G). For a subset S(M) of S(G), we denote the corresponding subroot system by
R(M). We put Rt (M) = R(M) N R*Y(G) and

ay = {a € a% | a(a) =0 for all & € S(M)}.
Let Q(M) be the Weyl group of R(M). We have

R(M)={a € R(G) | a(a) =0for all a € ap},
QM) ={w € QG) |w(a) =a for all a € apr}.

We say that a subroot system R C R(G) is standard if there exists S(M) C S(G) such that
R = R(M) and a subspace a C a“ is standard if there exists S(M) C S(G) such that a = ay.
For a subspace a C a“, we put

UG)a = {w € UG) | w(a) = a}.

We denote the restriction of @ € R(G) to a by resq(@). If w € Q(G)q, then we denote the restriction
of w to a by resy(w). For a standard subspace ay; C a®, we put

R(G;anr) = {resq,, (@) | @ € R(G)} — {0}

For o € R(G;ayr), we denote by s, the reflection on aps corresponding to o with respect to the
restriction of the bilinear form (, ) to aps. In general, R(G;ays) may not be a root system on ayy.
In this paper, we say that o € R(G;an) is R(G)-symmetric if there exists w € Q(G)q,, such that
resg,, (w) = Sq. If there exists a simple root & such that a = resq,, &, then Lemma 4 asserts that o
is R(G)-symmetric if and only if we have w®& = —a&, where w? is the longest element in the Weyl
group of S(M) U {a}. We denote by R(G;an)sym the subset consisting of the R(G)-symmetric
roots on ayr. We put RT(Gsapr) = {resq,, (@) | @ € RT(G)} — {0} and R~ (G;ap) = —RT(G;an).
Since ayy is a standard subspace, the intersection of R*(G;aps) and R™(G;ayps) are empty. We put
RT(G;ap)sym = R (Gsan) N R(G; apy)sym- We write @ > 0 if & is a positive root and & < 0 if &
is a negative root. Moreover, for a subset R C R(G), we write R > 0 if R C RT(G) and R < 0 if
R C R (G).

Until the end of this section, we fix S(M*) ¢ S(G). We put a/l = a,,#. We abbreviate res,r to
resy and Q(G).u to Q(G)y. We also fix a root system R(H) C R(G;a!)gym on o, Let RY(H) =
R(H)N R (G;af)gym, then RT(H) is a positive system of R(H). For S(M) C S(G) and w € Q(G),
we put

Iy(w) =t{a e R (M) | wa < 0}.
We denote by Q(H) the Weyl group of R(H) acting on afl. Since a € R(H) is R(G)-symmetric, there
exists a unique 5, € Q(G) gy such that resy 5, = s and 1y;u(8,) = 0. Therefore, for each w € Q(H),
there exists a unique @ € Q(G)y such that resy(w) = w and lj;u(0) = 0. The homomorphism
w — @ allows us to regard Q(H) as a subgroup of Q(G). We put

Dy = {w € QG) | lyr(w) = 0 and w(ay) C afl}.
We write R for {x € R |z > 0}.

LEMMA 2.1. Letw € Dy} andw' € Q(G)y. Let & € R (G) be a positive root satisfying resg (&) # 0.
If ww'@ > 0, then for any & € RY(G) satisfying resy (&) € R resy (&), we have ww'a’ > 0 and if
ww'é@ < 0, then for any &' € RT(G) satisfying resg (&) € R} resg (&), we have ww'aé’ < 0.
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Let w € f);j and a € RT(G;a'), then we say that wa is positive if we have wa > 0 for all
& € RT(G) satisfying resy (@) € RYa and wa is negative if we have wa < 0 for all @ € RT(G)
satisfying resp (&) € Ria. We write wa > 0 if wa is positive and wa < 0 if wa is negative.
For w € D;j, we define [y (w) by

lg(w) =t#{a € RY(H) | wa < 0}.
We put
Dy = {w € Dy} | lg(w) = 0}.
We also put
QG v = {w € QG) |w(a™) > an},
then Q(G)ar p is invariant under the left and right action of Q(M), Q(H), respectively.

PROPOSITION 2.2. The subset Dy g C Q(G) a1 1s a system of representatives for the set of double
cosets Q(M)\QUG)ar,m/UH).

The set of standard subroot systems {R(M) | S(M) C S(G)} of R(G) is denoted by LC.
We write £ for the set of standard subroot systems of R(H).

LEMMA 2.3. Let w € Dy, then
R(H) Nresy(w L (R(M))) € £,

For R(M) € L% and R(L) € LH, we put
Dy ={w€ Dy | R(H) Nresy(w™ (R(M))) = R(L)},
an,a,L = DM H,L-
We write r(M) for 45(M) and r(L) for §S(L). The following theorem is the main result of this

section.

THEOREM 2.4. We have

ST () May g = (1M (1) B
R(M)eLC

The following lemma will be used in § 6.

LEMMA 2.5. Let R(M), R(My) € LE. Assume that R(My) has no other associate standard subroot
system than R(My) itself. If R(M) satisfies w(apr) C apg, for some w € Q(G), then we have

R(M) D) R(Mo)

3. Zelevinski involutions

Let G be a connected reductive linear algebraic group defined over a p-adic field F. We denote
by T the Galois group Gal(F/F) of F. We fix a minimal parabolic subgroup Py of G defined
over F'. We also fix a Levi subgroup My C Py defined over F' and a maximal torus Ty C My
defined over F. We denote by Ag the split component of Tj. Let G* be a quasi-split inner form
of G and let ¢ : G — G* be an inner twisting. We fix a Borel subgroup B of G* defined over
F and a maximal torus Tif C B defined over F. Let R(G*,T) be the set of roots of (G*,Tf),
R (G*,T§) the set of positive roots corresponding to Bj and S(G*,T) the set of simple roots.
We write £ for the set of standard Levi subgroups of G*. Let Aj be the split component of Tj.
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For M* € L%, we denote by Ap+ the split component of the center Zp- of M*. We say
that a subtorus A C Aj is standard if there exists a standard Levi subgroup M* € L% such
that A = Ajpr+. For a subtorus A C Af, we put M} = Cent(A, G*). We may assume that ¢ satisfies
©(Tp) = T and that ¢(Ag) is a standard subtorus of Aj. Moreover, we assume that ¢(Fy) D Bj.
Therefore, we can define a set of positive roots R (G, Tp) by the pullback of RT(G*,Tf). Let L
be the set of standard Levi subgroups of G, then for any M € L, we have (M) € £%". Moreover,
it is easy to see that the restriction of ¢ to M is an inner twisting of M to the quasi-split inner
form @(M). We put r(M) = §S(M, Ag). We denote by Q(G,Ty) the Weyl group of (G,Ty) and
by Q(G,Ty)r the subgroup consisting of the elements defined over F. We write R(G, Ag) for the
set of relative roots of (G, Ap). We define the set of positive roots RT(G, Ag) by the restriction
of RT(G,Tp). Let S(G,Ap) be the set of simple roots and Q(G, Ag) the Weyl group of (G, Ayp).
We define R(G*, Af), RT(G*, A}), S(G*, A}), Q(G*, A}) and r(M*) similarly. For a maximal torus
T C G defined over F', we denote by Ar the split component of T'. Therefore, A7 is conjugate to a
standard subtorus of Ag. Let Q(G(F),T) = Norm(T,G(F))/T(F), then Q(G(F),T) is a subgroup
of Q(G,T)p. Since G* is quasi-split, we have

QUG (F), Ty) = UG, Tg)r = QG Ag).

We identify Q(G*, Af) with Q(G*, T )r. We determine a Haar measure on T'(F') by the condition
that the volume of the maximal compact subgroup of T'(F') is 1. Let Gy ey be the set of strongly
regular semisimple elements in G(F') and G the set of elliptic elements in Ges. We denote by II(G)
the set of equivalence classes of irreducible admissible representations of G(F'). We write C[II(G)]

for the space of virtual characters. Then C[II(G)] consists of the finite linear combinations of II(G).
For M € L€, let

i+ CI(M)] — C[I(G)]
be the homomorphism corresponding to the (normalized) induction and
rip + CI(G)] — CHI(M)]

the homomorphism corresponding to the (normalized) Jacquet functor. Let m € II(G), then by the
theorem of Harish-Chandra [Har78], the distribution character of 7 can be represented by a locally
constant function ch; on Gres. We define a function 1 G(?T) on Greg by

19(7,7) = Aa(7) chr (),

where v € Greg and Ag(y) = | ], (a(v) — 1)|};/2 is the Weyl denominator. We extend this definition
to 6 € C[II(G)]. We denote by C2°(G) the space of locally constant compactly supported functions
on G(F). For f € C*(G), we define

I(v, f) = Ac(v)/ flgrg™) dg,
G(F)/GH(F)
where v € Gieg and G, = Cent(y,G). Let {v}s be the set of conjugacy classes in the stable
conjugacy class of «v. We define

=) 160
v E{v}st
Put CX(G)” = {f € C(G) | I**(v, f) = 0 for all ¥ € Greg}. We say that a distribution D on
G(F) is stable if D satisfies D(f) = 0 for all f € C2°(G)~. We also say that a virtual character
0 € C[II(G)] is stable if 0 is stable as a distribution on G(F). Then 6 is stable if and only if
19(0,~) = I9(0,7') holds for all ¥ € Greg and v’ € {7}s. We denote by C[II(G)]** the subspace of

stable virtual characters. For a maximal torus 7™ of M and a maximal torus T¢ of G, we put
1GMM TGy = i T — TG | i = Int g for some g € G(F)}.

conj
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Then Q(G(F),T%) and QM (F),TM) act on I (TM TC) from the left and right, respectively.

conj
Let ’Z'Cfnj be a system of representatives for the conjugacy classes of maximal tori of G. We choose

a Haar measure on M (F') in such a way that the following formula holds.

160,75 = 3. 3 PO, ), Y€ G (31)

TMETM ielSM (TM ) /(M (F)TM)

conj

We put Mg.reg = M(F) N Greg. We denote by A, the set of a € Ap(F) satisfying |a(a)|r < 1
for all « € R (G, Ag) — RT(M, Ap). In this paper, we use Casselman’s character formula in the
following form.

LEMMA 3.1. Let M € £E and a € Ay, then for each m € Mg_reg, We can choose a positive number
ng such that

1900, a™m) = 1M (r§,(0), a"m)

holds for any § € C[II(G)] and n > ny.

Proof. Let P be the standard parabolic subgroup with Levi factor M. For each m € Mg.reg
we can choose an M-conjugate m’ € M(F') and a positive number ng so that for all n > ng
the parabolic subgroup Pyn, in [Cas77] is a standard parabolic subgroup contained in P and
a"m’ € Greg. Let L € LY be the standard Levi subgroup of Pyn,,. Then by [Cas77, Theorem 5.2],
we have 1¢(0,a"m’) = I¥(r§(0),a"m’) for all n > ng and § € C[II(G)]. On the other hand,
by applying [Cas77, Theorem 5.2] to r{;(0), we have I (r§;(0),a"m’) = I*(rM o r$,(0),a"m’).
Thus 19(6,a"m’) = IM(r§;(0),a™m’). Since a™m and a™m’ are M-conjugate, this completes the
proof of the lemma. O

Let 0 € C[II(M)], m € Myez and a € Ay, then
n ez —s IM0,a"m)
is a finite linear combination of quasi-characters of Z. Hence, we have the following lemma.

LEMMA 3.2. Let 0,0" € C[II(M)], m,m' € Myeg and a,a’ € Apr. If there exists a positive number
ng such that

™9, a"m) = IM(0',a/"m’)
holds for all n > ng, then we have

™M@, m) = 1" ,m).

LEMMA 3.3. We have
Sr(CII(M)P) C CII(G)]™,
i (CIL(G)*) € CIL(M)]™.

~

<

Proof. Let m,m’ € Mgyeg, 0 € C[II(G)]** and a € Aj;. Suppose that m and m’ are stably
M-conjugate. Then a™m and am’ are stably G-conjugate. Therefore, by using Lemma 3.1, we
have IM (r§(0),a"m) = IM(r§;(0),a™m’) for sufficiently large n. Hence, by Lemma 3.2, we have
the required relation for r%. The relation for 2% is well known. ]

We define the Zelevinski involution D¢g by

De= Y (-1)'™if o rf.
MeLG
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(See [Kat93] and [Aub95].) It is known that Dg o Dg = id and that D¢ o i§; = i, o Dy.
If 7 € II(G), then Aubert [Aub95, Aub96] has shown that either Dg(m) or —D¢(7) is irreducible.
Now, Lemma 3.3 implies the following corollary.

COROLLARY 3.4. We have

4. Endoscopy
We denote by Wp the Weil group of F. We write G for the dual group of G and write “G for
the L-group G x Wg of G. We fix a D-splitting (B,7,{X;}) of G. We also fix an F-splitting
(B}, Ti5, { X }) containing the pair (Bj, 7). Then we may identify 7 with the dual group T of
T5. Let (H,H,s,€) be a set of endoscopic data for G. In this paper, we say that (H,H,s,§) and
(H',H',s',¢") are equivalent endoscopic data if there exists g € G such that g&(H)g™! = ¢ (H’)
and gsg~' € s - Ze. We fix an F-splitting (By,0, Th,0,{Ya}) of H and a I-splitting (By, Ty, {Va})
of H. We identify 7y with T 0. By replacing the endoscopic data by equivalent data, we may
assume that s € 7, £(7y) = 7 and £(By) C B. Let
i : Tuo — T
be the dual homomorphism of
f_l : T* =7 — Ty = TH’().
We also write iy for the corresponding morphism R(H,Tg o) — R(G,T). We denote by Ag o the
split component of T .
LEMMA 4.1. There exists w € Q(G*,T{) such that wo (A o) is a standard subtorus of A} and
that
wo ig(RY(H,Tup)) C RT(G*,T7).
Proof. Choose an admissible embedding Intg o ij : Tho — 1™ = Int g(Ty) of Ty, where g €
G*(F). VV_e may assume that A7« is a standard subtorus of Ag. Put M* = M4, . Then there exists
m € M*(F') such that mg € Norm(Tjj, G*). Let ' € Q(G*,Tf) be the image of mg. Put
R (H, Tyo) = {a € R(H, Tio) | & o i(a) € R (G*, T)}.

Then R’ Jr(H ,THyp) is preserved by I'. Therefore, there exists an element wy € Q(H,TH,)r such
that wy(RT(H,Tho)) = R (H,Tgy). Since i o Q(H, Tro) o it € Q(G*,Ty), we have o' - (if o
wir o it € QG TE). Put w = W' - (i 0 wy o i%™'). Then w satisfies the required properties. [

We identify Q(G*,Ty) with Q(G,T). We also identify Q(H,Ty) with Q(H, 7). Let n, €
Norm(7, ) be a representative for w € Q(G, 7). Since (H,H, s,§) and (H, H, Int ny(s), Int ny, o §)
are equivalent endoscopic data, we may assume that i§(Ap o) is a standard subtorus of Af and that

seT,
é‘(TH) =17,
&(By) C B.

We put A7 =i%(Ap o) and M = Cent(A?,G*). Then MH¥ € £,

LEMMA 4.2. Let Ay and Ay be subtori of Aj. If g € G*(F) satisfies Int g(A;) = As, then there
exists w € Q(G*, T ) such that w(A;) = A and resz, (w™ ! o Intg) =ida,.

Proof. Put M3 = Cent(Ay, G*). Then Mj is quasi-split and 7fj is a maximally split torus of M3.
Since A; and Ag are split tori, we have resa,(Into(g)g~t) = ida, for any o € I'. This implies
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that o(g)g~t € M} (F). Hence, by [Kot82, Corollary 2.2], there exists m € Mj(F) such that the
torus T = Int mg(T() is defined over F' and that the homomorphism Intmg : Tj — T is defined
over F'. This implies that T™ is also a maximally split torus of M. Therefore, we may assume that
T* =1T5. Then mg € Norm(T5,G*). Let w € Q(G*, T ) be the image of mg, then it is immediate
that w(A;) = A and resq, (w™!o Intg) =ida,. O

LEMMA 4.3. Let w € Q(H, Ap), then there exists a unique wg € Q(G*, Af) satisfying the following
conditions:

1) wa(AT) = AH,;

2) resAH’O(z'(ﬁ_l o wa o 1Y) = w;

3) we(RT (M, Ty)) C RY(G*,Ty).

Proof. Let o' = i o wo i§ !, then we have o' € Q(G*,T§). Put A} = Ay = A7 and g = n,,.
Then apply Lemma 4.2. O

We define a homomorphism
i Q(H, Apo) — QG*, Ap)
by putting i*(w) = wg.
Let R(G*, A®)sm be the subset of resy(R(G*, Af)) — {0} consisting of the R(G)-symmetric

roots on A, By applying Lemma 4.3 to the reflection s, of @ € R(H, Ay ), we have the following
corollary.

COROLLARY 4.4. We have
io(R(H,Amp)) C R(G*,AH)Sym.

For the sake of brevity, we assume that H = “H until the end of this section. We denote
by Hg.reg the set of strongly G-regular elements in H(F). For fyH € Hg.reg and fyG € Greg, let
Ag.u(vH,4%) be the Langlands-Shelstad transfer factor. Since we normalized the orbital integral,
we define Ag g by the product of Ay, Ay and Ap in this paper. Because we have to define the
transfer of virtual characters, we assume the fundamental lemma for groups [Art96, Hypothesis 3.1]
and for Lie algebras [Wal97, Conjecture 1.3] in this paper. Then [Wal97, Corollary 1.7] asserts that
for each f& € C°(G), there exists f € C>°(H) such that

ISt’Y fH Z AGH 7/)/ (’YafG)J
7€l(G)

holds for all v € Hgreg, where I'(G) is the set of conjugacy classes in Gres. Hence, for 0y €
C[II(H)]*, we can define a linear form Tran% (0g) on C2°(G) by the relation

Tran% (05)(f¢) = 0 (f17).

Let X be a subset of Greg. We say that § € C[II(G)] is stable on X if we have I9(0,~) = I9(6,7')
for all 4,7 € X that are stably conjugate.

LEMMA 4.5. Let L be a standard Levi subgroup of H. If 61, € C[II(L)] is invariant under the adjoint
action of Norm(L, H(F)) and if i1 (01) is stable on Ley N Hyeg, then 6, is stable on L.

Proof. Let v € Ley N Hyeg and T = Cent(y, H). Let 7" be a maximal torus of L such that
I TY £ 0. Let i € IE(T/.T), then there exists h € H(F) such that i = Inth. Since v €

conj conj

Len N Hyeg, we have L = Cent(Ar, H). Therefore, L is determined by ~. Since i~Y(y) € Ley, L is
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also determined by i~!(v). Hence, we have Int h(L) = L. Thus h € Norm(L, H(F)). Therefore, by
(3.1), we have

M (0r),7) = > (0, Int h™1(7)).
heNorm(L,H(F'))/L(F)

Since 0y, is Norm(L, H(F'))-invariant, this shows that
(il (0r),v) = n - I"(01,7),

where n = #Norm(L, H(F))/L(F). Since i¥(01) is stable on Ley N Hyeg, this implies that 6 is
stable on L. O

PROPOSITION 4.6. Assume the fundamental lemma for groups and for Lie algebras. Then for 0 €
C[II(H)]®*, we have

Tran$(0) € C[II(G)].

Proof. For L € £ we write Ty (L) for the set of orbits of (essential) elliptic triplets as in [Art96,
p. 530]. We also define Tell(L)(C as in [Art96, p. 530]. We denote by (C[Teu(L)] the subspace of
C[II(L)] generated by the virtual characters attached to T.y(L) and by C[Tu;(L)c] the subspace
of C[TI(L)] generated by the virtual characters attached to Tuy(L)c. Choose a subset £ of £ so
that each standard Levi subgroup of H has one and only one associate standard Levi subgroup in £H.
Since Oy is a virtual character, we can write 0y as 0y = zLeEH if(aL) with o, € (C[Teu(L)C].
Moreover, we may assume that oy, is invariant under the action of Norm(L, H(F)). We claim that

o, € C[II(L)]*. We prove this by induction on r(H) — r(L). Let L € £H. Then by the inductive

assumption,
Op— > o) = > if(ow)

L'ect L'ect
r(L")y>r(L) r(L)<r(L)
is a stable virtual character. We see that zg (o) is the only term which is not zero on Lejj N Hyeg
in the right-hand side. Thus zfl (or) is stable on Ley N Hyeg. Therefore, Lemma 4.5 asserts that o,
is stable on L. Since oy, is a finite linear combination of virtual characters attached to Teu(L)(c,
[Art96, Theorem 6.1] implies that oy, is a stable virtual character. We have thus proved the claim.
So, it is enough to show that Tran$ o it (07) € C[II(G)]. Put C[Tuy(L)** = C[Ten(L)] N CII(L)]**.
It is not difficult to see that if Tran% o zfl is not zero, then there exist a standard Levi subgroup M
of G, a set of elliptic endoscopic data (L,”L,sy,&r) for M and a non-zero constant ¢ such that

Trang oig =c- zJ\G/[ o Tranjj-‘j[ .
(Note that the transfer factor is defined up to a constant factor.) By applying [Art96, Theorem 6.2]
to the set of endoscopic data (L,*L,sz,£r), we can show that
Tran$ o il (C[Tyy (L))  CIL(G)].

By using [Art96, Lemma 5.2], we can show that the linear form f — f/ (¢’) in [Art96, Theo-
gr

rem 6.2] is a virtual character.) It is easy to extend this to C[Tu(L)c]* = C[Ten(L)c]NCII(L)]. O

Let TH be a maximal torus of H and T¢ a maximal torus of G. We say that an isomorphism
i: TH — TC is admissible if i is defined over F and if there exist h € H(F) and g € G(F) such
that Int g(Tp) = T, Int h(Ty o) = TH and

i=1Intgo ¢ 1o i o Inth~ !

We denote by 1% (TH T%) the set of admissible isomorphisms from T to T¢. Then Q(H,TH)r
and Q(G,T%) g act on ISH(TH TC) from the right and left, respectively. Let v € TH(F) be a
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strongly G-regular element and ¢ € T G(F ) a strongly regular element. Then we say that v is
an image (or a (G, H)-image) of v if there exists an admissible isomorphism i € I (TH T¢)
such that i(v") = ~¢. In this paper, we also say that T is an image of T if there exists an
admissible isomorphism TH# — TC. Let T be a system of representatives for the stable conjugacy
classes of maximal tori of H. Since Tran$ (fg) is a virtual character, we can consider a function
TG (Tran$(0)) on Gireg. By a routine calculation, we can prove the following formula from the
definition of Tran$;.

LEMMA 4.7. For v € Gyeg and 0y € C[II(H)]*, we have

IG(Trang(QH),fy) = Z Z AG,H(Z_I(’Y))’V)IH(HH)2_1(7))
THeTH jelGH(TH G,)/QH,TH)p

5. Analogue of the formula of Bernstein—Zelevinski

In this section, we fix M € L. We put M* = ¢(M). By Corollary 4.4, we have i} (R(H, A o)) C
R(G*, AH )sym- Therefore, we can define

DM*,H (- Q(G*,AS)
as in § 2. We put Dy g = D+ g. Recall that we defined a homomorphism
i Q(H, Agp) — QG™, Ap)

by putting i*(w) = wg, where wg is the element in Lemma 4.3. Thus ¢*(Q2(H, Ag)) is the subgroup
Q(H) in § 2 corresponding to the root system R(H) = ij(R(H, Am,)). Therefore, Proposition 2.2
asserts that Dy g is a system of representatives for

QM™, Ap\QUG™, A) a1 /1 (U H, An o)),
where
QUG Ap)ma = {w € QG Ap) |wo ig(Aro) D An+}.
For w € Dy i, we put
M, = Cent((w o if) (A=), H).
Then it is easy to see that
ig(R(My, App)) = ig(R(H, A o)) Nresy w ™ (R(M*, Af)).
Thus Lemma 2.3 asserts that M, is a standard Levi subgroup of H. It is also easy to see that
Q(M,, Tro) = QH, Tho) N (wo if) "t o QM*,T§) o (wo if).

Let M, be the dual group of Mw. Since M, is a sta{ldard Levi subgroup, we can regard M, as
a standard Levi subgroup of H. Let n, € Norm(7,G) be a representative for w € Q(G*, 1) =
Q(G,T). We put

§w =1Intn, o &,
s, = Intfy(s).

By using w o ifi(R(M,,, Tr0)) = w o i(R(H, Ti)) N R(M*, T¢), we have &,(M,) = Cent(s.,, M)°,

where ? denotes the identity component. We can choose a,, € (ZZI\})O such that Cent(ays.,, )" = M,
We put s, = a,s,. Let ¢: Wr — H be a continuous splitting of

1—H—H— Wp —1.

By the proof of LK899, Lemma 2.2.A], we may assume that Int ¢(Wp) preserves the pair (Bg, 7x).
We put M, = M, - ¢(Wg). Then M, is a subgroup of H.
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LEMMA 5.1. The sets (M,,, M, s.,,&,) and (M, M,,, 8., w) are equivalent endoscopic data for M,
and (M, M, sw, &) is a set of endoscopic data for G.

Proof. Let w € Wp and let o € I' be the image of w. We denote by oy the action of o on T g and
by oG+ the action of o on Tjf. Then there exists ' € Q(G*,T¢) such that i o oo iy ' = w'o gg=.
Put w” = ww'w™!. Then we have (wo i) o ogo (wo if)~! = w” o og+. By w € Dy, we have
wo i5(Amo) D Ap-. Since Ap o and Af are split tori, this shows that the action of w” on Ay« is
trivial. Thus w” € Q(M™*,T;). Since Int ¢(w) preserves the pair (B, 7z ), the action of Int ¢(w) on
Ty is equal to the action of oy on Ty = T H,0- Therefore, we have

u(c(w)) € Norm(7T, M) x o c L.
Hence, &,(M,,) € “M. The other parts of the proof are easily verified. O

It is easy to see that the equivalence classes of the endoscopic data do not depend on the choice
of 7, and ¢. We put By, = By N M,,. Then the restriction (Bar,, T, {Va}) of the I-splitting
of H is a I'-splitting of M,,. We have s, € T and £w(Tg) = T. Moreover, since w € Dy g, we
have wo i (R (H,Tyo)) C RT(G*,T7). This implies that &,(Ba,) C B. Let (Hy, &, ) be a z-pair
(see [KS99, § 2.2)). Let (B, Ty, {Va}) be the T-splitting of H; obtained from the I-splitting
(Bi, T, {Ya}). Then &y, o ¢(Wp) preserves the pair (B, ,7x,). Let M, ; be the standard Levi
subgroup of H; corresponding to M,,. Then the restriction of the L-group data for Hy defines an
L-group data for M, ;. Let LMw,l — LH, be the natural embedding. Then it is easy to see that
&, (My,) is contained in LMwJ c LH,. Therefore, (My.1,€m,) is a z-pair for M,,.

For the sake of brevity, we assume that H = ©“H until the end of § 6. Then M., is the image of
the natural embedding “M,, < FH. We identify M, with “M,,. Let (M* N Bg, T¢, {Xa}) be the
restriction of the F-splitting (B, T, {Xq}) to M* and let (M, N B0, Th,0,{Ya}) be the restriction
of the F-splitting (B0, Tr,0,{Ya}) to M,. We write ié\/[w for wo i§. Then z'SJW is the dual of 1.
We put

(M, M) = {(’yMw,'yM) € My Greg X MGreg | 'yMW is an (M, M,,)-image of 'yM}.

We denote by Ay, the Langlands—Shelstad transfer factor of M,,. Note that Az as, is defined
up to a constant factor.

LEMMA 5.2. There exists ¢ € C* such that

A (VM MY = e Appar, (VM AM)

for all (yM« M) € T'(M,, M).

Proof. We write A’Q g for the Langlands-Shelstad transfer factor of the set of endoscopic data
(H,"H, s, ¢,). Since the relative transfer factor of (H,"“H, s’ ,&,) is equal to the relative transfer
factor of (H,"H,s,£), it is enough to show that
NG u (M A A AN = Angar, (M A M A

for all (yMe M) (FMo FM) € T(M,,, M). We remark that &, (By) C B. Put TM« = Cent(y™«, M)
and TY = Cent(y™, M). Fix a maximal torus 7* C M* such that 7™ is an image of T*
and fix i € M Mo (TMo T%) We regard i as an admissible embedding of 7™« C H into G*.
Choose h € M, (F) and m € M*(F) such that Int h(Bpo, Tro) and Intm(Bg, Tg) determine i.
Then Int h(M, N Bro,THo) and Int m(M* N Bj, 1) also determine i. Choose a-data {a,} for
R(G*,T*). Define a-data for R(M*,T*) by the restriction of {as} to R(M*,T*). Let {xa} be
x-data for R(G*,T%). lf « € R(G*,T*)— R(M*,T*), then « is asymmetric. Therefore, we can choose
{Xa} such that x, =1 for all & € R(G*,T*) — R(M*,T*) (see [Art96, p. 521]). Define x-data for
R(M*,T*) by the restriction of {xa} to R(M*,T*). We also fix data for 7"« and 7™ similarly.

1637

https://doi.org/10.1112/50010437X04000892 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000892

K. HIRAGA

Now, by using a similar argument to the proof of [Wal97, Lemma 6.5], we can show the required
identities for Ay, Ay and Ay, . Therefore, it remains to show the identity for Ap,. Define a® ¢
HY(Wp,T*) for (H,“H,s ¢,) and aM € HY(Wp,T*) for ( w,LMw,sw,gw) 2 in [LS87, § 3.5].

By the choice of splittings, y-data, pairs and i, we can easily show that a® . Let AG2 be the
A, factor of (H,"H,s',,£,) and Aﬁ‘é the Ap, factor of (M,,*M,,, s’,¢.), then the above identity
implies that AﬁQ (Y Mo MY = Aﬂj‘é (yMe 4M) . This completes the proof. O

We replace Ayrar, by ¢- Apa,. Then we have

Acu (V™M) = Anrar, (7M™ (5.1)

for all (yMe M) e T(M,,, M).
Fix a max1ma1 torus 7% of M. Assume that Apc is a standard subtorus of Ag. Let {T7,... T/}
be a system of representatives for the stable conjugacy classes of maximal tori of H that are images
of T¢. We may assume that ATH, .., Apm are standard subtori of Apy. For ¢ = 1,...,7 and

w € DM,Ha let {71"’1),
maximal tori of M, that are stably H-conjugate to TH For each T77, fix 2
Int 2% (TH) T34 and that

} be a system of representatives for the stable conjugacy classes of
€ H(F) such that

? ’L’I“

J

Int 235 : TH — T
is defined over F'. We put
Y =@, 1) /o, 1) r.

Then we may regard Y as the set
(" |1 <i<r, i e IHC(TH 79 )Q(H, TH) P}
For w € Dy g, we put
Y, = JIMM(T8, 79 /M., T p.

177 W 1]
7]
We also put
Y= |J Y.
wEDMyH

Then Y can be regarded as the set of (w ,TZ‘*;, ), where w € Dy, 1 <i<r,1<j<r,,; and
v e IM“”M(T;;-, T /M, 13)F. 1t is easy to see that TH is stably H-conjugate to T37; if and only
if i = i'. Moreover, if (i,7) # (¢',j'), then T} is not stably M,-conjugate to Ti. We say that
(TH,i7) € Y corresponds to (w, T3, ™) e Y if #/ = i and if there exist a representative i for i, a

i’ )2
representative i for # and wy € Q(H, T} )p such that
i =¥ o Int 2 0 wH.
PROPOSITION 5.3. The above correspondence is a one-to-one correspondence between Y and Y .

It is enough to prove the one-to-one correspondence for each ¢ = 1,...,r. Thus we fix i €

{1,...,r}. Put TH = TH Ty =T, 2¢ = 25 and ry, = 1y ;. Put Mpn = Cent(Apn, H) and Mpe =

Cent(Ara, G). Then, by TG C M, we have Mpc C M. Since Apr is a standard subtorus of Ag,
we have Ty o C Mpu. Let it € IH’G(TH,TG), then there exist g € G(F) and h € Mpu(F) C H(F)
such that Int h(Ty o) = TH, Int g(Ty) = T and

=Intgo ¢ loijoInth™?,
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since Apn is a standard subtorus of Ay g. Fix m € My (F) such that T¢ = Int m(T,). Then we
have Arc C Intm(Ap).

LEMMA 5.4. There exists W' € Q(G*, Aj) such that
Z'H|ATH =Intmo ¢ tow oifo Inth_1|ATH
and
W' o iy(Amo) D A

Proof. Put
p=poIntm o ilontho it ™' : Tf — T
Since ¢ o i§(Arr) = p(Apc), we have ¢ o i(Arn) C Af. Put A; = ij(Apn) C Aj and Ay =
¢ o if(Apn) C Af. Since ¢ = Int(p(m~1g)), Lemma 4.2 asserts that there exists w’ € Q(G*, Af)
such that w'(Ay) = Ay and w'|4, = ¢|4,. This implies the first relation. Since
Ay Cp(Ape) = Ay = ¢ o ig(Apn) = W' o ig(Agn),

w' satisfies the second property. O

Proposition 2.2 asserts that the intersection of Dy i and Q(M*, Af)-w'-i*(Q(H, Ap o)) consists
of a single element w. We have wQ (M, TH)w™! € Q(M*, Ty). Recall that we have

i*(wir) o i 0wyt o iyt € QM TY)

for any wy € Q(H, Apo) = QUH, Tho)r.

LEMMA 5.5. There exist wy € Q(H, Tho)r and wy+ € Q(M*,T;) such that

1

il = Intmo @ O Wp WO IjO WO Int A~

Proof. Tt is easy to see that there exists ¢’ € Norm(T'%, G(F)) such that
o (Intmo ¢ towoifoInth ) =Intg.

Since Z'H\ATH = (Intmo ¢~low oifo Int h_1)|ATH, we have ¢’ € Cent(Aypa, G(F)). This implies
that

o(m™tg'm) € Norm(Tg, M*(F)).
Let Wi € Q(M*,T§) be the image of p(m~1tg'm), then

i =Intmo p o Wy -woifoInth™ L.

Now, Proposition 2.2 asserts that there exists wy € Q(H,TH0)r such that

Wiy W' € QM* AL - w i (wp).

Since Q(M*, A%) -w-i* (wpr) = QM*, T )wo i o wyy o if~*, there exists wys« € Q(M*, Ty) such that

Whys +w' = wpcwo i o wyo 1'3_1.
O
Put
¢p=wyolInth to H = is o wlwyh o po Intm ™t
Then ¢ is a homomorphism from T¢ to Tho- By ¢ =wgoInth™lo z'H_l, we have

o(¢) o ¢t =wpgo Int a(h)_lh o wl_il
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for any o € I'. Thus

o(¢)o ¢~ € Q(H, Twy).

1

On the other hand, by using ¢ = iz")_l ow” w;/ll* o o Intm ™!, we have ¢p(Ays) = z'(’;_l ow HApn+) C
57 o wT(Ap+) is identity.

Ap . Since Ay and Ap g are split tori, the restriction of o(¢)o ¢~1 to i}
Thus
a(¢)o ¢~ € (wo i)™ o QM Tg) o (wo if).
Consequently, we have
a(¢)o ¢~ € QMo Tro).
Therefore [Kot82, Corollary 2.2] asserts that there exists z € M, (F) such that the homomorphism

Intz o ¢ from T to Int 2(THy) is defined over F. Since this implies that T is stably H-conjugate
to Int 2(Th,0), we may assume that Int z(Tp o) is equal to Ty € {Ty¥,...,T¢ }. Now, put

i“=¢ lolntz" L
Then we have
i“ =Intmo ¢ 'owpyrwo ifoIntz ' =Intmo ¢ Hwyr)o p lo z'g/[“ o Int 2zt
This implies that i € MM (T, T%). Since
i“ 1o =IntzowgoInth™'e Intz;f’ o Q(H,TH)F,

we conclude that (T,77) € Y corresponds to (w,]}‘-",i“’) € Y,,. Conversely, let (w,T]‘-" , 1) be an
element of Y and i a representative for . If we put i/ = i“o Int z}" ,then (T ,7") € Y corresponds
to (w,T},7).

So, it remains to show that for each element in Y, there exists only one element in Y that
corresponds to it and vice-versa. Suppose that (TH,7%) € Y and (T*,7#) € Y correspond to the
same (w, 1Y, ) € Y. Then it is easy to see that ¥/ = 7. Conversely, suppose that (w, 17, ®) ey

and (w', ]‘.‘,’/,i’“’/) €Y correspond to the same (TH,i7) € Y. Let i be a representative for i and

il a representative for 1 then there exist m € M(F) and h € M, (F) such that Int h(Tw ) = 17,
Int m(Tp) = T and
i“ =Intmo ¢ towoifoInth !,
and there exists wy € Q(H, TH)r such that
il =% o Int z;" o wy.
Choose 7’ “’,, m/, h' and W}, similarly. Then we have

x—1 / 1

i low o poIntm 'mo ot owo ih =Inth' 124 o whwy' o Int 2 h, (5.2)

J
Therefore,

Int h'_lz;’,l o whwy o Int z;’_lh o (wo if) N (Ay) = (W o i) H(An).

Put A; = (wo i) 1(Ap+) and Ay = (W' o i)} (Ap+). Then w,w’ € Dy g implies that Ay, Ay C
App. Since H is quasi-split and since

Int h'_lz;?’/l o wywy o Int 2y~ 'h € Int H(F),
Lemma 4.2 asserts that there exists w}, € Q(H, A ) such that

—1 / _ —
Int h'™" 2% o whwy' o Int 27 "hla, = wla;

Then

sk —1 ! 1

—1 —1 — .
iy O w ogpo:[ntm’ mo @ OwOZS‘Alzw%‘Ar
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. - . e — —1 . .

Since m, m’ € M(F), this shows that i} ' o W'~ wo §|a, = w|a,. Therefore, we have if o w o
-1 _ g1 : -1 - k(M e
i |w—1(AM*) = w w‘w—l(A]M*). Now, by using w™" (A=) C i5(Amyp) and @ (wH)‘ia(AH,O) =10

" x—1
why o 4§ |z‘(’;(AH,0)> we have

(W)l (Aye) = 8 © Wi © 85 | 1(ape)-
Hence, w’ - i*(w};) - w™|4,,. =ida,,.. This implies that
Wit (Wh) cwT € QM AY).
Therefore, Proposition 2.2 asserts that w = w’. Now, by (5.2), we have
Int A~ 12’“’/ o whywy o Intzf_lh € (w 0ig) o QM*,TE) o (wo if).

On the other hand, we have Int '~ ! “’/ o wywy ' o Int z;»J_lh € Q(H,Tgyp). Therefore, we have
Inth'™ 1z 5 o Wywy ' o Int L h e Q(MW,THQ). This implies that

Int z“-’/ o Whwy Lo Int z;?’_l € Int M, (F). (5.3)

. / . . .
Since Int z;?i o w}{wH o Int 25~ 1'is an isomorphism from Ty to T;f defined over F', this shows

that T is stably M,-conjugate to T]‘-‘,’ . Hence we have T} = T;,’ and 27 = z}", By using (5.3) and

i =ivo Int 2% o wy =" o Int 2¥ o Wy, we have

"“"lo i € QH,T)p NInt My, (F) = Q(M,, T p
This implies that 7“ = 7*. Thus we have shown that
(. TF.1) = (.17 7).

This completes the proof of Proposition 5.3.
The following theorem is an analogue of [BZ77, Lemma 2.12].

THEOREM 5.6. Assume the fundamental lemma for groups and for Lie algebras. Then we have

7’](\;4 o Tran% = E Tran%w o rﬁ[w.

wEDNM, o

Proof. Let A% € Mg reg- Put T¢ = Cent(y% ; G). We may assume that Apc is a standard subtorus

of Ag. Let Y and Y be as above. Then Y and Y are finite sets. Let (w ,T77,7) €Y, then (5.1) asserts

that Ag g (1“1 (v9),7Y) = Aprar, (1971 (v9),7%), where i is a representative for 7. On the other

hand, if (T*,7) € Y corresponds to (w T3, 1), then i~1(y%) is stably H-conjugate to iH_l(’yG),
H g a representative for i7. Therefore,

1

(Y79 = Baran, (7 (1), 7).
Fix a € Aj;. Put a* = ¢(a). Then a* € Ay.. For w € Dy p, we have i !(a) = (wo if)~1(a*) €
Ay . Let 0y € C[TII(H)]*, then by Lemmas 3.1 and 4.7, we have

IM(Tran, oriy, (9m),a™ %) = Y Awan, (7 (@), a" @) - 1M (e (0m), 7 (a"79))

(T;;,ZW)GYW

= Y Aua, (@), %) - 1 (0,7 (a"y))
(T,i%)€eYs,

where 7

AQH(Z'H_

for sufficiently large n. Since i~ (a"~%) is stably H-conjugate to iH_l(a”'yG), we have
(0,1 (a"y9)) = 17 (01, (a"9)).
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Therefore, by Lemmas 3.1 and 4.7 and Proposition 5.3, we have
IM(r$r o Tran$(0), a™y%) = I¢(Tran$ (0 ), a™y),
= Y Aguli (@), aC) - 17 (9,07
(THE itey
= > D Aua, 7 H(a"9),a™) - I (0, (0" )),

wED M, H (Ty522)€Yw

= Z IM(Tran%worﬁm(HH),a”’yG),

UJEDM’H

“Ha"y ),

for sufficiently large n. It is then immediate from Lemma 3.2 that

IM(T’]\G4 ) Tran%(@H),fyG) = Z IM(Tran%W or]\ff[w(QH),fyG).
WEDA[,H

6. Commutativity

By Corollary 3.4 and Proposition 4.6, we can define D¢ o Tran% and Tran% oDy. By Lemma 5.1,
we may regard (M, My, sy, &) as a set of endoscopic data for G. Let Ag s, be the Langlands—
Shelstad transfer factor. If T'(M,,, M) = 0, then we can show that Ag a, = 0. If I'(M,,, M) # 0,
then we normalize Ag ps, so that

A, (Y AM) = Ayar, (VM 4M),

for all (yM« M) € T'(M,,, M). (As in Lemma 5.2, we can show that the relative transfer factors
Ag m, and Ay, are equal on I'(M,,, M).) Then it is not difficult to show that

2554 o Tran%w = TraLnJ\G;[m

and that
Tran% o i]\H/[w = Tran%w .
Thus we have the following lemma.

LEMMA 6.1. We have

2% o Tran%w = Tran% o iﬁw.

Recall that My is a minimal Levi subgroup of G. We put Mg = (M) € L&

LEMMA 6.2. The standard Levi subgroup M itself is the only associate standard Levi subgroup
of Mg.

Proof. Put X,(Ang) = Hom(Gp, Apg) and apy = Xi(Apg) @z R Let w € Q(G, Ap), then
Lemma 4.2 asserts that there exists w* € Q(G*, A} such that w = resg, (¢~ o w* o ). This implies
that for each chamber C of apzy, there exists

W € QG Aoy = {0 € QUG A7) | (ansg) = ars )

aMék
such that w*(C) = CJJ\}S and w*(S(Mg)) = S(M{). Hence Lemma 2 shows that Mg itself is the only
associate standard Levi subgroup of M. O

Therefore, Lemma 2.5 implies the following lemma.
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LEMMA 6.3. If M* € L& satisfies w(Ap+) C A for some w € Q(G*, Af), then we have
M* > M.
LEMMA 6.4. Let L € £H and fyH € LG.reg- If fyH is an image of ’yG € Greg, then there exists
w € Q(G*, Aj) such that
wo io(AL) C p(Ao) = Ang-

Proof. Let T = Cent(y", H) and TY = Cent(y“,G). We may assume that Apu is a standard
subtorus of Ay and Ape is a standard subtorus of Ag. Put Myn = Cent(Apn, H) € L7 and
M = Mypc = Cent(Agpc,G) € LE. Since ¥ is an image of v¥, there exists il ¢ 1GH(TH TC)

such that iH('yH) = 'yG. Then Lemma 5.5 asserts that there exist wy € Q(H, Ty o)r, w € Dy,
wy € M, Ty), m € M(F) and h € Mypu (F) such that Int m(Tp) = T, Int h(Tw ) = T and

i =Intmo wyro ¢ lowo ip 0 wH © Inth~ .
Hence, we have Apec = il (Apn) = ¢ o wo il o wy(Agpn). By using i o wy o ™! € i*(wpy) -
Q(MHE Ty and if(Apr) Cif(Amp), we have o Lo wo il o wy(Apn) = ¢ Lo w-i*(wy)o it (Apn).
Thus

w-i'(wh) o ig(AL) Cw-i"(wn) o ig(Arr) = ¢(Arc) C @(Ao). O

For M* € £& and L € LH we define Dy« g, as in § 2.

COROLLARY 6.5. Let M* € £C". If D+ g, # 0 and if there exists ’yH € Lg.reg that is an image
of an element ’yG € Greg, then we have

M* > M.

Proof. Let w € D+ m,1,, then we have w™H(Ap+) Cif(AL). On the other hand, Lemma 6.4 asserts
that there exists w' € Q(G*, Af) such that ' o i5(AL) C Apgz. Thus we have w'w ™ (Ap) C Apgy.
It is then immediate from Lemma 6.3 that M* D M. O

We put a(G) = dim Ay, a(G*) = dim A} and a(H) = dim Ay . Then for M € LY we have
r(p(M)) = r(M) = a(G*) = a(G). We put

anr+ H,, = §Dn+ 1L
as in § 2.
THEOREM 6.6. Assume the fundamental lemma for groups and for Lie algebras. Then we have

D¢ o Tran§ = (—1)@ =) TranG o Dy

Proof. By Theorem 5.6, we have

D¢ o Tran$ = Z (=1)"M)& o +§) o Tran$
MeLC

Z Z 1)" M6 o Tran% orﬁ[ .

MeLG weDn g
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Since 2% o Tran%w = Trang oz’ﬁw, this is equal to

E E 1)"™) Trang oiﬁw o rﬁw,

MeLG weD N g

— (_1)HE)—a(G) _1)yr(M*) Tranl o il o yH,
HotL oy

M*EEG* LecH WEDM*,H,L
M*SM
= (—1)UG)~a(G") E (—1)r M) Z anrpg.r TranG o il o I
M*eLG” LeLH
M5 M

By using Corollary 6.5 and Theorem 2.4, we can show that this is equal to
(=)A= N N T (1) M ayg g Tranf o] o rff
LelH pNreLG*
= (_1)a(G)—a(G*)(_1)a(G*)—a(H) Z (_1)T(L) Tran$ o il o r¥
LeLH
= (-1 =H) TranG o Dy. O

Now, we treat the general case. Let (H1, &, ) be a z-pair for the set of endoscopic data (H,H, s, &)
as in § 5. Then for w € Dy g, we can define a z-pair (M, 1,&q, ) for (M, My, sy, &) asin § 5. Let Z;
be the kernel of the morphism H; — H and Ay, the quasi-character of Z;(F') defined in [KS99,
§ 2.2]. Let II(H1, A, ) be the set of equivalence classes of irreducible admissible representations of
H,(F) whose central characters on Z;(F') are equal to Ag,. We denote by C[II(H1, Ag, )] the sub-
space of C[II(Hy)] generated by II(Hy, A, ). We put C[II(Hy, A, )5 = C[II(Hy, Ay, )] NC[II(Hy)]™.
Then we have

Trang, (C[IL(H1, A )I™") € CII(G)],

as in Proposition 4.6. On the other hand, by [KS99, Lemma 5.1.C] we have
AG,Hl (Z/YHl ) ’YG) . -[Hl (9H17 Z/YHl) - AG,Hl (’YHl ) /YG) . -[Hl (9H1 3 ’YHl )7
for all 2 € Z;(F) and 0y, € C[U(Hy, Ay, )]*". Therefore, by arguments similar to the proofs of

Theorems 5.6 and 6.6, we have the following theorem.

THEOREM 6.7. Assume the fundamental lemma for groups and for Lie algebras. Then we have
7’](\;4 o TranH Z TranM . orM 1
wE€D N g

D¢ o Tlrang1 = (—1)M&)—a(H) Tl"aung1 oDp,.

7. Functoriality

In this section, we discuss the relation between the Zelevinski involutions and the Arthur conjecture
[Art89, Conjecture 6.1]. So we assume [Art89, Conjecture 6.1], Hypothesis 1.1 and the fundamental
lemma for groups and for Lie algebras in this section. Let

Y Wr x SUy(C) x SLy(C) — E@

be an Arthur parameter and let II,(G) be the A-packet of ¢». We denote the second factor by
SUs(C) in order to distinguish this from the third factor SLy(C), which is used to define the Arthur

1644

https://doi.org/10.1112/50010437X04000892 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000892

ON FUNCTORIALITY OF ZELEVINSKI INVOLUTIONS

parameters in [Art89]. We put

Sy = Cent(4h, G),

Sy = Sy/ ng.
Let sy = ¥(1 x 1 x (—1)) € Sy. We denote by C[II;(G)] the subspace generated by I1,(G). We put
CllI (@) = C[lI,(G)] N C[I(G)]**. For the set of endoscopic data (H,H, s,§) corresponding to a
semisimple element s € Sy, we choose a z-pair (Hy, &, ). Then {7, 09 is an Arthur parameter on Hj,

which we also denote by 1. Let 951 € C[II,(H1)]** be the distribution ¢ 5 in [Art89, Conjecture 6.1].
As in [Art89, Conjecture 6.1], we define the function §. Then

Tran%l(le): Z d(sys,m) - m,
WEH¢(G)

where H is the endoscopic group corresponding to s € Sy. Let p = py be the normalizing function
in [Art89, Conjecture 6.1]. Then
(3, 7lp) = (s, m)p(s) ",

where 5 € Sy, is the image of s € Sy. We identify SUs(C) with SLy(C). We define d(z)) by
d)(w xtxu)=v(wxuxt), wxtxuecWpxSSUy(C)x SLy(C).

Then d(v) is the Arthur parameter constructed from 1 by interchanging the role of SU;(C) and
SLy(C). We have Sy = Sy(y) and Sy = Sg(yy. If G is quasi-split, then we put G* = G and
Sy, = Sy/ Sy - Zg,.

We fix Whittaker data x for G* (see [KS99, § 5.3]). Let ¢, be the corresponding Langlands
parameter on G* and Ilg (G*) the L-packet of ¢y. We determine the base point 7, € Iy, (G*) as in
[Art89, § 6]. Let (H,H,s,&) be the set of endoscopic data corresponding to s € Sy. If z € Zg, then

(H,H,s,§) and (H, H,sz,§) are equivalent endoscopic data. Therefore, Hypothesis 1.1 implies that
for m € I, (G),

<§7 7T|7TX> = 5(87 7T)5(8¢ 7TX)_1
depends only on the image of s in S;Z. (We also write § for the image of s in S;Z) Thus we may
regard (-, w|my) as an irreducible character of S,

Let {M} be the set of associate standard Levi subgroups of M. We say that = € II(G) is of type
{M} if r§;(7) is a non-zero linear combination of supercuspidal representations of M (F). If 7 is of
type {M}, then we put rr = r(M). For = € II(G), we define dg(m) by

dg(m) = (~1)"*Dg(m).

Then we have rr = rq, (). The following proposition, which is conjectured by Kato [Kat93], is
proved by Aubert [Aub95, Aub96].

PROPOSITION 7.1. For w € TI(G), we have dg(w) € II(G).
LEMMA 7.2. Conjecture 1.4 implies Conjecture 1.2.
Proof. First, we treat the case that G is quasi-split. Put G = G*. We prove

de- (I (G)) = gy (GF)
by induction on r(G*). If S, = {1}, then there is nothing to prove. Suppose that Sj, # {1}.
Let m € II;(G*), then since (-, 7[my) is an irreducible character, there exists 5 € Sj, such that
5 # 1 and (s,7|my) # 0. Let (H,H,s,€) be the set of endoscopic data corresponding to s € Sy.
Choose a z-pair (H1,&m,). Then the coefficient of 7 in Tran%j(@{jl) is not zero. On the other
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hand, by the inductive assumption, we have d g, (Il (H1)) = Tl (H1). Hence, Corollary 3.4 asserts

that DHI(Bgl) € C[Myy) (H1)]**. Therefore, Hypothesis 1.1 implies that there exists e ¢

2
such that
D, (0101) = cllolls
By Theorem 6.7, we have

Dg+ o TranH (OHl) = (—1)aG")—alH) TranHl(HH(l ))

Since the coefficient of 7 in TranHl(HHl) is not zero, this shows that the coefficient of dg-(7) in

TlramH1 (Hd(b})) is not zero. Therefore, dg= () € Iy (G™). Thus we have dg« (Il (G*)) = gy (G*).

Now, we turn to the general case. Let m € II(G), then [Art89, Conjecture 6.1(iii)] shows that we
have 7 € I, (G) if and only if the coefficient of 7 in Tran&. (95 ") is not zero. By Theorem 6.6,
we have

Dg o Trang*(ﬁg*) = (—1)a(G*)_a(G)cg* Tran&. (495(;)).
Therefore, dg (I, (G)) = () (G). O
Now, we assume Conjecture 1.4. By comparing the coefficient of dg(7) in
Dg o Tran§}, (65) = (~ 1)@~ e TranG (gi1 ).

we have
3(sys,m)(=1)"" = (=)D 5y (54045, da (7)), (7.1)
where 04 = d4(,). We assume that G = G*. By dividing the formula (7.1) by that of 7, we have
(343, 7l ) (1) "™ = (54043, i (1) |7 ) (Bag) 5 da= () [T x) s (7.2)
where 7y, is the base point in [Ty (G*). Since 0(sys, my) # 0, we have d4(sq(y)s, da= (7)) # 0 and
(Sa(y)S: da= (my ) [ Ta,x) # 0

for all s € Syy). If we put 3 =3y, and 7 = dg+(7a,y ), then we have
(T, g+ (T ) [y ) (= 1) ™ax ™™ = (S Sy, A= () [Ty )~
Since S 43y is an element of order 1 or 2 contained in the center of Sy, this implies that

(T, de= (map)|my) = (1,de= (my)|may) = 1.

Thus we have the following lemma.
LEMMA 7.3. The character (-,dg=(my)|7q,y) is a one-dimensional character of Sy .

Moreover, since

(8, mlmy) = £(5, dex (1) ma ) (5, de= (my) [ ma )

we have the following proposition.

PROPOSITION 7.4. Let G = G*. Assume the fundamental lemma for groups and for Lie algebras,
the Arthur conjecture [Art89, Conjecture 6.1], Hypothesis 1.1 and Conjecture 1.4. Then

(3, mlmy) = (3, e (m)|ma) (5, A= (my) Imay) "

This is the formula in Conjecture 1.3. By an easy calculation, we have

DG*< > <§w,7f|7fx>'7f> :(—1)T”X<§d(w),dG*(7Tx)|7Td,x>_l< > <§d(w)777|7Td,x>'7T>-

melly, (G*) TI'EHd(w) (G*)
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Since 95* = Zwenw(G*) d(8y, ) -, the relation Dg- (05*) = 05*95(;) implies that

5" = (=1)"™ (s> Ty )0a(Sa()> Tax) " Bagwy da (m)|may)
Therefore, by using [d(sy, my)| = 1 and [0q(sqep), Ta,y)| = 1 (see [Art89, Conjecture 6.1 (iv)]), we
have \cg*| = 1.
By dividing (7.1) by p(sys), we have
(505, 7lp) (1) = (=) D7D p(s55) ™ palsagy 8) Ba) S, da(m) pa).
Hence, by |c{Zl| =1 and [Art89, Conjecture 6.1 (iii)], we have

(I, 7lp) = (1,de(m)|pa)-

Appendix. Proofs of the results in § 2

In this section, we prove the results in § 2. We keep the notation in § 2. We begin with the following
lemma.

LEMMA A.l. If « € RT(G;ay) is R(G)-symmetric, then there exist
ai,..., a4, € RY(G)
satisfying the following conditions:
1) (@ a5) = 0, ifi # j;
2) resq, () eRie, 1=1,...,7;
) Sar - Sa, € UG)ay s
)

Sq = resq,, (Sa; - - Sa,.)-

w

4

Before proving Lemma 1, we prepare some lemmas. For S(M') C S(G), we put
Cip={a€ay | ala) >0 for all @ € S(G) — S(M')}.
We denote by C’—]TJ/ the closure of C,,. For S(M’), S(M") C S(G), we put
QM M") ={w e QG) | w(S(M")) = S(M)}.

Each connected component of

ayr — < U ker a)

a€R(G)—R(M")
is called a chamber of ap;. The following lemma is [Cas74, Proposition 1.2.2].

LEMMA A.2. If C is a chamber of apys, then there exist unique S(M") and w € Q(M', M") such
that

w(Cyin) = C.

LEMMA A.3. Let a € RY(G5apy). If kera N @ contains a non-empty open subset of ker o, then
there exists a simple root & € S(G) such that

resq,, (@) € Ria.

Proof. Put S(M') = {6 € S(G) | B(a) = 0 for all a € Cy}, where C,, = ker aﬂ@. Since C,, C @,
we have 3(a) > 0 for all a € C, and 8 € S(G). Thus

R(M") = {5 € R(G) | B(a) =0 for all a € Cy}.
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Since this shows that a root &' satisfying resq,, (&') = « is contained in R(M’), we have R(M') D
R(M). Thus S(M') 2 S(M). Take a simple root & € S(M') — S(M). Then & satisfies resq,, (&) €
R ov. O

Let C be a chamber of aj; whose closure C' contains a non-empty open subset of ker .
Then Lemma 2 asserts that there exist unique S(M’) and w € Q(M, M’) such that w(C};,) = C.
By Lemma 3, we can choose a simple root & such that

resq,,, (@) = RYw o

Since we may replace S(M) by S(M') and a by w™la, it is enough to prove Lemma 1 under
the condition a € resy,,(S(G)). Therefore we assume that there exists a simple root & such that
a =resg,, (&). Put S(M,) = S(M) U {a}. We denote by w® the longest element of Q(M,,).

LEMMA A 4. Let « and & be as above, then « is R(G)-symmetric if and only if

wia = —a.
Moreover, if o is R(G)-symmetric, then we have
resg,, (W) = $Sq.

Proof. The condition for w € Q(G) to satisfy resq,, (w) = s, is that w(R(M)) = R(M), wa < 0
and w(R(M,)) = R(M,). It is easy to see that such an element w exists if and only if we have
w*@ = —a. Moreover, if w*@ = —a, then the condition for w to satisfy resq,,(w) = s, is that
w € w® - Q(M). So the lemma is proved. O

Let R be a root system and w_ the longest element of the Weyl group of R with respect to a
positive root system RT. Then it is not hard to check that there exist mutually orthogonal roots

at,...,a, € BT such that
Say - Sa, = W—.
Now, we prove Lemma 1. Suppose that « is R(G)-symmetric. By Lemma 4, we have

resg,, (W) = Sq.
For R = R(M,) and w_ = w®, take &1, ..., @, as above. We may arrange the index so that &, ..., &,
are not contained in R (M) and that é,41,...,d&, are contained in R™(M). Then we have
resq,, (Sa, « - - Sa,) = resq,, (W) = sq,
resqy, 1, ... ,resq,, & € Rio.
This proves Lemma 1.

Until the end of this section, we fix S(M), R(H) as in § 2.

LEMMA A.5 (Lemma 2.1). Let w € D/ and w' € Q(G)y. Let @ € R*(G) be a positive root
such that reSH( ) # 0. If ww'a& > 0, then for any & € RT(G) satisfying resg(d’) € R resy (&),
we have ww'@’ > 0 and if ww'é < 0,then for any &' € R (G) satisfying resg (&) € R resy (@), we
have ww'd’ < 0.

Proof. Take ay € C};. Suppose that &' € RT(G) satisfies resy(d’) = ¢ - resy(@), where ¢ € R7.
Then we have (¢ - a — &)(a’) = 0. By the definition of Dy, we have o' 'w™(ay;) < a’. Thus,
ww'(c & —a')(ap) = 0. Therefore,

c-ww'alay) =ww'd (ay).

Now, suppose that ww'a@ > 0. If ww'é@(ay) > 0, then ww'd’(ay) > 0. This implies that
ww'd’ > 0. If ww'd(ay) = 0, then ww'd@ (ay) = 0. Thus ww'a,ww'a’ € R(M). Since w € D}, and

1648

https://doi.org/10.1112/50010437X04000892 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000892

ON FUNCTORIALITY OF ZELEVINSKI INVOLUTIONS

since ww'a € RT(M), we have w'@ > 0. This implies that ¢~ -resy(w'd’) = resy (w'a) € RT(G;a™).
Therefore, w'a’ > 0. Since w € D;; and since ww'@’ € R(M), this shows that ww'a’ > 0. O

In the following, we prove Proposition 2.2. Obviously, we have w € Q(G)y,p if and only if
wQ(MP)w=! c Q(M).

LEMMA A6. Let w € Q(G) 1, then we have
Q(M)wQ(H) N DM,H #* 0.

Proof. Tt is easy to see that D]T/Il is a system of representatives for Q(M)\Q(G), g. Therefore,
we may assume that w € Dy} Put RY(H) = {a@ € R(G) | resy(@) € R*(H)}. By Lemma 2.1, we
can choose wy € wQ(H) such that wy(R*(H)) > 0. Now, we prove that Q(M)wy N Dy g # 0 by
induction on I5;(wy ') under the condition wo(R*(H)) > 0. If Iy (wy ') = 0, then we have wy € Dy g
and the lemma is proved. Suppose that [/ (wg 1) > 0. Then there exists a simple root & € S(M) such
that wy '@ < 0. Since wo(RT(H)) > 0, we have resg(wy ‘@) ¢ R(H). Therefore, wo(RT(H)) > 0
implies that sswo(RT(H)) > 0. Since Iy (wy 'sa) < Iu(wy '), we have Q(M)szwo N Darg # 0, by
the inductive assumption. Because sg € Q(M), this shows that Q(M)wo N Das, g # 0. O

PROPOSITION A.7 (Proposition 2.2). The subset Dy g C Q(G)a i Is a system of representatives
for Y(M)\G) 11 /).

Proof. Tt is enough to show that
ﬁ(Q(M)on(H) N DM,H) =1

for wo € Dar,g. Let w € Q(M)woQ2(H) N Dar, g, then we can write w as w = wywowy with wys €
Q(M) and wy € Q(H). We claim that w € woQ(H)Q(MH). We prove this by induction on Iy (w),}').
If Iyr(wy/) = 0, then wyr = 1. Thus w € woQ(H). Suppose that Iy(wy,) > 0 and Iy (wy) = 0,
then we have resy(wy) = 1. Thus, wo(af’) D ays implies that wowpwy ' € Q(M). Combining this
with Iy(wy ) = Iy (w™) =0 and w = wyy - (wWowpwy ') - wo, we have wyy - (wowpwy *) = 1. Thus,
w = wp. Suppose that I/ (wy;') > 0 and Iy (wp) > 0. Then there exists a positive root aw € R*(H)
such that wga < 0. Then, by Lemma 2.1, we have wowga < 0 for any @ € RT(G) satisfying
resg o € Ria. On the other hand, since w € Dy g, we have wywowpa > 0. Because wys changes
the positivity of wowpgd@, we have wowya € R(M). Put & = wyda and o = wya. Since resy (@) is
R(G)-symmetric, we can choose &}, ...,d. € RT(G) as in Lemma 1. For i = 1,...,r, put B; = wWol.
Since resy (wy'dl) € R a, the above argument shows that B; € R—(M) and that wy;3 € RT(M).
Put 5o = s5; -+ sa, = walsgl -++ 85 wo. Then we have 5/ € Q(H)Q(MH) and
W = WpMWowWH = wMSB] tee SBr W §a/wH.
1 -1

. —1 -1 - —1
Since lM(SBr 53, wy ) < la(wyy ), we have

w € woQ(H)QUM™M)

by the inductive assumption. Now, we can write w as w = wowl with Wy € Q(H)QMH).
Since I (w) = lg(wo) = 0, we have w}, € Q(MH). Thus, wowhywy ' € Q(M). Therefore, Iy (w™!) =
lM(wo_l) = (0 shows that wow}lwgl =1, since w = wow}lwgl -wp. Hence, w = wy. O

We denote by C[Q(G)] the group ring of Q(G). We define & € C[Q(G)] by
=) w
weDy
In the following, we prove that
ST (—1yrgy = (1) MM LE
R(M)eLC
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where w€ is the longest element of Q(G) and w™” is the longest element of Q(MH). We have
w € Dy if and only if RY (M) c w(Rt(M)) C RT(G). Therefore, we have

S Ca - Y cyon( > o)

R(M)eLS R(M)eLG weQ(G)
R (MH)Cw(RT (M))CR*(G)

Bz e

R(M)eL®
wTHRT(MP)CRT(M)Cw™ 1 (RT(Q))

For w € Q(G), put
Jo ={a € 5(G) [wa >0, and ngs = 0 for all B e S(MH)Y,
I, ={a € S(G) | ngs # 0 for some B e S(Myy,

where nj; is defined by wlf = >aes(@) "pa O
LEMMA A 8. Let w € Q(G), then we have
L, = w™H(S(M™))

if and only if we have

w Y (RY(M™)) c R (M) c w™(RT(G))
for some R(M) € LE.
Proof. Suppose that there exists R(M) € £Y such that

w N R (M) c RY (M) c w Y (RT(Q)).

Then by w™(R*(MH)) ¢ RT (M), we have I, C S(M). Therefore, RT (M) C w™'(R*(G)) shows
that I, C w™Y(R*(G)). Thus, we have w™!(RT(M*)) > 0 and w(I,) > 0. Now, by considering
the definition of I,,, we can easily show that w™'(S(M)) ¢ S(G). Conversely, assume that I, =
w1 (S(M™)). Let R(M;,) be the standard subroot system of R(G) corresponding to I,,. Then we
have

w N RT(MP)) c RY (M) c w H(RT(@)). O
If I, = w=Y(S(MH)), then we have I, U J, = {& € S(G) | wa > 0}.
LEMMA A9. Ifw € Q(G) satisfies I, = w™ (S(MH)), then we have
it Jo, # 0,
> (ay 0= 3%
(=) g, = 0.

R(M)eL®
wTHRT(ME)CRT(M)Cw™ 1 (RT(G))

Proof. Since 1, is the set of simple roots of the smallest standard subroot system of R(G) containing
w™H(R*T(MHM)), the left-hand side of the formula is equal to

> (~)r D =3 (~1)He (- O
R(M)eL® JCJw
I,CS(M)C(IuUJy)

The above argument shows that

Y (1) MEy = (~1) MDY,

R(M)eLC
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where the sum in the right-hand side runs over w € Q(G) satisfying I, = w™}(S(M*)) and J, = (.
We have I, = w™1(S(M*)) and J,, = 0 if and only if w(I,) = S(M*¥) and w(S(G) — 1) < 0.
Now, it is easy to see that w = wM™ G is the only element that satisfies this condition. Thus, we

have proved the following lemma. )

LEMMA A.10. We have

R(M)eLG
For
(= ) a,-weCla),
we(G)
we define [¢]g € C[Q(G)u] by
o= > av-w
weQG) g

For R(L) € L set R(L) = {a& € R(G) | resy (&) € R(L)} and RT(L) = R(L)NR*(G;a"). We put
Dy = {w € QG) | w(R*(L)) > 0},

§L = Z w.

weDy,
For w € Q(G) g, put J = {a € S(H) | wa > 0}. Then,

> gli- ¥ Y (e XY (res ¥ e

R(L)eLH weQ(G)y R(L)eLH weQ(G)y S(LYCJH weQ(Q) gy
w(S(L))>0 JH=0

S Pl Y w

R(L)eLH weQ(G)u

Thus we have

LEMMA A.11. We have
WM WGy = > () Pen.

Proof. We have

wlnln = Z w,

UJEQ(G)H
w(RT(H))<0

since w € Q(G)y satisfies (w¥)"lw € Dy if and only if w(R*(H)) < 0. On the other hand, the
action of wM"” € Q(G)y on w(R(H)) is trivial. Hence we have

WM Gy = WM Wy = WM Z w= Z - H
weQ(G gy weG)y
w(RT(H))<0 w(RT(H))<0

LeEMMA A.12 (Lemma 2.3). Let w € Dy g, then
R(H) Nresg(w Y (R(M))) € L.

Proof. For o; € S(H), fix &; € RT(G) such that resy(&;) = ;. Let « € R (H). Choose & € RT(G)
such that resy (&) = o Write o = 3 c gy i~ - Then res,qmy (W) = > ° c gy Mi-res, (o) (W)
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Since w € Dy g, we have woy > 0. Thus, wa; = ZB-GS(G) mij -Bj, where m;; > 0. Hence, by
J
w(af) O apr, we have

resg,, (wa) E n; - resq,, (way) E NiMjj - T€Sq,, BJ)

Assume & € w H(R(M)), then we have n;m;; = 0 for any pj € S(G) — S(M) and o € S(M).
Therefore, for each &; satisfying n; # 0, we have a; € R(H) N w Y(R(M)). Hence, R(H) N
resy (w1 (R(M))) is standard. O

In the following, we prove that
Yo () May gy = (—1)r M (1)),
R(M)eLC

We prove this by imitating the proof in [Car93, § 2.7]. Let Q(L) C Q(H) be the Weyl group of
R(L), which we regard as a subgroup of Q(G). We put a;, = {a € a’ | a(a) =0 for all « € S(L)}.
If w € Dy, 1, then we have

QH) Nw'Q(M)w = Q(L).

For a« € RY(H), put ext(a) = {& € RY(G) | resg(a) = a}. Let w € Q(G). In the following
lemma, we say that I (w) can be defined if either w(ext(a)) C RT(G) or w(ext(a)) C R~ (G) holds
for each o € RT(L). We write wa > 0 if w(ext(a)) C RT(G) and wa < 0 if w(ext(a)) € R™(G).
If i, (w) can be defined, then we put

I (w) =t{a € RT(L) | wa < 0}.

Since I1,(w™!) can be defined for any w € Q(H), we have
QEH)ND; ' ={weQH) |l (w ) =0}
LEMMA A.13. For w € Dy g 1, we have
QM)wQ(H) = {wywwr | wy € QM), wy € QH)N D'
Moreover, if i (wywwy) can be defined, then we have
lg(wywwr) 2 lg(wi).

Proof. Let wy € QM) and wy € Q(H). By induction on I1,(w};'), we prove that

wywwy € QM)w(QUH) N D).

If I (wy') = 0, then nothing remains to be proved. Suppose that {1, (w;;') > 0. Then there exists
o € S(L) such that wy'a < 0. Choose & € w™(R(M)) such that resy(d) = . Since a is R(G)-

symmetric, we can take aq,...,d&, as in Lemma 1. Then for ¢ = 1,...,r, we have resw_l(aM)(o?i) €
R res,,-1(q,,) (@), since af’ > w™!(ays). This implies that &;(w™(ay)) = a(w™! (aM)) = 0. Thus
&; € w Y (R(M)). Put 3, = 55, - 84,- Then we have w - 3, = Spa, - Swa, - w- Let W' = 5,851 €
Q(M™M), then

~ o~ -
WMWWH = WMWSaSqWH = WMSwa; ** * Swa, - WW W Low - sqwn.

Since Iz (wy'sz!) = In(wy') — 1 and since sy, - - Swa, and ww'w™! are contained in Q(M), this

shows that wywwi € UM )w(Q(H) N D) by the inductive assumption.
Next, suppose that Iy (wpwwpy) can be defined. Since wy € Q(H) N D; ', we have

ly(wp) ={a € RY(H) —w, (R(L)) | wpa < 0}
and
wi(RY(H) Nwy' resy(w™H(R(M)))) = RT(L).
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On the other hand, let a € RT(H) — resy(w™'(R(M))). Then we have wa > 0. Since wa ¢
res,, i) (R(M)), we have wa ¢ R(M) for any & € R(G) satisfying resp (&) = a. This implies that
wywa > 0, since wyy € Q(M). Therefore, we have shown that if a € wy(RY(H) — wj (RT(L))) =
wi(RY(H) — wi resy (w1 (R(M)))) is positive, then wywa is positive and if it is negative, then
wpwa is negative. Thus we have proved that

ly(wywwy) = lg(wy) + #{a € RT(L) | wywa < 0}. O
COROLLARY A.14. If w € Dy g, then
Dy N Q(M)WwQ(H) C Q(M)w.
Proof. Let w € Dy, and wywwy € Dy N Q(M)wQ(H ), where wyr € Q(M) and wy € Q(H) N
DZI. Since wywwy € Dy, lg(wpywwy) can be defined. Moreover, we have
0=lg(wywwr) = lg(wh).
Thus, lg(wy) = 0. Since wy € Q(H), this shows that wy = 1. O

Let # € Q(G)y and w € Dy . Since zw™! € Q(G)X/[IH, we can write zw ™! as zw™! = dywis
with dy; € Dy and wyy € Q(M). Then dy; and wy; are uniquely determined by z and w.

LEMMA A.15. We have

~ dy} if dyjv € D
0, otherwise.

Proof. Suppose that d € Dy satisfies d~'z € Dy N Q(M)wQ(H). Then Corollary 14 asserts
that there exists wj, € Q(M) such that d~'z = wjw. This implies that zw™' = dw}, and
shows that d = dj;. Therefore, D]T/[{xﬂDHﬂQ(M)wQ(H) is equal to {d,; =} or 0. Since d,} v = wyw,
the element d,; x is contained in Dy 'z N Dy N Q(M)wQ(H) if and only if dy/x € Dy. O
Put
R(L) = R(H) Nresg(w (R(M))).
Then w € DM,H,L-

LEMMA A.16. We have dJT/[la: € Dy if and only if x € Dy,

Proof. Since at’ > w™!(ays), we have RT(L) = RT(H) Nw ! (R(M)). Because dyzw™! = wyy
preserves R(M), this implies that

dyle(RY(L)) = dyta(RY(H)) N R(M).

Now, suppose d; o € Dy, then we have dy/x(R*(L)) € RT(M). Therefore, z(R*(L)) C RT(G).
Conversely, suppose that 2(R*(L)) C R*(G). Then we have dy z(RT(L)) C R™(G). Now, we
consider dy/x(R*(H)—R*(L)). Since dy} = = wyw, this is equal to wyw(RT(H)—R*(L)). Because
w € Dyrp.p, we have w(RT(H) — RY(L)) € RT(G) — Rt (M). Since wys preserves the positivities
of the roots in R*(G) — R*(M), this shows that d,; =(R*(H) — RT(L)) C RT(G). Thus, dyj = €
Dpy. U

LEMMA A.17. Let x € Q(G) g, then we have
4Dy N Dy) = anu,L,
where the sum in the right-hand side runs over R(L) € L satisfying x € Dy.
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Proof. 1If d € Dy, then d 'z € Q(G)upr. Therefore, Proposition 2.2 asserts that there exists a
unique w € Dy g such that d~ 'z € Q(M)wQ(H). Hence, by Lemma 15, we have

4(Dyfx N Dy) = t{w € Darg | Dyt N Dy N Q(M)wQ(H) # 0}.
Since Dygr = U R(L)eLH D, 1,1, the required equation follows immediately from Lemma 16. [

ProproOsSITION A.18. We have
Evéuln = Y ammLlénln.

R(L)eLH

Proof. Let © € Q(G)py, then the coefficient of x in [EMﬁH]H is equal to the number of the pair
(dyywr) € Dy x Dy satisfying z = dpjwpr. Therefore, the coefficient of z in [ngH]H is ﬁ(f);jm N
Dpr), and Lemma 17 asserts that this is equal to the coefficient of x in the right-hand side of the
formula. O

THEOREM A.19 (Theorem 2.4). We have
S ) Map g = (1M (-1 @),
R(M)eLG
Proof. By Lemma 10, we have
MGG = (1M N (1 Dgy,
R(M)eLC
Therefore, by using Lemma 11 and Proposition 18, we have
Yo ) Pleg)n = WM wCenln
R(L)eLH

= (=)™ N (1) M eyEn]n

R(M)eLC
= (—1)r) S (=) ay g nléna
R(M)eL® R(L)eLH

It is easy to see that [£1]p are linearly independent. Hence, by comparing the coefficient of [£1]x,
we get the required formula. O

For R(M), R(M") € L, we put
D = {w € G) |l (w™") = lap (w) = 0}
Then Dy is a set of representatives for Q(M)\Q(G)/QM").

LeEMMA A.20 (Lemma 2.5). Let R(M), R(My) € LY. Assume that R(My) has no other associate
standard subroot system than R(My) itself. If R(M) satisfies w(ayr) C apy, for some w € Q(G),
then we have

R(M) > R(My).

Proof. Choose a chamber C of ayy, such that the closure C of C contains a non-empty open subset
of w(apr). By Lemma 2 we can take v’ € Q(G)q,,, such that w'(C) = CJ\J;[O. Then w'w(ay) is a
standard subspace and there exists S(M') C S(G) such that w'w(R(M)) = R(M’). Take wy €
Dy N Q(M)w ' tQ(M"). Since wo(R(M')) = R(M), we have wo(S(M')) = S(M). Therefore,

wo(S(Mo)) C wo(S(M/)) = S(M) C S(G)

This implies that wo(R(My)) is an associate standard subroot system of R(Mj). Hence R(Mj) =
wo(R(My)) C R(M). O
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