SUMS OF MULTINOMIAL COEFFICIENTS

BY
URI FIXMAN

> ABSTRACT. $\sum q!/\left(h_{1}!\ldots h_{n}!\right)$ with $h_{1}+\ldots+h_{n}=q$, the first $a h_{j}^{\prime}$'s odd and the rest even, is expressed in terms of values of Krawtchouk polynomials.

Let $n>0, q>0$ and $a \geqq 0$ be integers. Our aim is to give a formula for the sum of multinomial coefficients

$$
C(n, q, a)=\Sigma\binom{q}{h_{1} \ldots h_{n}}
$$

where the summation is over the nonnegative integers h_{1}, \ldots, h_{n} satisfying
(i) $h_{1}+\ldots+h_{n}=q$;
(ii) h_{1}, \ldots, h_{a} are odd;
and
(iii) h_{a+1}, \ldots, h_{n} are even.

Apart from theoretical applications, the formula is useful if n is given and it is required to compute $C(n, q, a)$ for several values of q and a.

Preliminaries. The following facts can be found in [3], Chapter 5, Section 7 of [2] and [1].

Let $\mathscr{S}_{b}^{(n)}$ be the elementary symmetric polynomial of degree b in n indeterminates: $\mathscr{S}_{0}^{(n)}=1$ and for $1 \leqq b \leqq n$

$$
\mathscr{S}_{b}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqq j_{1}<j_{2}<\ldots<j_{b} \leqq n} x_{j_{1}} x_{j_{2}} \ldots x_{j_{b}}
$$

For $0 \leqq a \leqq n$, put

$$
\begin{equation*}
\mathscr{S}_{a b}^{(n)}=\mathscr{S}_{b}^{(n)}(-1, \ldots,-1,1, \ldots, 1), \tag{1}
\end{equation*}
$$

where the number of -1 's is a. Then $\mathscr{S}_{a b}^{(n)}=K_{b}(a ; n)$, where $K_{b}(x ; n)$ is the Krawtchouk polynomial defined by

$$
K_{b}(x ; n)=\sum_{c=0}^{n}(-1)^{c}\binom{x}{c}\binom{n-x}{b-c} .
$$

For a given n, the matrix $\mathscr{S}^{(n)}=\left(\mathscr{S}_{a b}^{(n)}\right)_{a, b=0}^{n}$ is easily computable recursively from

$$
\mathscr{S}_{a 0}^{(n)}=1 ; \mathscr{S}_{0 b}^{(n)}=\binom{n}{b}
$$

and

$$
\mathscr{S}_{a b}^{(n)}=\mathscr{S}_{a-1, b}^{(n)}-\mathscr{S}_{a-1, b-1}^{(n)}-\mathscr{S}_{a, b-1}^{(n)}, \quad a, b=1, \ldots, n .
$$

This matrix satisfies

$$
\begin{equation*}
\left(\mathscr{L}^{(n)}\right)^{2}=2^{n} I_{n+1} \tag{2}
\end{equation*}
$$

where I_{n+1} is the identity matrix of order $n+1$.
For an integer h denote by $r(h)$ the remainder, 0 or 1 , of h modulo 2 . Let

$$
f=\sum c_{h_{1} \ldots h_{n}} x_{1}^{h_{1}} \ldots x_{n}^{h_{n}}
$$

be a polynomial in the indeterminates x_{1}, \ldots, x_{n} over a field of characteristic different from 2. It was shown in [1] that the reduced polynomial

$$
R f=\sum c_{h_{1} \ldots h_{n}}^{x_{1}^{r\left(h_{1}\right)} \ldots x_{n}^{r\left(h_{n}\right)}, ~\left(x_{1}\right)}
$$

is the unique polynomial of degree not exceeding 1 in each indeterminate which coincides with f on $\{-1,1\}^{n}$. The formula for $R f$ which is given in [1] is not required here, as the uniqueness statement suffices.

Reduction of symmetric polynomials.

Lemma. Let f as above be a symmetric polynomial. Then

$$
\begin{equation*}
R f=2^{-n} \sum_{a=0}^{n}\left\{\sum_{b=0}^{n} \mathscr{S}_{a b}^{(n)} f(-1, \ldots,-1,1, \ldots, 1)\right\} \mathscr{S}_{a}^{(n)}\left(x_{1} \ldots, x_{n}\right) \tag{3}
\end{equation*}
$$

where the number of -1 's in the b 'th summand of the inner sum is b.
Proof. By the uniqueness property of $R f$, it suffices to show that the right hand side of (3) coincides with f on $\{-1,1\}^{n}$. Since both are symmetric, it is enough to verify this on the vectors $(-1, \ldots,-1,1, \ldots, 1)$ of length n, where the number of -1 's is $c, 0 \leqq c \leqq n$. Substituting such a vector in the right hand side of (3), we get using (1)

$$
\begin{aligned}
& 2^{-n} \sum_{a=0}^{n}\left\{\sum_{b=0}^{n} \mathscr{S}_{a b}^{(n)} f(-1, \ldots,-1,1, \ldots, 1)\right\} \mathscr{L}_{c a}^{(n)} \\
& =\sum_{b=0}^{n}\left\{f(-1, \ldots,-1,1, \ldots, 1) 2^{-n} \sum_{a=0}^{n} \mathscr{S}_{c a}^{(n)} \mathscr{S}_{a b}^{(n)}\right\} \\
& \left.=\sum_{b=0}^{n} f(-1, \ldots,-1,1, \ldots, 1) \delta_{c b} \quad \text { (by (2); using Kronecker's } \delta\right) \\
& =f(-1, \ldots,-1,1, \ldots, 1)
\end{aligned}
$$

where the number of -1 's is c.
Formula. $C(n, q, a)=2^{-n} \sum_{b=0}^{n} \mathscr{S}_{a b}^{(n)}(n-2 b)^{q}$.
Proof. For a vector of integers $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)$, put $r(\mathbf{h})=$ $\left(r\left(h_{1}\right), \ldots, r\left(h_{n}\right)\right)$. The latter belongs to the set J_{n} of $(0,1)-$ vectors of length n. The weight, wt (\mathbf{j}) of a vector $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right)$ of J_{n} is the number of nonzero coordinates of \mathbf{j}.

Let $f=\left(x_{1}+\ldots+x_{n}\right)^{q}$. By the multinomial theorem

$$
f=\sum_{h_{1}+\ldots+h_{n}=q}\binom{q}{h_{1} \ldots h_{n}} x_{1}^{h_{1}} \ldots x_{n}^{h_{n}}
$$

Reducing, we obtain

$$
\begin{equation*}
R f=\sum_{a=0}^{n} \sum_{\left\{\mathbf{j} \in J_{n}: w t(\mathbf{j})=a\right\}}\left\{\sum_{\Sigma h_{i}=q, r(\mathbf{h})=\mathbf{j}}\binom{q}{h_{1} \ldots h_{n}}\right\} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} \tag{4}
\end{equation*}
$$

Since $\binom{q}{h_{1} \ldots h_{n}}$ is symmetric in h_{1}, \ldots, h_{n}, the innermost sum of (4) depends only on n, q and $w t(\mathbf{j})$. If $w t(\mathbf{j})=a$, then this sum equals $C(n, q, a)$. Therefore

$$
\begin{equation*}
R f=\sum_{a=0}^{n} C(n, q, a) \sum_{w t(\mathrm{j})=a} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}=\sum_{a=0}^{n} C(n, q, a) \mathscr{S}_{a}^{(n)} \tag{5}
\end{equation*}
$$

On the other hand, $f(-1, \ldots,-1,1, \ldots, 1)$, where the number of -1 's is b, equals $(-b+n-b)^{q}=(n-2 b)^{q}$. Therefore, by the lemma,

$$
\begin{equation*}
R f=2^{-n} \sum_{a=0}^{n}\left\{\sum_{b=0}^{n} \mathscr{S}_{a b}^{(n)}(n-2 b)^{q}\right\} \mathscr{S}_{a}^{(n)} \tag{6}
\end{equation*}
$$

Since the $\mathscr{S}_{a}^{(n)}$ are linearly independent, comparison of coefficients in (5) and (6) yields the desired formula.

References

1. U. Fixman, On the enumeration of Hadamard matrices, submitted.
2. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland Publishing Company, Amsterdam, 1977.
3. N. J. A. Sloane, An introduction to association schemes and coding theory, in: R. A. Askey, ed., Theory and application of special functions, Academic Press, New York, 1975, pp. 225-260.

Queens University
Kingston, Ontario K7L 3N6

