SUMS OF MULTINOMIAL COEFFICIENTS

by URI FIXMAN

ABSTRACT. $\sum q!/(h_1! \dots h_n!)$ with $h_1 + \dots + h_n = q$, the first $a h_j$'s odd and the rest even, is expressed in terms of values of Krawtchouk polynomials.

Let n > 0, q > 0 and $a \ge 0$ be integers. Our aim is to give a formula for the sum of multinomial coefficients

$$C(n, q, a) = \sum \begin{pmatrix} q \\ h_1 \dots h_n \end{pmatrix}$$

where the summation is over the nonnegative integers h_1, \ldots, h_n satisfying

(i) $h_1 + ... + h_n = q$; (ii) $h_1, ..., h_a$ are odd;

and

(iii) h_{a+1}, \ldots, h_n are even.

Apart from theoretical applications, the formula is useful if n is given and it is required to compute C(n, q, a) for several values of q and a.

Preliminaries. The following facts can be found in [3], Chapter 5, Section 7 of [2] and [1].

Let $\mathscr{S}_{b}^{(n)}$ be the elementary symmetric polynomial of degree b in n indeterminates: $\mathscr{S}_{0}^{(n)} = 1$ and for $1 \leq b \leq n$

$$\mathscr{S}_{b}^{(n)}(x_{1},\ldots,x_{n}) = \sum_{1 \leq j_{1} < j_{2} < \ldots < j_{b} \leq n} x_{j_{1}} x_{j_{2}} \ldots x_{j_{b}}$$

For $0 \leq a \leq n$, put

(1)
$$\mathscr{S}_{ab}^{(n)} = \mathscr{S}_{b}^{(n)}(-1, \ldots, -1, 1, \ldots, 1),$$

where the number of -1's is a. Then $\mathscr{S}_{ab}^{(n)} = K_b(a; n)$, where $K_b(x; n)$ is the *Krawtchouk polynomial* defined by

$$K_b(x; n) = \sum_{c=0}^n (-1)^c \binom{x}{c} \binom{n-x}{b-c}.$$

© Canadian Mathematical Society 1986.

Received by the editors July 14, 1986.

AMS Subject Classification (1980): Primary 05A10; Secondary 94B05.

U. FIXMAN

For a given *n*, the matrix $\mathscr{S}^{(n)} = (\mathscr{S}^{(n)}_{ab})^n_{a,b=0}$ is easily computable recursively from

$$\mathscr{S}_{a0}^{(n)} = 1; \, \mathscr{S}_{0b}^{(n)} = \begin{pmatrix} n \\ b \end{pmatrix}$$

and

$$\mathscr{S}_{ab}^{(n)} = \mathscr{S}_{a-1,b}^{(n)} - \mathscr{S}_{a-1,b-1}^{(n)} - \mathscr{S}_{a,b-1}^{(n)}, \quad a, b = 1, \dots, n$$

This matrix satisfies

(2) $(\mathscr{S}^{(n)})^2 = 2^n I_{n+1},$

where I_{n+1} is the identity matrix of order n + 1.

For an integer h denote by r(h) the remainder, 0 or 1, of h modulo 2. Let

$$f = \sum c_{h_1 \dots h_n} x_1^{h_1} \dots x_n^{h_n}$$

be a polynomial in the indeterminates x_1, \ldots, x_n over a field of characteristic different from 2. It was shown in [1] that the *reduced polynomial*

$$Rf = \sum c_{h_1 \dots h_n} x_1^{r(h_1)} \dots x_n^{r(h_n)}$$

is the unique polynomial of degree not exceeding 1 in each indeterminate which coincides with f on $\{-1, 1\}^n$. The formula for Rf which is given in [1] is not required here, as the uniqueness statement suffices.

Reduction of symmetric polynomials.

LEMMA. Let f as above be a symmetric polynomial. Then

(3)
$$Rf = 2^{-n} \sum_{a=0}^{n} \left\{ \sum_{b=0}^{n} \mathscr{S}_{ab}^{(n)} f(-1, \dots, -1, 1, \dots, 1) \right\} \mathscr{S}_{a}^{(n)}(x_{1}, \dots, x_{n}),$$

where the number of -1's in the b'th summand of the inner sum is b.

PROOF. By the uniqueness property of Rf, it suffices to show that the right hand side of (3) coincides with f on $\{-1, 1\}^n$. Since both are symmetric, it is enough to verify this on the vectors $(-1, \ldots, -1, 1, \ldots, 1)$ of length n, where the number of -1's is $c, 0 \leq c \leq n$. Substituting such a vector in the right hand side of (3), we get using (1)

$$2^{-n} \sum_{a=0}^{n} \left\{ \sum_{b=0}^{n} \mathscr{S}_{ab}^{(n)} f(-1, \dots, -1, 1, \dots, 1) \right\} \mathscr{S}_{ca}^{(n)}$$

= $\sum_{b=0}^{n} \left\{ f(-1, \dots, -1, 1, \dots, 1) 2^{-n} \sum_{a=0}^{n} \mathscr{S}_{ca}^{(n)} \mathscr{S}_{ab}^{(n)} \right\}$
= $\sum_{b=0}^{n} f(-1, \dots, -1, 1, \dots, 1) \delta_{cb}$ (by (2); using Kronecker's δ)
= $f(-1, \dots, -1, 1, \dots, 1)$,

[June

188

where the number of -1's is c.

FORMULA. $C(n, q, a) = 2^{-n} \sum_{b=0}^{n} \mathscr{S}_{ab}^{(n)} (n - 2b)^{q}$.

PROOF. For a vector of integers $\mathbf{h} = (h_1, \ldots, h_n)$, put $r(\mathbf{h}) = (r(h_1), \ldots, r(h_n))$. The latter belongs to the set J_n of (0, 1) – vectors of length n. The weight, $wt(\mathbf{j})$ of a vector $\mathbf{j} = (j_1, \ldots, j_n)$ of J_n is the number of nonzero coordinates of \mathbf{j} .

Let $f = (x_1 + \ldots + x_n)^q$. By the multinomial theorem

$$f = \sum_{h_1 + \ldots + h_n = q} {\binom{q}{h_1 \ldots h_n}} x_1^{h_1} \ldots x_n^{h_n}$$

Reducing, we obtain

(4)
$$Rf = \sum_{a=0}^{n} \sum_{\{\mathbf{j} \in J_n: wt(\mathbf{j}) = a\}} \left\{ \sum_{\Sigma h_i = q, r(\mathbf{h}) = \mathbf{j}} \binom{q}{h_1 \dots h_n} \right\} x_1^{j_1} \dots x_n^{j_n}.$$

Since $\binom{q}{h_1 \cdots h_n}$ is symmetric in h_1, \ldots, h_n , the innermost sum of (4) depends only on n, q and $wt(\mathbf{j})$. If $wt(\mathbf{j}) = a$, then this sum equals C(n, q, a). Therefore

(5)
$$Rf = \sum_{a=0}^{n} C(n, q, a) \sum_{wt(\mathbf{j})=a} x_{1}^{j_{1}} \dots x_{n}^{j_{n}} = \sum_{a=0}^{n} C(n, q, a) \mathscr{S}_{a}^{(n)}.$$

On the other hand, $f(-1, \ldots, -1, 1, \ldots, 1)$, where the number of -1's is b, equals $(-b + n - b)^q = (n - 2b)^q$. Therefore, by the lemma,

(6)
$$Rf = 2^{-n} \sum_{a=0}^{n} \left\{ \sum_{b=0}^{n} \mathscr{S}_{ab}^{(n)} (n-2b)^{q} \right\} \mathscr{S}_{a}^{(n)}.$$

Since the $\mathscr{S}_a^{(n)}$ are linearly independent, comparison of coefficients in (5) and (6) yields the desired formula.

References

1. U. Fixman, On the enumeration of Hadamard matrices, submitted.

2. F. J. MacWilliams and N. J. A. Sloane, *The theory of error-correcting codes*, North-Holland Publishing Company, Amsterdam, 1977.

3. N. J. A. Sloane, An introduction to association schemes and coding theory, in: R. A. Askey, ed., Theory and application of special functions, Academic Press, New York, 1975, pp. 225-260.

QUEEN'S UNIVERSITY KINGSTON, ONTARIO K7L 3N6

1988]