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ABSTRACT. The mechanical behaviour for the 
geometrical properties of two-dimensional deformation has 
been investigated . The Mohr formulation of failure, which 
is based on the concept of slip at the plane of weakness, is 
used in this study. It is shown that alteration of the shear 
stress T n at the plane of weakness requires self -similarity of 
features in deformation patterns. A general relationship 
between the angle of internal friction and the breaking 
angle of deformation patterns is derived. Using imagery 
data , this relationship is used to find the angle of internal 
friction from selected sea-ice deformation patterns. The 
value obtained for this angle is <I> = IS 0 ± 2

0 
for deform­

ation on a scale from 100 m to 100 km. 

INTRODUCTION 

Fracture patterns appear as the most prominent feature 
of materials that have been deformed permanently. Features 
such as slip lines, crevasses, and faults are found on a wide 
range of geoph ysical scales resulting from deformation in 
sea ice, glaciers, and in the Earth's crust. These patterns 
often exhibit a uniform and systematic character which 
signifies the state of the rheological environment in the 
material during a particular deformation. The main Question 
addressed here is: what properties of the material can one 
deduce from observations of a deformation pattern? 

The formulation of constitutive equations which 
accurately describe the mechanical behaviour of materials 
undergoing deformation is an outstanding problem in 
geophysical continuum mechanics. Present experimental 
efforts are difficult to interpret and often give inconclusive 
results . In general, the rigorous interpretation of geophysical 
phenomena requires the knowledge of mechanical properties 
and fragmentation processes of the substance being 
investigated. A model for the drift of geophysical materials 
(e.g. sea ice, glacier ice, or rock in the Earth's crust) must 
necessarily account for the behaviour which is responsible 
for internal forces . This study is concerned with sea-ice 
deformation and in general its relation to sea-ice 
morphology, fragmentation, and fine-scale motions. 

A reasonable way to make progress is to investigate the 
implications of various sets of equations which have been 
proposed for describing the stress in a material. As a result , 
one may hope to derive a theoretical description which can 
be tested against the behaviour of real deformable materials 
in real situations . This can be accomplished by using the 
illustrative Mohr formulation of the stress state in a 
deformed material where the extension of the results from 
two dimensions to three dimensions is trivial. The results 
lead to geometrical self-similarity of features in the 
deformation patterns which are scale-invariant. This is 
especially useful, since no a priori assumptions regarding the 
material properties of the media need be made. The concept 
of self -similarity provides a useful tool for the geometrical 
description of deformation patterns, which simplifies the 
interpretation of measurements. 

BASIC CONCEPTS 

The analysis of stress is essentially a branch of statics, 
since one attempts to resolve the forces at any point in a 
material into useful Quantities. The Mohr formulation of 
stress provides a simple and physically meaningful tool 
which can be applied to two- or three-dimensional stresses 
with no loss in generality. Sea-ice deformation can be 
considered as two-dimensional in either a horizontal or 
vertical plane. Such deformation is caused by external 
forcing that results in relative motion (in the horizontal 
plane) and ridging and rafting (in the vertical plane). A 
brief review of the basic concepts of stress analysis is 
necessary in order to understand fully its application to 
problems involving sea-ice deformation (see for example 
Jaeger, 1969). 

The occurrence of deformation can be described in 
terms of observable strains as a permanent disturbance of a 
regular structure, whereas stresses are not directly 
observable. Therefore, a deformation criterion involving 
strain rather than stress would be more useful. Despite 
many attempts, no satisfactory strain theory has been 
developed. The critical strains are more or less dependent 
on the length scale over which a particular disturbance is 
measured. The Mohr theory assumes that failure (i.e. 
fracture and / or flow) occurs when the shear stress attains a 
critical value which is related to the normal stress. We 
describe this critical value by a functional relationship 
which is independent of the direction of failure. Typically, 
one defines the strain in terms of the slip across the plane 
of weakness. Introducing the state variables Ai (e.g. density, 
temperature, etc.), this relation between shear and normal 
stress is expressed as 

(I) 

where T n is the shear stress and an is the normal stress . 
The expression f(an,A i ) is called the Mohr-envelope or the 
yield curve, and is a generalization of the maximum 
shear-stress theory which dates back to Coulomb in 1773 
(Jaeger, 1969). The linear version of Equation (I). (the 
so-called Coulomb-Navier criterion) completely describes the 
physics of constant friction between sliding surfaces, and 
has been successfully used in many of the problems of 
geological faulting. The interpretation of Equation (I) is 
crucial in the verification of the mechanical properties of 
the materials under study. In a two-dimensional stress state, 
the shear stress and the normal stress are related to the 
isotropic pressure, n, and the shear, r, through the 
equation 

(2) 

Equation (2) describes the Mohr circle in the (an' T n)-plane 
(Fig. I). It is well known that the shear and the normal 
stress, T n and an on a line L, whose normal n makes the 
angle tPo with the principal axis a1' is related to the shear 
and isotropic pressure, r and IT, such that 
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Fig. 1. a. The Mohr circle in the ( 0Il'TIl ) -plane. 
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b. The configuration of the shear and normal stress 011 the line L in the prillcipal stress plane. 

On = -rr + rcos (21/10)' 

T n = rsin (21/10)' 

(3a) 

(3b) 

The shear and isotropic pressure are related to the principal 
stresses (greatest and least normal stresses) 01 and 02 
through the following equations 

rr = -{01 + 02)/ 2, 

r = (01 - 02)/ 2. 

(4a) 

(4b) 

The principal directions correspond to the directions of the 
greatest and least normal stresses. They are always separated 
by an angle of 11/ 2. In order to avoid unnecessary 
confusion, this set of principal directions will be considered 
as one principal direction co-linear with the 0caxis. When 
the shear strength r (maximum shear stress) is represented 
as a function of the isotropic pressure n and state variables 
Ai' one can express the yield condition in a different 
functional form. It is related to the yield criterion for the 
shear stress (as a function of normal stress) through 
Equations (2) and (3). Both representations of the yield 
criterion describe the same state of stress in a substance 
undergoing deformation. A useful mechanical property 
related to both yield conditions is the internal friction, 
tan (4)), which is defined as the rate of change in positive 
shear stress with compressive normal stress when state 
variables are held constant (Kingston and Spencer, 1970). 

tan (4)) :; _.!}L I . (5) 
dOn Ai 

Here, 4>, the so-called angle of internal friction, may be 
expressed in terms of the shear strength and the isotropic 
pressure. Using Equations (3) and (5), one obtains 

dr(n,A i ) 

dn 
sin (4)) . (6) 

Equation (6) predicts that the shear in a substance (r(n,A i » 
cannot increase or decrease more rapidly than the isotropic 
pressure since I sin (4)) I < I. Yield conditions violating this 
inequality have little physical meaning for an actual stress 
state of a substance. Some yield conditions assumed for sea 
ice unfortunately do not take this into consideration. Since 
the geometrical properties of the deformation pattern will be 
related to the angle of internal friction, one can gain 
information concerning the criterion for deformation using 
Equations (5) or (6). 
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THE SELF-SIMILARITY OF DEFORMATION PATTERNS 

The notion of self-similarity has been evoked in an 
attempt to gain insight into various geophysical problems. 
The fractal or self-similar properties of deformation patterns 
such as fragmented sea ice (Rothrock and Thorndike, 1984; 
Matsushita, 1985) and tectonically evolved land form s 
(Mandelbrot, 1975) have been investigated. In describing the 
geometrical properties of sea-ice keel profiles, Rothrock and 
Thorndike (1980) showed that the thickness distribution 
exhibits fractal or self-similar properties. The idea of 
self-similarity is also a useful concept in the description of 
the geometrical properties of sea ice. In this section, the 
self-similarity of deformation patterns will be related to the 
mechanism of failure. 

The role of self-similarity in the study of deformation 
patterns concerns the angular relation of the various features 
observed. It is found that a single angle (or a multiple 
thereof) relates certain features in the deformation pattern 
to each other. This angle is related to the yield stress and 
strain at a particular point in the material. The angular 
relationship is deduced from the Mohr theory of failure and 
is length-scale invariant. According to this theory, the 
tangential components of stress are anti-parallel about the 
plane of weakness which constrains the orientation of the 
principal stress (on each side of the plane), thereby 
fulfilling the yield criterion. In two dimensions, a slip line 
going through one point is the line in the physical plane 
(the x,y-plane) where the shear and normal stress satisfy the 
yield criterion. The shear and normal stress corresponding to 
a particular isotropic pressure rr are given at the yield 
points PI and P2' where the Mohr envelope is tangential to 
the Mohr circle (see Fig. 2). The slip lines SI and S2 in the 
principal plane correspond to these yield points and the 
angles 1/11 and 1/12 define the direction of the slip-I ine 
norma Is (e.g. Kingston and Spencer, 1970). The directions of 
slip lines SI and S2 with respect to the principal direction a 
are 

9(0,SI,2) = 1/11 ,2 - 11/ 2 = -l.. ,+l.. (7) 

where the angle l.. is related to the angle of internal 
friction by 

l.. = 11/ 4 + 4>/ 2 . (8 ) 

Suppose one observes a slip line and wishes to deduce 
the associated principal direction. There are two principal 
directions which may fulfil the yield condition and generate 
the observed slip line. One corresponds to the shear stress 
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Fig. 2 a. The yield criterion in the ( an.Tn ) -plane. 
b. The orientation of the slip lines SI and S2 in the principal plane. 

on the normal side of the slip line, a+, and the other 
corresponds to the reacting shear stress on the other side, 
a-. Their orientations (see Fig. 3) with respect to the slip 
line S in the physical plane can be deduced through the use 
of Equation (7) and are given as 

(9) 

The two principal directions given by Equation (9) 
correspond to one observed slip line and can generate two 
sets of slip lines with directions 9(a±,S12) dictated by 
Equation (7). A particular slip-line direction' from each set, 
9(Sl ,a+) and 9(S2,a- ), corresponds to the direction that was 
originally observed; thus, the remaining directions from each 
set, 9(S2,a+) and 9(Sl'a-), respectively make the angles +2). 

and -2). with the slip line originally observed . This can be 
taken further, and the possible slip-line and principal 
directions corresponding to a particular state of stress at one 
point have therefore distinct values. If the angle between 
an observed feature (e.g. slip line or fracture) and the 
principal direction it belongs to is known , then the features 
which belong to the same state of stress can be related to 
the same principal direction through that deduction. This 
direction is called the primary direction and is related to 

Slipline 

a 

the external loads that generate the deformation. 
To each possible principal direction aj there is a 

corresponding slip line Sj' Their orientations In the ph ysical 
plane, 9, are given by 

90 + 2}). = 9(S jl - ). 

} = 0, ±l, ±2, 
(10) 

where 90 is the orientation of the primary principal 
direction ao in the physical plane and j is here called the 
branching index. The angles between principal directions (a) 
or ak)' slip lines, or any other formations which have a 
fixed angle with respect to a principal direction (a) or ak) 
are given by 

(I I) 
= 0, ±l, ±2, 

where i (here called the breaking index) is the difference in 
the branching index of the corresponding principal direction 
(i.e. i = ) - k) . This equation gives the angular relation 
between mechanically similar features in the deformation 

Fig. 3. The config uration of possible principal directions a+ and a- ill the physical plane (a) that 
correspond to the yield points p+ and r in the (anTn)-plane (b). 
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field without any reference to the primary principal 
direction. 

The fractal properties or the self-similarity of the 
fracture and deformation phenomena, characterized by the 
Hausdorff or fractal dimension D, can be related to 
measurable mechanical properties of the material being 
subjected to deformation. The fractal generator of the 
fracture or deformation pattern, and its placement in the 
deformation field, must obey the same geometrical rule as is 
valid for an arbitrary similar feature in the deformation 
field . Equation (I I) gives rise to many possible forms of 
fractal generator having those geometrical properties. The 
angle 2)" is a simple generator of fractures or other features 
and has a fractal or Hausdorff dimension D (see Fig. 4) 

D = I n(2)/ I n(2sin (> .. )) . (12) 

In order to examine the angle of internal friction from 
the viewpoint of the geometrical (or fractal) properties of 

N=2 
r = 112 sin A 
0= In (2)/ln(2sinA) 

Fig. 4. Fractal generator 2>.. of fragmentation and 
deformation. 

an observed deformation pattern, one must know the 
generator and the associated rule of placement. In practice, 
the generator is generally not directly observable but its 
associated fractal dimension can be extracted from 
observable geometrical quantities derived from features in 
the deformation pattern . On the other hand, measurements 
of intersection angles between rectilinear features and trends 
in deformation patterns are easily made. This can be done 
without any knowledge of the primary principal direction. 
From Equation (11), the steepest angle between two features 
having the same relation to principal directions differing in 
multiple by i, here called the breaking index, is given by 

13i = mint 12i>.. - i11il, 
(13) 

i,i = 0, ±1, ±2, ... 

where 13i is called the breaking angle. Observations of inter­
section angles between the rectilinear features of 
two-dimensional deformation fields provide sets of discrete 
values for the angle of internal friction as a function of 

Fig . 5. Breaking angle, 13i , as a function of the angle of 
internal friction , 4>, and breaking indices , i. 
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the breaking index i (see Fig. 5). This relationship is useful, 
since one is primarily interested in finding the mechanical 
properties of the deformed material from observable 
geometrical quantities. In a later section, the value for the 
internal friction , which most accurately fits the observations 
of sea-ice deformation patterns of different length scales, is 
examined. 

SLIP-LINE AND PRINCIPAL DIRECTIONS AT 
BOUNDARIES 

The fixed external boundaries of a deformation field 
are ultimately the most important factors in the verification 
of its rheological properties. External boundaries of sea-ice 
deformation fields include interactions between irregular 
coastlines , the land-fast ice zone, and the near-shore drift 
ice on the one side, and the offshore ice pack on the other 
side. These boundaries provide the fundamental frictional 
control of flow in response to external loads or body forces. 
The rheological models, which adequately describe their 
behaviour, are suitable for the entire deformation field. It is 
therefore important to establish a clear mechanical and 
rheological interpretation of common features in deformation 
fields and their relation to different kinds of boundaries. 

Boundaries are generally considered as divisions between 
different physical conditions. For deformation, these 
conditions are dynamic and kinematic depending on the 
mechanical conditions and strains. Features in deformation 
patterns, which are related to the strains or principal 
directions, represent the kinematic or dynamic conditions in 
the material. They represent discontinuities, as they are 
related to different strains or principal directions, and can 
therefore be considered as internal boundaries. Thus, the 
concept of a boundary may apply to any feature in the 
deformation pattern . Tt is therefore practical to choose a 
boundary as that feature in the deformation field which has 
the greatest characteristic length scale. Thus, the choice of a 
boundary depends not only on the physical situation in the 
deformation field but also on one's own observational 
capability. In sea ice, undeformed land-fast ice, large-scale 
pressure and shear zones, leads and slip lines can be 
considered as boundaries. 

Open fractures , crevasses, or leads in deformation fields 
imply that the normal stress at the fracture has a value 
which is a positive maximum «Tn > 0). Thus, the fracture 
(crevasse or lead) makes an angle 11/ 2 with a corresponding 
principal direction. For a pressure ridge or hummock, this 
situation is just the opposite. The normal stress along a 
pressure ridge is at a mlfllmum and is compressive in 
nature «Tn < 0). Thus, a corresponding principal direction is 
colinear with (along) the pressure ridge. The definition of a 
shear ridge is less clear in a mechanical sense and a more 
rigorous definition is needed. A shear ridge may be 
compared to a strike-slip fault where the principal shear 
direction is parallel to the slip-line direction. 

The orientations of a shear boundary and a pressure 
boundary are considered as those which have the greatest 
shear stress and compressive normal stress, respectively (see 
Fig . 6a and b). The corresponding primary principal 
direction 0'0 has the intersection angles 11/ 4 and 0 with the 
shear and pressure boundary, respectively. The corresponding 
intersection angles (using Equation (10)) for the primary slip 
lines So are 4>/ 2 and ).. = 11/ 4 + 4>/ 2. The kinematic slip and 
the orthogonal non-slip boundary represent a slip line or a 
strike-slip fault and the normal to it (see Fig. 6c and d) . 
The corresponding primary principal direction (using 
Equation (10)) (To has the intersection angles 11/ 4 + 4>/ 2 and 
Tl/ 4 - 4>/ 2. The intersection angles of tension fractures 
(openings, leads, or crevasses) are 11/ 2 - 4>/ 2 and 
Tl/ 2 + 4>/ 2, respectively. Intersection angles of 11/ 4 between 
open fractures (or crevasses) and the sides of ice flows in 
glacier outlets are frequently observed (see for example Nye, 
1952), implying that the sides act as shear boundaries . The 
land-fast ice off the Greenland coast is an example of a 
typical non-slip boundary to the ice flow along the coast 
(see Fig. 7). 

EXAMINATION OF THE ANGLE OF INTERNAL 
FRICTION FOR SEA ICE 

An ice field often exhibits a self -similar geometrical 
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Fig. 6. Fractures and slip lines corresponding to the primary principal direction at different kinds of 
boundaries. Dynamic shear (a) and pressure (b) boundary. Kinematic slip (c) and non-slip (d) 
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Fig. 7. Landsat image of the ice field off the Greenland coast. 25 April 1976. The length scale of the 
image is 185 km across. 
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nature. The ice floes are fractured into a collection of 
objects which has scale-invariant, power-law dependent, 
cumulative-size distributions of geometrical quantities. 
Vertical sea-ice-keel profiles exhibit self-similar properties 
in a bounded regime of a particular horizontal length scale 
(Rothrock and Thorndike, 1980). The size distributions of 
various geometrical ice-floe quantitIes, such as ice-floe 
perimeter, diameter, and area (see for example Rothrock 
and Thorndike, 1984; Matsushita, 1985), and the slope of 
the spectral density of the ice-keel profiles can be described 
by the Hausdorff or fractal dimension D characterizing this 
geometrical self-similarity. But the fractal dimension D 
yields little quantitative information concerning the 
mechanical properties of the deformed material, unless 
something is said about the fractal generator of the fracture 
or deformation pattern. On the contrary, direct information 
about the mechanical properties is contained in the 
distribution of breaking angles. This distribution, the 8i 
distribution, can be measured from distinguishable features 
on an arbitrary image of deformation. 

Finding a mean value of the angle of internal friction 
from observed breaking angles is a process of trial and 
error. The deformation pattern being observed can represent 
different internal (stress-state) and external (loads or body 
forces) conditions, either past or present. Examining a 
unique value for the angle of internal friction from a 
particular deformation pattern might therefore turn out to 
be a difficult procedure. From a measured distribution of 
breaking angles, discrete values are represented by its peaks, 
which must be examined first. Eack peak gives rise to a set 
of values for cl> as a function of the breaking index i (see 
Fig. 5). The number of different breaking indices is at least 
the same as the number of peaks. The examined value for 
the angle of internal friction is found from the permutation 
of indices, which leads to the same angle of internal 
friction corresponding to all of the respective sets. The 
following examination of the angle of internal friction is 
performed from measurements of breaking angles of 
observed deformation at different length scales in sea ice. 
This is given as a brief example for illustrating the 
application of the geometrical relationship derived above. In 
this case, the outer cut-off length scale, i.e. the observed 
maximum size of undeformed features, is denoted as the 
characteristic length scale of the observed deformation 
pattern. 

The rectangular deformation patterns of newly frozen 
"finger-screwed" sea ice indicate plastic deformation 
behaviour and correspond to a nil value of the angle of 
internal friction (cl> = 0). The observed patterns are 
characterized by distinct finger size ranging from 0.1 to 
100 m, which depends both on the ice thickness and the 
horizontal isotropic pressure. In contrast, the more common 
non-rectangular form of sea-ice features exemplifies the 
granular deformation behaviour and gives rise to a non-zero 
value for the angle of internal friction. Examples of these 
are large-scale features, which often range from I to 
lOO km and appear in systematic patterns that are commonly 
referred to as parallelograms or diamond-shaped patterns 
(e.g. Marco and Thomson, 1977; Vinje and Finnekasa, 1986). 

Measurements of the breaking angle of the most 
commonly observed parallelograms in the Beaufort Sea Gyre 
(Marco and Thomson, 1977) lead to an average breaking 
angle of 8 = 30 ° ± 10 0, which belongs to a characteristic 
length scale of 100 km. The shape factor (length divided by 
width) of the parallelograms frequently observed in Fram 
Strait (Vinje and Finnekasa, 1986) correspond to a breaking 
angle of 8 = 30 ° ± 3

0 
which belongs to different 

characteristic scales ranging from 5 to 100 km. An 
assemblage of values for the angle of internal friction, 
dependent on different breaking indices i, corresponds to 
this breaking angle (8 = 30°). The patterns corresponding to 
these different values (using Equation (10)) can be compared 
to the pattern obtained by measurements of sea-ice 
deformation. The comparison with observed deformation 
patterns, which were measured from Landsat images (Marco 
and Thomson, 1977), yields the best fit with a value 
cl> = 15 ° ± 50. The relative deformation was examined using 
the difference in the positions of recognized features after a 
2 d time interval. The slip lines So' Si' and S2 are 
represented as lines which subdivide the sectors which are 
being rigidly displaced relative to a fixed point in the ice 
field . The orientation of nearest opening or lead corresponds 
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to the primary principal direction, <10 . Here the char­
acteristic length scale is 100 km. 

The tracking of features on Seasat/SAR images (Fily 
and Rothrock, 1986) for the Central Arctic pack clearly 
demonstrates how slip lines occur in the sea-ice deformation 
field and where they systematically subdivide certain rigid 
elements. The elements were tracked between two different 
SAR scenes by means of a nested correlation algorithm 
which gave a resolution of 100 m. The breaking angles 
(between slip lines) for two different images correspond to 
an angle of internal friction of cl> = 14 ° ± 3

0 

(revolution 
1382-1468) and cl> = 15° ± 2

0 
(revolution 1439-1482). Here, 

the characteristic length scale is 100 km. 
Openings or leads often appear on satellite images as 

narrow zones of low ice concentration where the ice is 
severely broken (see for example the Landsat image of the 
ice field off the Greenland coast shown in Figure 7), 
because of the tensile stress and shearing displacements. The 
land-fast ice off the Greenland coast, where no deformation 
occurs, is considered as a non-slip boundary to the ice field 
farther off the coast. The angle of internal friction 
corresponding to the intersection angles of openings or 
leads, measured from the Landsat image (Fig. 7), is 
cl> = 16 ° ± 1.5 0. The characteristic length scale of this 
pattern is 10 km . 

A systematic pattern of shear ridges, belonging to a 
characteristic length scale of I km, in the Baltic Sea ice 
field in April 1982 is shown in the areal photograph 
published in Lepparanta (I983, fig . 2). In this case, 
measurements of intersection angles between shear ridges 
lead to an angle of internal friction of cl> = 15 ° t 2°. 

The ice-keel profiles must exhibit geometrical 
properties in accord with the processes that dictate their 
formation and deformation. The most important processes 
involved are freezing and melting, ridging and rafting, 
flexural breaking due to the presence of ocean swells or 
isostatic adjustment. Ridging and rafting are the results of 
compressive deformation in the horizontal plane that leads 
to shear strains in the vertical plane. When level ice of 
thickness h undergoes compressive deformation, the 
lieparture of thickness from the level thickness t:.h is 
positive, and it follows the direction of maximum shear 
strain (i.e. the slip-line direction in the vertical plane). The 
shape of an ice-keel profile that is formed by compressive 
deformation is therefore in accord with the possible slip-line 
directions in the vertical plane. 

A fundamental geometrical description of functions 
(discontinuous, fractal, or continuous) can be obtained from 
the exponent, p, of their spectral functions (Rothrock and 
Thorndike, 1980). Ice-keel profiles from the Central Arctic 
pack exhibit fractal properties in a horizontal wavelength 
regime (here called the fractal regime, i.e. -3 < p < -I) 
between 20 and 200 m. These limits indicate the inner and 
outer horizontal cut-off scales belonging to the vertical 
features that have resulted from granular deformation. A 
graphical examination (Fig. 6; Rothrock and Thorndike, 
1980) of the spectral exponent of the ice-keel profile gives 
p = -2.0 ± 0.1 in the fractal regime. The ice-keel profile 
exhibits continuous properties for wavelengths less than 20 m 
as the spectral exponent approaches p '" -3, and 
discontinuous properties for wavelengths greater than 200 m 
where the spectral exponent approaches p = -I . 

If one assumes that the relation between fractal 
dimension and the associated angle of internal friction 
(Equation (I 2)), corresponding to the simple generator of 
2>.., is valid for vertical deformation of sea ice, then the 
relation between the spectral exponent p and the fractal or 
Hausdorff dimension D leads to a relation between the 
angle of internal friction and the spectral exponent, where: 

sin (>..) = 2-(P + 3)/ (p + 5). (\4) 

Accordingly, the angle of internal friction that corresponds 
to the spectral exponent of the fractal regime of an 
ice-keel profile is cl> = 15° ± 2.5°. The characteristic hori­
zontal length scale of the vertical features here is 100 m. 
This cl> value is the same (within the error of measurement) 
as that obtained from the distribution of breaking angles in 
the horizontal plane belonging to length scales 1-100 km. 
The division of the ice-keel profile into regimes of widely 
different geometrical properties, continuous, fractal, and 
discontinuous, characterize the processes that dictate the 
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formation of vertical features on various horizontal length 
scales. Continuous freezing and melting, fractal granular 
deformation, and discontinuous breaking due to swells or 
isostatic adjustment, could be a possible physical cause for 
these divisions. 

CONCLUSION AND DISCUSSION 

The purpose of this work has been to study the 
mechanisms of ice failure in order to explain the prominent 
systematic nature and self-similarity of deformation and 
fragmentation patterns. The results are concentrated in the 
simple geometrical relationship between the angle of internal 
friction and features in deformation patterns (Equation (I I)). 
This geometrical relationship has been applied to find the 
angle of internal friction from a few selected deformation 
patterns in sea ice. The rectangular pattern of "finger­
screwed" new sea ice is an example of plastic deformation 
behaviour where the shear strength is constant (see Equation 
(6)) . This plastic deformation behaviour usually concerns 
only a limited area of the sea-ice pack (refrozen leads) and 
its influence on the overall mechanical properties depends 
on the horizontal isotropic pressure and the thickness of this 
new ice . The analysis of the angle of internal friction leads 
one to the conclusion that the general mechanical behaviour 
of the sea-ice pack is granular on scales from lOO m to 
100km where <I> = 15

0 
± 2°. 

This result was not unexpected since the treatment of 
fragmented ice as a granular material conforms to the 
well-known Coulomb-Navier yield criterion, which has been 
done by many groups in an attempt to model the internal 
forces of the sea-ice pack . The values assumed or adopted 
from often ambiguous interpretations of experimental data 
(reviewed by Melior, 1986) have been widely different with 
no preferred value . What is new in this work is that the 
angle of internal friction has been examined from direct 
observations of the deformation field and one has had the 
opportunity of studying how the mechanical properties are 
affected by different external and internal conditions. The 
results for sea-ice pack support the granular conceptual 
model for sea-ice pack (Thorndike, 1987), and the 
systematic correlations between features in the deformation 
field (Equation (10)) can be incorporated into it without 
altering the general concepts. 

The method of finding the angle of internal friction 
from deformation data needs additional study and a more 
adequate algorithm will be developed. These results can be 
applied in a different manner. If the rheological properties 
are known a priori, then one can deduce from observations 
alone the conditions which give rise to a particular 
deformation pattern. This gives one the ability to distinguish 
between different deformation sequences, to measure the 
arcing (in the primary direction) between different places in 
the deformation field , and to examine the possibility of 
various features originating from identical external 
conditions . 

Another example of the distribution of breaking angles 
is the direction distribution of lineaments in the crust of 
the planet Mercury. This deformation is due to tensile 
strains which arise from the shrinking and cooling of the 
crust (Thomas and Mason, J 983). The direction distribution 
of lineaments is found from the two-dimensional Fourier 
transform of the map of lineaments on the planet's surface. 
This distribution exhibits clear peaks of breaking angles that 
correspond to six different breaking indices and an angle of 
internal friction of <I> = 25

0 

± 1
0 

(see Equation (13)). The 
fractal dimension of a simple generator of 2l.., corresponding 
to this angle of internal friction , is D = 1.32 ± 0.02. This 
fractal dimension is the same as the typical value (D = 1.3) 
found from morphological studies of the surface of the 
Earth (Mandelbrot , 1975). The fractal dimension found from 
the distribution of other geometrical quantities still has to 
be examined for comparison . 

The evident self-similarity of fragmented and deformed 
sea ice on a wide range of scales (e.g. Rothrock and 
Thorndike, 1984; Matsushita, 1985) and the granular 
deformation behaviour exemplified above and shown here, 
i.e. <I>,D = constant, has its support in the framework of 
fractal geometry. A fractal generator of deformation patterns 
and its rule of placement must obey the same rule for 
geometrical properties as the features in the deformation 

Erlingsson : Deformation pall erns ill sea ice 

field . One such generator is assumed to exist and with that 
a correspondence between the angle of internal friction and 
the fractal dimension, D(<I» and <l>(D) . The concentration (or 
density), A(D,L ) , is considered as the only scale-invariant 
state variable, parameterized by the morphological 
parameters, fractal dimension, D, and the fragment size, L 
(Mandelbrot, 1983). Thus, the definition of the angle of 
internal friction is expressed as 

df 
tan (<I>(D)) = - dUn IA(D(<I»,L)' (I5) 

This equation is only significant if <l>(D) = constant for all 
length scales L. In other words, granularity and 
self-similarity are scale-invariant properties of the 
deformation field and is interpreted equivalently within the 
framework of the fractal geometry. 

The whole idea of ambient principal direction might 
seem confused from a continuum mechanics point of view. 
The ambiguity in principal direction introduced here reflects 
the alteration of the shear stress about the plane of 
weakness in materials when subjected to deformation. The 
concept of single principal direction, in a substance which 
is subject to deformation, applies only to the rigid elements 
in the deformation field . The principal directions of the 
rigid element, whose shapes and sizes are subject to one's 
own observational ability, accord with the possible principal 
directions (Equation (I 0)). One could ask: is it possible to 
define a single quantity related to the state of stress in a 
substance and consider it as the principal direction of the 
bulk (the overall collection of rigid elements)? The answer 
is: yes. This is the same kind of question addressed to any 
other continuum mechanics problem, where one wishes to 
relate the behaviour of the single elements to the behaviour 
of the bulk. In this case, one wants to find a single 
quantity which is common to all the principal directions of 
the rigid elements and to apply it as the principal direction 
of the bulk. The primary principal direction is common to 
all the rigid elements in a particular deformation field and 
it is ultimately related to the conditions at its external 
boundary. Accordingly, it is possible to achieve the 
appropriate choice or definition. It is both practical and 
physically significant to apply the primary principal 
direction to the principal direction of the bulk. 

SUMMARY 

The mechanism of failure and the geometrical 
properties of two-dimensional fragmentation and de-
formation in sea ice have been investigated. The Mohr 
formulation of failure, which is based on the concept of 
slip at the plane of weakness, is used in this study. The 
results concern the general geometrical relationship between 
features in deformation patterns and their relation to the 
properties of the material. Any feature which has a fixed 
angle to the principal direction (Jj in a material, which is 
subject to deformation, has an orientation 9* corresponding 
to the primary direction 90 and the branching index j 
where 

j = 0, ±I, ±2, ... 

in fulfillment of the yield condition 1 T n 1 = f(un,A) . 
Here, T n is the shear stress and (In is the normal stress at 
the plane of weakness and Ai are the state variables. The 
corresponding angle of internal friction <I> and the angle l.. 
are defined as 

tan (<1» 
df 

-cot (2l..) == ---I . 
dUn Ai 

This leads to the geometrical relationship between 
mechanically similar features (belonging to direction 9 k and 
9,) which intersect with the angle 

i = (I - k) = 0, ± I, ±2, .. . 

and the corresponding breaking angle Si as a function of 
the angle of internal friction, and the breaking index i is 
given by 
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i,l = 0, ±I, ±2, .... 

The geometry represented by these equations gives rise to a 
simple fractal generator of 2>.. and corresponding Hausdorff 
dimension 

D = I n(2)/ I n(2sin >"). 

The examination of the angle of internal friction from 
horizontal deformation patterns in the Arctic Sea ice-pack 
(and one of shear ridges in the Baltic Sea) was done by 
using characteristic length scales of I-lOO km and resulted 
in the same 4> value within the error of the measurements, 
i.e. 4> = 15

0 
± 20. The deformation studied was in the 

systematic patterns of shear ridges, leads, and slip lines. 
These results support the theme of the granular conceptual 
model for the bulk properties of sea-ice pack (Thorndike, 
1987). The wavelength regime of the vertical ice-keel 
profiles from the Central Arctic pack (Fig. 6; Rothrock and 
Thorndike, 1980), which are generated by compressive 
deformation in the horizontal plane, exhibits fractal 
properties between 20 and 200 m. The angle of internal 
friction associated with the fractal dimension of 2>.. that has 
the same fractal dimension as the vertical features in sea 
ice is 4> = 15

0 
± 2.5

0
. 

The self -similarity of fragmented and deformed ice 
fields (e.g. Rothrock and Thorndike, 1984; Matsushita, 
1985), and the strong evidence of granular deformation 
behaviour, can be mutually explained within the framework 
of the fractal notion. The fractal generator of the fracture 
or deformation pattern must obey the same geometrical rule 
as any feature in the deformation pattern. By considering 
the scale-invariant concentration (or density), A(D,L), as the 
only state variable parameterized by the fractal dimension, 
D, and the fragment size, L, then the definition of the 
angle of internal friction is written as 

df I tan (4)(D)) = - dO'n A(D(4»,Lj 

This equation is only significant if 4>(D) = constant for all 
length scales L . In other words, granularity and 
self-similarity are scale-invariant properties of the 
deformation field and can be interpreted equivalently. 

The ambiguity in principal direction introduced here 
reflects the alteration of the shear stress about the plane of 
weakness when straining or deformation occurs. The primary 
principal direction is common for all the rigid elements in 
a particular deformation field, and it is ultimately related to 
the conditions at its external boundary. It is both practical 
and physically significant to consider the primary principal 
direction as the principal direction of the bulk . 
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