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ON A BANACH SPACE WITHOUT A WEAK MID-POINT LOCALLY
UNIFORMLY ROTUND NORM

ZHIBAO HU, WARREN B. MOORS AND MARK A. SMITH

In this paper we show that (i) l°° does not admit an equivalent weak mid-point
locally uniformly rotund norm and (ii) Z°°/co does not admit an equivalent rotund
norm.

1. INTRODUCTION

In [3], Lindenstrauss showed that l°° does not admit an equivalent weakly locally
uniformly rotund norm. In this paper, we refine his argument to show that Z°° does not
even admit an equivalent weak mid-point locally uniformly rotund norm. In addition,
our argument also shows that l°°/CQ does not admit an equivalent rotund norm, a result
previously proven by Bourgain in [2]. We say that a norm ||-]| on a Banach space X
is rotund if each point of the unit sphere S(X) is an extreme point of the closed unit
ball B(X). Further, we say that a norm ||-|| is weak mid-point locally uniformly rotund
(or weak MLUR for short) if for each x £ X \ {0} and each sequence {hn: n € N} in
X, hn -> 0 weakly whenever lim \\x ±hn\\ = \\x\\. In [41, it is shown that a norm II-II

n-K3O " "

is weak MLUR if and only if each point of S(X) (when considered as a subset of the
second dual ball) is an extreme point of the second dual ball.

THEOREM.

(i) l°° does not admit an equivalent weak MLUR norm;
(ii) /°°/co does not admit an equivalent rotund norm.

PROOF: (i) Let H-H^ denote the usual sup norm on l°° and let |||-||| denote any
equivalent norm on l°°. By the support of x £ l°° we mean the set <J(X) = {k £
N: x(k) / 0}. Let Fo = {x £ Z°°: H a ^ = 1 and N \ <x(z) is infinite}. Let m0 =
inf{|||a;||| : x £ Fo} and Mo = sup{|||a;||| : x € Fo}. As |||-||| is an equivalent norm on
l°°, 0 < mQ < Mo < oo. We proceed by induction.
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STEP 1. Choose x\ G Fo so that (3Mo + mo)/4 5j |||xi||| and choose distinct integers
i\ and j \ £ N\cr(xi) . Then define Fi = {x £ Fo: x agree with x\ on a(x\){j{ii, j\}}

and set mi = inf{|||x||| : x G F\} and Mi = sup{|||x||| : x £ Fi}.

Now, after the first n steps of the induction, we shall have constructed elements
{xi, x2, ..., xn} C Fo C /°°, non-empty subsets Fn C Fn_i C . . . Fi C F o , positive
real numbers mo ^ mi ^ . . . ^ mn_i ^ mn ^ Mn ^ Mn_i ^ . . . ^ Mi ^ Mo

and distinct positive integers {ij, i2: • • •, in, J i , .72, • • •, jn} such that, for each k,

(a) XfceFfc-x, (3Mfc_i+mfc_i)/4<|||a:fc|||;

(b) a{xk) n { i i , «2, •••, U, Ji, J2, •••, jfc} = 0;
(c) Fk = {x £ Fo: x agrees with xfc on er(xfc)U{ii, i2, . . . , 4 , j i , j 2 , ••-, Jfc}}
(d) mk = inf{|||x||| : x £ Fk} and Mfc = sup{|||x||| : x £ Fk}.

STEP n + 1. Choose x n + i G Fn so that (3Mn + mn)/4 ^ | | |xn+i | | | and choose distinct
integers in+1 and jn+i G N \ (cr(xn+i) U {«i, i2, • • •, in, ji, 32, • • •, jn}) • Then define
F n + i = { x £ F o : x a g r e e s w i t h x n + i o n a ( x n + i ) u { i i , i2, ..., z n + 1 , j i , j 2 , . . . , j n + i } }

and set m n + i = inf{|||x||| : x G Fn+i} and M n + i = sup{|||x||| : x G F n + 1 } . This
completes the induction.

For each n £ N, define /in G /°° by

/j. \ _ / 1 i f fc e ^*n' *n + 1 ' •••}
[ 0 otherwise.

Also define xx £ l°° by

( xn(k) if k £ a(xn) for some n

0 otherwise.

It is readily verfied that XQO is well-defined and that XQO G f]{Fn • n £ N}. It
is also clear that Xoo ± hn+i £ Fn for each n £ N. Next, choose / G (1°°)* so that
f{h\) — Il/Hoo = 1 and f(y) = 0 for each y £ CQ. Clearly, for such an element / , we
have that f{hn) = 1 for all n G N. We complete the proof of part (i) by showing that
lim Hlxoo ± hn\\\ = lllxooHI. To see this, observe that 2xn - Fn C Fn for each n. This,

n —>-oo

of course, implies that |||2xn — y\\\ ^ Mn for each y £ Fn, and this in turn implies
that 3Mn_i /2 + m n _ i / 2 ^ |||2xn||| ^ Mn + \\\y\\\ for each y £ Fn. Now, by taking the
infimum over y G Fn , we get that 3Mn_i/2 + m n _ i /2 ^ Mn + mn ^ Mn^i + mn and
so (Mn_i + m n _i ) /2 ^ mn ^ Mn ^ Mn-\ •

Therefore, 0 ^ | %xx ± / in +i | | | - |||xoo||| \ ^ Mn - mn ^ (Mn_i - m n _ i ) /2 , since
XQO ± /i«+i and Xoo G F n . Hence, by induction, 0 ^ | |||xoo ± hn+i\\\ - IWx^
(Mo — mo)/2n; which shows that lim |||xoo ± hn\\\ = |||xoo|||-

n—^oo
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(ii) Let |||-||| be any equivalent norm on l°°/c0 and let IT: l°° -* l°°/c0 denote

the usual quotient mapping. We apply the construction from part (i) to the equivalent

norm (on Z°°) ||x|| = H^H^ + |||7r(a;)|||. Indeed, from part (i) we have the existence of

an element xx £ l°° and a sequence {hn: n € N\ C l°° such that lim llxoo ± hn\\ =
n—too

Ikooll, Ikooi^nlloo = Ikoolloo - 1 for all n and n(hn) - n(hi) / 0 for each n.
Therefore, |||TT(a^oo)jj| = H K ^ ) ±n{hx)\\\; which shows that the |||-||| norm on /°°/c0

is not rotund. D

COROLLARY. l°° cannot be equivalently renormed so that its unit sphere (con-

sidered as a subset of the second dual ball) is an extremal subset of its second dual

ball.

||2
|2.

PROOF: Suppose to the contrary that such a norm exists. Call it j|-J|x say. Let ||
be any equivalent rotund norm on /°° and define |||'||| : l°° ->• R by |||x||| = ||a;||1 + ||x|
It is easy to check that each point of the unit sphere of the |||-j| norm is an extreme
point of its second dual ball and so the |||-||| norm is weak MLUR. But this contradicts
the above Theorem. Therefore, no such norm exists. D

REMARK. If |||-||| is an equivalent Kadec norm then its unit sphere is an extremal subset

of its second dual ball. Hence, l°° does not admit an equivalent Kadec norm.

NOTE ADDED IN PROOF: It has recently come to the attention of the authors that

the paper [1] contains a proof of the fact that /°° does not admit an equivalent weak

mid-point locally uniformly rotund norm.
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