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Abstract

We describe how to approximate fractal transformations generated by a one-parameter family of
dynamical systems W : [0, 1]→ [0, 1] constructed from a pair of monotone increasing diffeomorphisms
Wi such that W−1

i : [0, 1]→ [0, 1] for i = 0, 1. An algorithm is provided for determining the unique
parameter value such that the closure of the symbolic attractor Ω is symmetrical. Several examples
are given, one in which the Wi are affine and two in which the Wi are nonlinear. Applications to digital
imaging are also discussed.

2010 Mathematics subject classification: primary 37E05; secondary 28A80, 94A08.
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1. Introduction

This article describes algorithms for the construction of fractal transformations from a
one parameter family of dynamical systems W : [0, 1]→ [0, 1] as described in [3].
Of particular interest is the specific case in which the underlying itinerary set is
symmetric (which occurs for exactly one value of the parameter ρ which parametrises
W) and several examples are provided. Applications to digital imaging, similar to
those described in [2] for the special case of affine dynamical systems, are also briefly
discussed.

For completeness we recall the basic setup from [3]. Let W0 : [0, a]→ [0, 1]
and W1 : [1 − b, 1]→ [0, 1] be continuous and differentiable and such that a + b > 1,
W0(0) = W1(1 − b) = 0, W0(a) = W1(1) = 1. Let the derivatives W ′

i (x) (i = 0, 1) be
uniformly bounded below by d > 1. For ρ ∈ [1 − b, a] we define W : [0, 1]→ [0, 1] by

[0, 1] 3 x 7→

W0(x) if x ∈ [0, ρ],
W1(x) otherwise.

Similarly, we define W+ : [0, 1]→ [0, 1] by replacing [0, ρ] by [0, ρ).
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110 B. Harding [2]

Let I = {0, 1}. Let I∞ = {0, 1} × {0, 1} × · · · have the product topology induced from
the discrete topology on I. For σ ∈ I∞ write σ = σ0σ1σ2 · · · , where σk ∈ I for all
k ∈ N. The product topology on I∞ is the same as the topology induced by the metric
d(ω,σ) = 2−k where k is the least index such that ωk , σk. It is well known that (I∞, d)
is a compact metric space. We define a total order relation � on I∞, and on In for any
n ∈ N, by σ ≺ ω if σ , ω and σk < ωk where k is the least index such that σk , ωk.
For σ ∈ I∞ and n ∈ N we write σ|n = σ0σ1σ2 · · ·σn. Given n ∈ N and κ ∈ In, denote
by κ̄ the periodic address κκκ · · · ∈ I∞. We define a symmetry function ∗ : I∞ → I∞ by
σ∗ = ω where ωk = 1 − σk for all k. By slight abuse of notation, we may also denote
this as σ∗ = 1̄ − σ where the subtraction is performed elementwise over the symbols.
Let S : I∞ → I∞ denote the left shift map σ0σ1σ2 · · · 7→ σ1σ2 · · · for all σ ∈ I∞.

For k ∈ N, let Wk = W ◦ · · · ◦W (k times) and Wk
+ = W+ ◦ · · · ◦W+ (k times). We

define a map τ : [0, 1]→ I∞, using all of the orbits of W, by

τ(x) = σ0σ1σ2 · · ·

where σk equals 0 or 1, according as Wk(x) ∈ [0, ρ] or ( ρ, 1], respectively. We call τ(x)
the itinerary of x under W, or an address of x, and we call Ω = τ([0, 1]) an address
space for [0, 1]. Similarly, we define τ+ : [0, 1]→ I∞ so that τ+(x)k equals 0 or 1,
according as Wk

+(x) ∈ [0, ρ) or [ ρ, 1], respectively; and we define Ω+ = τ+([0, 1]). Let
Ω denote the closure of Ω. Note that W, W+, Ω, Ω+, Ω, τ, and τ+ all depend on ρ.

Recall that the projection π̂ : I∞ → [0, 1] is well-defined by

π̂(σ) = sup{x ∈ [0, 1] : τ+(x) � σ} = inf{x ∈ [0, 1] : τ(x) � σ}.

Furthermore, π̂ is increasing and continuous and

π̂(τ(x)) = π̂(τ+(x)) = x for all x ∈ [0, 1],
τ(π̂(σ)) � σ � τ+(π̂(σ)) for all σ ∈ I∞.

Additionally, it is a standard result that

π̂(σ) = lim
k→∞

W−1
σ0
◦W−1

σ1
◦ · · · ◦W−1

σk
(y),

noting that the limit exists and is uniquely defined for any y ∈ [0, 1] (because
W−1

0 ,W−1
1 : [0, 1]→ [0, 1] are contractions with contractivity factor at most d−1). This

is particularly useful for computing the projection of a given σ. Given a truncated
address σ|n we take π̂ to map σ|n to the interval

π̂(σ|n) = [W−1
σ0
◦W−1

σ1
◦ · · · ◦W−1

σn
(0),W−1

σ0
◦W−1

σ1
◦ · · · ◦W−1

σn
(1)]

which has length at most d−n. It follows that the approximation of π̂(σ) by either end
point has error bounded above by d−n.

We also repeat a few results which are relevant to this work.

Lemma 1.1 [3, Lemma 4.1]. For all ρ ∈ [1 − b, a],

Ω = {σ ∈ I∞ : for all k ∈ N, σk = 0⇒ S k(σ) � τ( ρ) and σk = 1⇒ τ+( ρ) � S k(σ)}.
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Corollary 1.2 [3, Corollary 4.2]. Ω is symmetric if and only if τ( ρ) = (τ+( ρ))∗.

Lemma 1.3 [3, Lemma 4.3]. The maps τ( ρ) and τ+( ρ) are strictly increasing as
functions of ρ ∈ [1 − b, a] to I∞.

Theorem 1.4 [3, Theorem 1.2]. There exists a unique ρ ∈ [1 − b, a] such that Ω
∗

= Ω.

2. The determination of ρ such that Ω is symmetric

We introduce an extended address space by J∞ = J × J × · · · which has the product
topology induced from the discrete topology on J = {−1, 0, 1}. For σ ∈ J∞ we write
σ = σ0σ1σ2 · · · where σk ∈ J for all k ∈ N. We define a signed distance function
(common in the context of level set methods and implicit surfaces, see for example [8])
over J∞, and on Jn, by ds(σ, ω) = (ωk − σk)3−k where k is the least index such that
ωk , σk. Notice that |ds(σ, ω)| is a metric on J∞ that induces a topology equivalent
to the product topology. We define a total order relation � on J∞, and on Jn for any
n ∈ N, by σ ≺ ω if σ , ω and σk < ωk where k is the least index such that σk , ωk.
Notice that σ ≺ ω if and only if ds(σ,ω) > 0.

Consider the mapping Γ : [1 − b, a]→ J∞ defined by

Γ( ρ) = τ+( ρ) − τ( ρ)∗,

where the subtraction is taken elementwise over the addresses, that is

Γ( ρ)k = τ+( ρ)k − (1 − τ( ρ)k).

Equivalently, by slight abuse of notation, we may write Γ( ρ) = τ+( ρ) + τ( ρ) − 1̄.

Lemma 2.1. Ω is symmetric if and only if Γ( ρ) = 0̄. Furthermore, Γ( ρ) is a strictly
increasing function of ρ ∈ [1 − b, a] to J∞.

Proof. The first claim is essentially identical to Corollary 1.2. Since τ+ and τ are
strictly increasing (Lemma 1.3) it follows immediately that Γ is strictly increasing. �

Corollary 2.2. Ω is symmetric if and only if ds(τ( ρ)∗, τ+( ρ)) = 0. Furthermore,
ρ 7→ ds(τ( ρ)∗, τ+( ρ)) is a nondecreasing function of ρ ∈ [1 − b, a] into R.

This follows immediately by noticing that ds(0̄, τ+( ρ) − τ( ρ)∗) = ds(τ( ρ)∗, τ+( ρ))
and that σ � ω implies ds(0̄, σ) ≤ ds(0̄, ω). The mapping ρ 7→ ds(τ( ρ)∗, τ+( ρ)) is
nondecreasing (rather than strictly increasing) because only the first index k for which
the addresses differ is taken into account. As an aside, note that we could alternatively
introduce a signed distance function

d′s(σ,ω) =

∞∑
k=0

(ωk − σk)ak

for any a ∈ (0, 1/2) (observe one cannot take a = 1/2 or else one would have
d′s(01̄, 10̄) = 0). The mapping ρ 7→ d′s(τ( ρ)∗, τ+( ρ)) is then strictly increasing.
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Algorithm 1 Bisection algorithm for determining the ρ such that Ω is symmetric.
In. Functions τ, τ+ and a, b ∈ [0, 1] corresponding to a dynamical system W.
0. Set ρL = 1 − b, ρR = a.
1. Set ρC = ( ρL + ρR)/2.
2. If ds(τ(ρL)∗, τ+(ρL)) × ds(τ(ρC)∗, τ+(ρC)) ≤ 0 set ρR = ρC , otherwise set ρL = ρC .
3. Repeat from 1 until ρR − ρL and/or ds(τ( ρC)∗, τ+( ρC)) are less than some desired

tolerance(s).
Out. ρC = ( ρL + ρR)/2.

These results, along with Theorem 1.4, are useful as they guarantee that the
bisection method can be used to determine the unique ρ such that Ω is symmetric.
Specifically one may determine ρ via Algorithm 1. In practice the calculation of
τ( ρL), τ+( ρL), τ( ρC), τ+( ρC) in step 2 is done up to some finite address length n and
the signed distances are estimated using the truncated address. If it is desired that
the bisection method terminate when ρR − ρL < ε for some ε > 0 then n should be
large enough that (a + b − 1)d−n < ε. Note that ds(τ( ρ)∗, τ+( ρ)) is neither continuous
nor differentiable and thus one cannot use methods which require continuity and/or
smoothness to perform well (such as Newton’s method). The alternative signed
distance function d′s could be used in the algorithm but offers no advantage except
at the end where one can definitively determine which of ρL, ρC , ρR is closer to the
desired ρ.

3. The approximation of h(x)

We now take a moment to describe how one may approximate a fractal
transformation h : [0, 1]→ [0, 1] defined as

h(x) := 1 − π̂(τ(x)∗).

Note this definition differs slightly from that in [3] so that h is increasing (with
h(0) = 0 and h(1) = 1) rather than decreasing. Of particular interest is the case when
ρ is the unique value in [1 − b, a] such that Ω is symmetric in which case h is a
homeomorphism (although the algorithms described below work for any ρ ∈ [1 − b, a]
but will otherwise result in an h which is discontinuous as in Example 4.2). A direct
approach is to choose a (finite) integer n > 0 and then simply approximate h(x) as an
element of the interval 1 − π̂((τ(x)|n)∗). A reasonable approximation is

h(x) ≈ 1 −W−1
1−τ(x)0

◦W−1
1−τ(x)1

◦ · · · ◦W−1
1−τ(x)n

(1/2)

which, in the case of affine maps, is in the centre of the interval and thus has error
at most 1

2 d−n (assuming the computation of τ(x)|n is exact). By computing h(x) for
equidistant samples x ∈ [0, 1], one can approximate the graph of h(x) in the usual way.
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Note that for increasing n it becomes more likely that there are errors in the latter
digits of τ(x)|n because W is an expanding map and thus floating point rounding errors
grow geometrically. For instance, with double precision arithmetic it is unlikely that
the trailing elements of addresses longer than the smallest n such that dn > 253 will be
accurate.

Algorithm 2 Chaos game algorithm for approximating the mapping x 7→ h(x).
In. Integers N,M,K > 0 and the addresses τ( ρ)|n, τ+( ρ)|n.
0. Set σn = 0 for n = 0, . . . ,N, and Hm = Qm = 0 for m = 0, . . . ,M,

and k = q = x = y = 0.
1. Randomly choose r ∈ {0, 1}, set σn+1 = σn for n = 0, . . . ,N − 1 and then σ0 = r.
2. If r = 0 then set x = W−1

0 (x) and y = 1 −W−1
1 (1 − y),

else (i.e. r = 1) set x = W−1
1 (x) and y = 1 −W−1

0 (1 − y).
3. If r = 0 and ds(σ|n, τ( ρ)|n) < 0, then set q = 0,

else if r = 1 and ds(τ+( ρ)|n, σ|n) < 0, then set q = 0.
4. Set k = Round(xM), if Qk < q then set Qk = q and Hk = y.
5. Set q = q + 1 and k = k + 1, if k < K repeat from step 1.
Out. Array H which can be plotted against X = {m/M}m=0,...,M to approximate h(x).

An alternative method for approximating the graph of h(x) is based on a
modification of the classical chaos game algorithm [1]. This is guaranteed to be
stable because only contractive maps are used. A basic outline is described in
Algorithm 2. The input integers N,M,K determine the length of the truncated address
which is recorded, the number of sub-intervals (each with equal length) that the
interval [0, 1] is divided into and the total number of iterations respectively. Observe
that the purpose of q,Q is to measure the quality of the best current approximation
of h. Recall from Lemma 1.1 that ω ∈ Ω if and only if for all k ∈ N, σk = 0
implies S k(σ) � τ( ρ) and σk = 1 implies S k(σ) � τ+( ρ). Therefore q tracks the
number of successive iterations for which the truncated address σ|n generated by the
chaos game is a valid member of the truncated address space Ω|n = {ω|n : ω ∈ Ω}.
As q increases the iterations become better converged. An alternative stopping
criterion (to the fixed number of iterates K) is to stop when the minimum of the
array Q is equal to some qmin (which generally should be at most N). Note
that there is an implicit assumption here that the τ( ρ)|n, τ+( ρ)|n are exact. In the case
that ρ is such that Ω is symmetric then only τ( ρ)|n need be provided as τ+( ρ)|n =

(τ( ρ)|n)∗.
We take a moment to illustrate why y in Algorithm 2 gives an approximation of

h(x). Let us define the dynamical system

W∗(x) =

1 −W1(1 − x) if x ∈ [0, 1 − ρ),
1 −W0(1 − x) otherwise,

and the corresponding address function τ∗ : [0, 1]→ I∞ where τ∗(x)k is 0 if (W∗)k(x)

https://doi.org/10.1017/S0004972719000297 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000297


114 B. Harding [6]

is in [0, 1 − ρ) and is 1 otherwise. Introduce the projection π̂∗ for which π̂∗(τ∗(x)) = x
for all x ∈ [0, 1] and define the mapping h∗ : [0, 1]→ [0, 1] by h∗(x) = 1 − π̂∗(τ∗(x)∗).

Lemma 3.1. π̂∗(τ(x)) = h(x) and h(x) = 1 − h∗(1 − x).

Proof. It is straightforward to show that τ(x)∗ = τ∗(1 − x) and π̂(σ∗) = 1 − π̂∗(σ).
Consequently,

π̂∗(τ(x)) = 1 − π̂(τ(x)∗) = h(x)

and
h(x) = 1 − π̂(τ(x)∗) = π̂∗(τ∗(1 − x)∗) = 1 − h∗(1 − x),

as required. �

It follows from this lemma that the iteration of (W∗)−1 on y in step 2 is such that
y→ h(x) as q increases.

The basic algorithm outlined above can be further modified to improve efficiency in
the sense of having the smallest number of iterations such that every σ0σ1 · · ·σn ∈ In+1

appears at least once. In particular, rather than randomly choosing r ∈ {0, 1} over some
desired K iterations one can instead iterate over a deBruijn sequence (an approach
explored for approximating attractors of iterated function systems in [4–6]). For
instance, a deBruijn sequence with base 2 and order n + 1 is a sequence with the
shortest possible length (2n+1) such that every σ0σ1 · · ·σn ∈ In+1 appears exactly once
(noting one needs to wrap around the ends to get the last n sub-sequences). In contrast,
iterating K = 2n+1 times with a pseudorandom number generator has vanishingly small
probability of generating every σ0σ1 · · ·σn ∈ In+1. Additionally, the smallest such
deBruijn sequence (with respect to the ordering ≺ on I2n+1

) can be generated in constant
amortised time [7] and is in practice comparable (if not faster) than producing 2n+1

random numbers with a high quality pseudorandom number generator.

4. Examples and applications to digital imaging

We first provide an example based on affine maps. The existence and uniqueness of
a ρ that gives rise to a fractal homeomorphism in the special case of affine maps was
first described in [2] and additional examples can be found there.

Example 4.1. Let Wa, depicted in Figure 1(a), denote the dynamical system arising
from the affine maps

W0(x) = 3
2 x, W1(x) = 5

3 x − 2
3 .

Here, Wa is parametrised by ρ ∈ [2/5, 2/3]. The symbolic attractor Ω is symmetric for
ρ ≈ 0.554383369. The corresponding homeomorphism, denoted by ha(x), is plotted
in Figure 1(b). The function ha(x) − x is also plotted in Figure 1(c) to better illustrate
how the homeomorphism differs from the identity map.

In the next example, the dynamical system consists of quadratic maps.
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Figure 1. Example of a dynamical system and the corresponding homeomorphism constructed from affine
maps as in Example 4.1 (colour available online).

Figure 2. Example of a dynamical system and the corresponding homeomorphism constructed from
quadratic maps as in Example 4.2 (colour available online).

Example 4.2. Let Wq, depicted in Figure 2(a), denote the dynamical system arising
from the quadratic maps

W0(x) = 5
4 x + 3

8 x2, W1(x) = − 4
9 + 8

9 x + 5
9 x2.

Here, Wq is parametrised by ρ ∈ [2/5, 2/3]. The symbolic attractor Ω is symmetric for
ρ ≈ 0.611327690. The corresponding homeomorphism, denoted by hq(x), is plotted
in Figure 2(b). The function hq(x) − x is also plotted in Figure 2(c) to better illustrate
how the homeomorphism differs from the identity map. In Figure 3 we also provide
an example of the mappings obtained if ρ is taken as 1 − b = 2/5 in (a) and a = 2/3
in (b). These two extremes demonstrate typical properties of fractal transformations
generated via a code space which is nonsymmetric.

Observe that the quadratic maps of Example 4.2 were chosen so that the domain
of ρ is the same as that in Example 4.1. Despite the Wi having the same endpoints in
each case (within [0, 1]2) it is clear that the features of the homeomorphism are more
extreme in the case of the quadratic maps.
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Figure 3. Example of the mappings h generated from Wq when ρ differs from the value for which Ω is
symmetric as in Example 4.2 (colour available online).

We now describe an additional example in which the dynamical system consists of
nonlinear mappings.

Example 4.3. Let Wn, depicted in Figure 4(a), denote the dynamical system arising
from the nonlinear maps

W0(x) =
3
2

x +
1

15π
sin(6πx),

W1(x) = −
1
2
−

2
9π

+

(3
2

+
1

3π

)
x −

1
9π

cos
(9π

2
(1 − x)

)
.

Here, Wn is parametrised by ρ ∈ [1/3, 2/3]. The symbolic attractor Ω is symmetric for
ρ ≈ 0.513711977. The corresponding homeomorphism, denoted by hn(x), is plotted
in Figure 4(b). The function hn(x) − x is also plotted in Figure 4(c) to better illustrate
how the homeomorphism differs from the identity map.

In the above example the sign of each W ′′
i changes multiple times. Notice how,

unlike the previous two examples, there are solutions to hn(x) = x on the interior of
[0, 1].

We now consider the application to digital imaging. In notation similar to that of [2],
let B be a picture function of the form

B : [0, 1]2 → C

where C is a colour space (for instance {0, 1, . . . , 255}3 for a standard RGB bitmap
image). Here we take B to also encapsulate the discretisation of the unit square to
the resolution of a given picture. Let h, h̃ : [0, 1]→ [0, 1] denote homeomorphisms
constructed from the symmetric itinerary set of some given dynamical systems W, W̃.
These homeomorphisms may be applied along the x, y coordinates of an image
respectively via the composition

(B ◦ (h ⊗ h̃))(x, y) = B(h(x), h̃(y)).

In this way the transformations can be used for image beautification, roughening, and
special effects.
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Figure 4. Example of a dynamical system and the corresponding homeomorphism constructed from
nonlinear maps as in Example 4.3 (colour available online).

Figure 5. Fractal homeomorphisms applied to the Lena test image. Refer to Example 4.4 for details.
Note that the origin is taken to be the bottom left corner unlike the usual convention in imaging sciences.

(Colour available online.)

Example 4.4. Two examples of B ◦ (h ⊗ h̃) (with h̃ = h in each case) are shown in
Figure 5. Specifically, Figure 5(b) shows B applied to the unit square whereas
Figures 5(a,c) show the result of B ◦ (hq ⊗ hq) and B ◦ (ha ⊗ ha) respectively.

The homeomorphisms can also be used for image filtering analogous to that
described in [2]. Specifically, ifD : [0, 1]2 → [0, 1]2 denotes the digitisation operation
that discretises the unit square to the resolution of the image onto which B maps (and
as such B ◦ D = B), then an image filter can be constructed from h, h̃ as

(h−1 ⊗ h̃−1) ◦ D ◦ (h ⊗ h̃).

The effect of such filters is often subtle and difficult to visually distinguish from the
original image.

Example 4.5. An example of a fractal filter applied to the peppers test image is shown
in Figure 6. Specifically, in this example we take h = hn and h̃ = hq. Figure 6(a)
shows the original image, Figure 6(b) shows the transformation of the image via
B ◦ (hn ⊗ hq) and Figure 6(c) shows the effect of the filter (h−1

n ⊗ h−1
q ) ◦ D ◦ (hn ⊗ hq).

Notice the filter is most extreme in the vertical direction near the top and bottom owing
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Figure 6. Fractal filter applied to the peppers test image. Refer to Example 4.5 for details. Note that
the origin is taken to be the bottom left corner unlike the usual convention in imaging sciences. (Colour

available online.)

to the extreme compression and stretching caused by hq in these regions respectively,
whereas the horizontal effect from hn is much more subtle.

We also refer the reader to the example using affine dynamical systems in [2].
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