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Abstract. Let f(z) = Xa;x* beamonic polynomia of degree n whose coefficients are algebraically
independent variables over a base field k of characteristic 0. We say that a polynomia g(z) is
generating (for the symmetric group) if it can be obtained from f(x) by anondegenerate Tschirnhaus
transformation. We show that the minimal number d (n) of agebraically independent coefficients
of such apolynomia isat least [n/2]. This generalizes a classical theorem of Felix Klein on quintic
polynomials and is related to an algebraic form of Hilbert’s 13th problem.

Our approachtothisquestion (and generalizations) isbased ontheideaof the essential dimension’
of afinite group G the smallest possible dimension of an algebraic G-variety over k to which one can
‘compress’ afaithful linear representation of G. We show that dj, (n) isjust the essential dimension of
thesymmetric group S,,. Wegiveresults on the essential dimension of other groups. In thelast section
we relate the notion of essential dimension to versal polynomials and discuss their relationship to the
generic polynomials of Kuyk, Saltman and DeMeyer.

M athematics Subject Classifications (1991): 12E05, 12F10, 14E05, 12F20, 14L 30.

Key words: Generic polynomials, field extensions, Galois theory, group actions.

1. Introduction

Let & be afield of characteristic 0. All fields in this paper will be assumed to
contain k£ and all field embeddings will fix & pointwise. All algebraic varieties
will be assumed to be irreducible. These varieties and all maps between them will
always be defined over k.

Suppose

p(z) = 2"+ a1t + - +ap @y

is the general polynomial of degree n. That is, we assume that the coefficients
a1, ..., a, are agebraically independent indeterminates over k. We would like
to reduce the number of independent coefficients by means of a nondegenerate
Tschirnhaustransformation, i.e., by considering equations satisfied by

t=ro+rx+---+ro12" (mod p(z)), )

where the ro, . . ., r,_1 are rational functions in the coefficients a;. For example,
whenn = 2, theequation satisfied by t = z+a;/2isof theformg(t) = t>—c =0
which hasonly oneindependent parameter. By asimilar transformation, the general
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cubic polynomial can be shifted to get a polynomial in which the coefficient of 2
is 0; by scaling the general cubic can be further reduced to the 1-parameter form
p(t) = 13 + at + a. Similarly, the general quartic polynomial can be written in the
2-parameter form t* + at? + bt + b. Later we will seethat in this case the number
of parameters cannot be reduced to one.

One way to formalize this question is as follows. Suppose that £/ F is afield
extension of degree n. We say that this extension is defined over afield Fy C F if
there exists an extension Ey/ Fp of degree n contained in E such that EoF = E.
(Note that thisalso implies Eg N F' = Fp.)

E

k

In other words, E/F is defined over Fy if there exists a primitive element «
whose minimal polynomial hasall of its coefficientsin Fp. We define the essential
dimension of E/F over k, or ed,(E/F) for short, to be the minimal value of
trdeg , (Fo), where trdeg, (Fp) denotes the transcendence degree of Fy over k.
Thisis the minimal humber of independent parameters one needs to write down a
generating polynomial for E over F.

Now let p(z) be the general polynomia asin (1). Set K = k(a;) and L =
K|[x]/(p). Theminimal number of parametersrequired to represent p issimply the
essential dimension ed, (L /K ); we shall denote this number by d,(n). Our earlier
observations can now be summarized by saying that

de(2) =di(3) =1, di(4) =2

A classical result of Hermite [11] showsthat after a suitable substitution a general
polynomial of degree5 can bewrittenintheform ¢+ at®+ bt +b. Thusdy (5) < 2.
Felix Klein proved that dj (5) # 1 (which he called ‘Kronecker's Theorem’); see
[13,4],and [19]. Thusdy(5) = 2. In degree 6 one can use atheorem of Joubert [12]
to show that there existsageneral polynomial of theform t® 4 at*+ bt2 +ct +¢; see
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also Richmond [17]. This provesthat di(6) < 3. (For modern proofs of Hermite's
and Joubert’s results see Coray [5].) We shall later seethat di(6) is, in fact, equal
to 3.

One of the main results of this paper is the following generalization of the
above-mentioned theorem of Felix Klein.

THEOREM 1.1. d¢(n) is a (not necessarily strictly) increasing function of n.
Moreover di(n + 2) > di(n) + 1. In particular, d;(n) > [n/2] for anyn > 1.

For a proof of Theorem 1.1 see Corollary 4.3 and Theorem 6.5. The best upper
bound on di(n) we haveis diy(n) < n — 3 for dl n > 5; see Theorem 6.5(c).
We note that the result di(4) > 1 was only briefly mentioned in Klein (see also
[19]) since quartic equations are solvable and hence, from the nineteenth century
perspective, lessinteresting.

The smallest value of n for which these results do not establish the exact
value of di(n) is 7; we do not know whether di(7) equals 3 or 4. This question
has a tangential relationship to Hilbert's 13th problem, the most straightforward
form of which asks whether or not a seventh degree algebraic function can be
expressed in terms of continuous functions of two arguments. This was settled
by Kolmogorov and Arnold, and a number of generalizations have been obtained
(see, for example, the references listed in [10, Lorentz, p. 419]). Hilbert also
implied that the question can be interpreted purely algebraically; this approach to
the 13th problem is discussed at some length in his 1927 paper [9]. Additional
algebraic interpretations of Hilbert's 13th Problem have been given by Arnold
and Shimura [10, p. 45-46], and by Abhyankar [1]. To be more precise about the
relationship between the algebraic form of Hilbert's 13th Problem and and the
value of di(7), we consider avariant of dy(n) defined asfollows. Let p(z) be the
general polynomial of degreen asin (1) and let K = k(aq,...,ay,) be as above.
We now want to reduce the number of independent coefficients of p by means of
amore general nondegenerate Tschirnhaus transformation (2) whererg, ..., 7,1
areradical expressionsinay, . .., a, and elements of k. In other words, rather than
requiring that ro,...,r,—1 liein K aswe did before, we now allow them to lie
in the solvable closure KV of K. It is easy to see that p(z) remains irreducible
over KOV forany n > 5. Let M = KV[z]/(p(x)). We now define d, (n) to be
the essential dimension of the extension M/ K%V, Our definition clearly implies
di(n) < dk(n).

Hilbert [9] gave upper bounds on d.(n) for n < 9. In particular, he showed
that d,(5) = 1, d,.(6) < 2and d,(7) < 3. The question of whether or not d.(6) is
actually equal to 2, explicitly mentioned by Hilbert in [9], was recently settled in
the affirmative by Abhyankar [1]. (The proof uses a sextic surface constructed in
Abyankhar’s thesis [2].) The question of whether or not d;(7) is equal to 3isan
algebraic version of Hilbert's 13th problem. To the best of our knowledge, it is till
open. In fact, we are not aware of any (nontrivial) lower bounds on d (n) for any
n>T.
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Our investigation of di(n) led us to a closer examination of the notion of
essential dimension. We study it from a more geometric point of view in Sections 2
and 3. Let G beafinitegroup and let G — GL (V') be afaithful finite-dimensional
representation of G. Consider algebraic k-varieties Y with afaithful G-action for
which there exists a dominant G-equivariant rational map V' — Y defined over k.
The essential dimension of G istheminimal possible dimension of Y asabove. We
show that this number depends only on G and not on the representation we started
out with; see Theorem 3.1. We call it the essential dimension of G over k or edy(G)
for short. In Section 4 we explore a number of consequences of Theorem 3.1. In
particular, we also show that the number dx(n) we introduced earlier is equal to
edi(S,); see Corollary 4.2.

This brings us to the question of computing ed,(S,) and, more generally,
edy (G) for an arbitrary finite group G. In principle, since ed; (G) is an invariant
of G it should be describable in terms of the group structure of G'. We give such a
description for abelian groups (when & has appropriate roots of unity; see Theorem
6.1) but we appear to be rather far from being able to give a general formula
for edy(G) for an arbitrary group G. However, in Section 5, we prove a result
which can be viewed as a step towards such a formula. Namely, if H isacyclic
central subgroup of G then under suitable conditions edy,(G) = edy(G/H) + 1,
see Theorem 5.3 and Corollary 5.5. These results are used in Section 6 to classify
groups of essential dimension 1 and to compute and estimate ed,.(G) for some
specific G, including abelian, symmetric, and alternating groups. Klein's proof of
‘Kronecker’s Theorem’ was actually accomplished by proving, in our language,
that edi (As) > 1. Thisinequality is aspecial case of Theorem 6.7, which gives a
lower bound on the essential dimension of alternating groups.

Finally, in Section 7 we relate the essential dimension of a finite group G to
‘versal’ polynomials. This notion is related to Saltman’s work [18] on generic
field extensions; see also Demeyer [6], Kuyk [14] and our Remark 7.2. Our con-
struction is somewhat different; its general form can be traced back at least to
Grothendieck [8, Sections 2, 3]. Our main result here is that ed, (G) is the mini-
mal number of algebraically independent coefficientsfor a versal polynomial with
galoisgroup G; see Theorem 7.5.

2. Galoisextensions

The notion of essential dimension of a finite extension E/F, introduced in the
previous section, arises naturally in the geometric context when E is galois over
F'. In this section we take a closer look at this situation.

For convenience, we repeat the basic definition.

DEFINITION 2.1. Let E/F beafinitefield extension of degreen.

(a) Wesay that E/ F' is defined over asubfield Fy of F if there existsan extension
Ey/ Fy of degreen such that Ey C E and EoF = E.
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(b) The essential dimension of E/F, which we will usually abbreviate as
edy(E/F), is the minimal value of trdeg,(Fo) as Fp ranges over al fields
for which E/F' defined over Fp.

LEMMA 2.2. Let E/F beafinite galoisextension with galoisgroup G. Thenthere
isa galois extension E1/F; with group G such that E1F' = E and trdeg , (F1) =
ed,(E/F). In other words, in the above definition of the essential dimension of
E/F,wemay assumewithout |oss of generality that EpisG-invariant, the G-action
on Ey isfaithful, and Fy = E§'.

Proof. Choose Ey/ Fy asinthedefinition of essential dimensionfor £/ F'. Since
E isgaoisover F, it contains anormal closure E; of Eg over Fy. Let F, = Ef
By our construction E; is G-invariant, the G-action on E; is faithful (because
E1F = E),and [E; : F1] = n. Moreover, since E1 is afinite extension of Fp, we
havetrdeg, (F1) = trdeg, (E1) = trdeg, (Fp) = edy(E/F), asdesired.

LEMMA 2.3. Let E/F be afield extension of degree n and let E¥# be the normal
closureof E over F. Thened,(E/F) = ed(E*/F).

Proof. Denote the galois group Gal(E#/ F) by G and its subgroup Gal (E*/ E)
by H.By Lemma2.2 there exists a G-invariant subfield E1 of E# onwhich G acts
faithfully and such that trdeg ,(F1) = edi(E*/F). Denote E{' by F, as above.
Now set Eg = Eff and Fy = Fy. Then Ep C E,

[Eo: Fol=[G:H]|=[E:F]
and EoF = Ef'F = (E1F)" = (E*)" = E. Thusedy,(E/F) < trdeg,(Fo) =
ed, (E*/F).

E#

H
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To prove the opposite inequality, choose Ep/ Fp such that Fo C F', [Ep : Fp] =
n, BoF = E and trdeg . (Fp) = edy(E/F). Since E* isgaloisover F, it contains
a normal closure E; of Eg over Fy. By our construction G acts faithfully on
Ey, B1F = E* and trdeg,(E1) = trdeg,(Fp) = edy(E/F). This shows that
ed,(E/F) > ed(E*/F) and thus completes the proof of the lemma.

We now define the notion of essential dimension in the geometric setting. First
we introduce some terminology.

Let G be afinite group and let X be an (irreducible) algebraic variety. We call
X aG-variety if it is equipped with aregular algebraic action G x X — X. A
subvariety Y C X is caled a G-subvariety if Y is G-invariant. A G-variety is
faithful if every nontrivial element of G acts in a nontrivial way, i.e., the induced
map G — Aut(X) isinjective. A rational map X — Y iscalled arational G-map
if it commuteswith the action of G. Linear G-varieties or representationsof G will
be of special interest to usin the sequel. In this case X is a vector space and the
G-action is given by agroup homomorphism G — GL (X).

We record the following simple observation for future reference.

LEMMA 2.4. Let G be a finite group and let X be a G-variety defined over k.
Dencte the algebraic closure of &k by k.

(8) Assume X (k) isdensein X (k). Then X isfaithful if and only if G acts freely
on a nonempty open subset of X (k).

(b) Assume X isa k-unirational variety. Then X is faithful if and only if G acts
freely on a nonempty open subset of X (k).

Proof. (a) One implication is obvious: if G acts freely on a nonempty open
subset of X (k) then X is faithful. To prove the converse we may assume without
loss of generality that k = k. For g € G let X (k)9 bethe set of all points of X (k)
fixed by g. Since X isfaithful, X (k)9 isaproper closed subset of X (k) for every
g # 1. Let Z bethe union of all these sets. Then X \ Z is adense open subset on
which G acts freely.

(b) If X isk-unirational then X (k) isdensein X (k) and part (a) applies.

Given afaithful G-variety X, consider adominant rational G-map f: X — Y
whereY isalsofaithful. Such adominant map can bethought of asa‘compression’
of the G-action on X . Furthermore, sincethe G-actionon Y isfaithful, this process
doesnot lead to loss of *essential information’ about the original action on X . Thus
it is natural to ask how much a given faithful G-action can be compressed.

DEFINITION 2.5. Let X be afaithful G-variety. The essential dimension of X is
the minimal dimension of afaithful G-variety Y such that there exists a dominant
rational G-map f: X — Y. We shall denote this number by ed, (X).

Remark 2.6. Let k&’ be afinite extension of k£ and let X be afaithful G-variety
defined over k. Our definition than implies that edy (X) > ed;/ (X). Equality does
not always hold; see Remark 6.4.
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It isnow easy to see that our geometric Definition 2.5 of essential dimensionis
closely related to the algebraic Definition 2.1.

LEMMA 2.7. Let X be afaithful G-variety, let E = k(X)) be the field of rational
functionson X and let F = E¢ be the field of G-invariant rational functions on

Proof. Dominant rational G-equivariantmaps f: X — Y arein 1-1 correspon-
dence with G-invariant subfields Ey of E. Here Eg = k(Y'). Moreover, G acts
faithfully on Y if and only if it actsfaithfully on Eq. Sincedim(Y') = trdeg . ( Eo),
our assertion is adirect consequence of Lemma2.2.

3. Essential dimension of a group

The purpose of this section is to prove that the essential dimension of a linear
action depends only on the group G and not on the corresponding faithful rep-
resentation. We will also show that faithful linear representations have maximal
essential dimension among all faithful G-varieties. More precisely, we shall prove
the following theorem.

THEOREM 3.1. Let G be afinite group.

(8 There exists a faithful G-variety Z with the following property. For every
faithful linear G-variety W, there existsa dominant rational G-map W — Z.

(b) The essential dimension of a faithful linear representation of a finite group G
depends only on the group and not on the representation. We shall call this
number the essential dimension of G' and denoteit by ed, (G).

(c) Let X beafaithful G-variety. Then ed,(X) < edi(G).

Asnoted earlier, part () can beinterpreted as saying that linear G-varieties are
‘least compressible’ among all faithful G-varieties.

Let Vieg = k[G] be the group algebra of G. The points of V¢ are of the form
> agg Where the sum is taken over all g € G. We shall view Vi as a linear
G-variety with the G-action given by the (left) regular representation, i.e.

hZagg = Zag(hg).
g g

LEMMA 3.2. (a) Let a,b € V. Assume that the G-orbit of ¢ has| G | distinct
elements. Then there exists a (regular) G-morphism « : Vigg — Vieg such that
a(a) = b.

(b) Let Y and C be affine G-invariant k-subvarieties of Vi such that C' #
Vieg- Assume that the G-action on Y is faithful. Then there exists a G-morphism
B: Vieg = Vigg suchthat 3(Y') ¢ C.
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Proof. Givenapolynomial p € k[Vie] wedefinethemorphismay,: Vigg = Vieg
by

ap(z) = Y plg 'z)g
geG

for every z € V. By construction «, isaG-morphism, sinceforany h € G

ap(hz) = Y plg tha)g= > plg 'x)hg' = hay(x).
geG g'=h"1geq

(@) Let b = >~ byg. By our assumption g(a) # h(a) if g and h are distinct
elements of G. Thus we can choose p(z) € k[Vig] such that p(g~—1a) = b,. Now
let & = «,. Then a(a) = b, asdesired.

(b) First assumethat Y hasa k-point « whose orbit has | G | distinct elements.
In this case part (b) is an easy consequence of part (a): we simply choose a k-point
b C,finda: Viey — Vieg suchthat a(a) = bandlet 5 = o

Now we turn to the general case. Let W, be the vector space of polynomials of
degree < d on V. One easily checksthat the set P; of all p suchthat o, (Y') C C
isclosed in . In order to complete the proof of the lemmawe need to show that
P, #+ W, for somed > 1. Assume the contrary: P; = W, for every d. Let k' bea
finite field extension of k. Since P;(k) = Wy(k) isdensein Wy(k'), we see that
Py(k") = Wy4(E'"). On the other hand, we can choose k' so that Y (k') contains a
point ¢ with exactly | G | elementsin its orbit. Then aswe noted above, there exist
ap € k'[Vig] such that o, (Y') ¢ C. If p isapolynomial of degree d, this means
p & P,. In other words, P, (k') # Wy(k'), acontradiction.

LEMMA 3.3. Let W be a faithful linear G-variety. Then ed, (W) > edi(Vreg).

Proof. Let f: W — Z be a dominant rational G-map such that Z is faithful
and dim(Z) = ed;(W). Then there is an open G-invariant subset Zo of Z and an
open G-invariant subset Wy of W such that f restricts to a surjective morphism
Wo — Zp. By our construction Z is a k-unirationa variety. Thus Lemma 2.4(b)
impliesthat we can choosew € Wy(k) suchthat the G-orbitof z = f(w) € Zo(k)
containsexactly | G' | points. Definea G-morphism ¢: Vieg — W by ¢(3- ag9) =
> agg(w) and consider the compositionmap fo¢: Vieg — Z.Let U betheclosure
of imageof fo¢inZ.Since f o ¢(1g) = z, weseethat z € U. By our choice of
z thisimpliesthat the G-action on U is faithful.

We have thus constructed adominant rational G-map Vg — U defined over &.
SinceU isafaithful G-variety, we have

edy (Vieg) < dim(U) < dim(Z) = edy (W),
as desired.
LEMMA 3.4. Let X be a faithful G-variety of essential dimension d. Then there

existsa dominant rational G-map X — Y suchthat Y isa d-dimensional faithful
affine G-subvariety of Vieg.

https://doi.org/10.1023/A:1000144403695 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000144403695

ON THE ESSENTIAL DIMENSION OF A FINITE GROUP 167

Proof. By the definition of essential dimension there exists adominant rational
G-map f: X — Z where Z isafaithful d-dimensional G-variety. Let A € k(Z)
be a primitive element for the finite field extension k(2)¢ C k(Z). ThenA: z —
Y. agg,Wherea, = g(\)(z), isarational G-map Z — V. LetY betheclosure of
A(Z). We want to show that the compositemap f o A: X — Y hasthe properties
claimed in the lemma. Since dim(Y) < dim(Z) = d, it is enough to show that
Y isafaithful G-variety. Note that the function field k£(Y") can be identified with
the subfield of £(X) generated by \ and its translates. By our choice of A, G acts
faithfully on this subfield.

We are now ready to proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1:. Choose afaithful G-variety Z and a dominant rational
G-map f: Vigg — Z suchthat dim(Z) = ed(Vieg). Wewill provethat this variety
has the property claimed in part (a) of Theorem 3.1.

By Lemma 2.4(b) there exists a dense open subset Zy C Z such that G acts
freely on Zg(k). Let U be a dense open subset of Ve such that f isregular on U
and f(U) C Zo. Let C bethe complement of U in V.

Now consider a faithful G-variety X of essentia dimension d. By Lemma
3.4 there exists a dominant rational G-map v : X — Y where Y is a faithful
d-dimensional G-subvariety of V. By Lemma 3.2(b) there exists a G-morphism
B: Vieg = Vigg defined over £ suchthat 3(Y') ¢ C. By our choiceof C this means
that the composite rational map

foBoy:X = Vig— Vig— Z ©)

is well-defined. Moreover, the closure Z' C Z of itsimage intersects Zp nontriv-
ialy. Hence, the G-action on Z' isfaithful. Thus

edi (X) < dim(2') < dim(Z) = edy(Vieg). (4

If X = W isalinear G-variety then by Lemma 3.3 ed;, (W) > edi(Vig).
Thus (4) implies (i) edi (W) = edi(Vigg) and (ii) dim(Z’) = dim(Z). Part (b) of
Theorem 3.1 is an immediate consequence of (i). Moreover, (3) is the map whose
existenceis asserted in Theorem 3.1(a). Sinceed, (G) = ed;(Vreg), part (c) follows
from (4).

4. Elementary properties

In this section we explore the consequences of Theorem 3.1.

LEMMA 4.1. (a) If H isa subgroup of G then ed;,(H) < edi(G).
(b) If G isadirect product of H; and H> then edy (G) < edy(H1) + edi(H?).
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Proof. (&) Obviousfrom the definition.

(b) Fori = 1, 2 let W; be afaithful representation of H; and o;: W; — Y; bea
dominant rational H;-map to afaithful H;-variety Y; suchthat dim(Y;) = edy(H;).
Then W = Wy x W, isafaithful G-representationand Y = Y3 x Y> isafaithful
G-variety for the natural (componentwise) action of G = Hi x H,. Moreover,
a1 X ap: W — Y is adominant rational G-map. Thus edy(G) < edi(Y) =
edy,(H1) + edy (H2).

COROLLARY 4.2. Let G be a transitive subgroup of S, let z1, ..., z, beinde-
pendent variablesover k and let F; bethe fixed field for the natural (permutation)
actionof G on E = k(z1,...,z,). Then

edy (Fa(z1)/Fa) = edy(G).

In particular, the number di(n), defined in the introduction, is equal to ed(S,,).

Proof. Notethat F is the normal closure of F¢(z1) over Fi. Thus by Lemma
2.3 ed;(Fa(z1)/Fa) = edy(E/F¢). Now let V' be the faithful n-dimensional
representation of G where the G-action is given by permuting the elements of a
fixed basis. Then we can identify £ with k£(V') asfields with a G-action. In other
words, ed,(E/F¢) = ed; (V) = edy(G); see Theorem 3.1(b).

To prove the last assertion of the corollary, recall that we defined di(n) as
edk(F(;(J?l)/F(;) where G = S,.

COROLLARY 4.3. di(n) is a non-decreasing function of n. That is, di(n) <
di(n + 1) for everyn > 1.

Proof. SinceS,, C S,+1, wehaveed,(S,) < edi(S,+1), seeLemma4.1(a). In
other words, d;.(n) < dg(n + 1) by Corollary 4.2.

LEMMA 4.4. ed;(G) = Oifand only if G = {1}.

Proof. Consider a faithful representation V' of G. By Lemmas 2.2 and 2.7,
edy(G) = 0if and only if there exists a G-invariant subfield Eg of k£(V') such
that G acts faithfully on Eop, and Ey is algebraic over k. Since £(V) is a purely
transcendental extension of k, and k is algebraically closed in k£(V), thisis only
possible if Eg = k. In particular, G acts trivially on Ep. This action is faithful if
andonly if G = {1}.

Remark 4.5. Assume ed;.(G) > 2 (this will always be true unless G is cyclic
or odd dihedral; see Lemma 4.4 and Theorem 6.2). Then we can find a faithful
G-variety X such that the inequality of Theorem 3.1(c) is strict. In fact: for any
finite group G there exists a curve with a faithful G-action.

Proof. Since G isisomorphic to a subgroup of S, for some n, it is enough to
show that for any n > 2 there exists a curve X, with afaithful S,-action.
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To construct such a curve we need an irreducible polynomia p(x) over k()
with galois group S,,. Since k(t) is a Hilbertian field (see [7, Thm. 12.10]), p(z)
can be obtained by specializing the algebraically independent coefficients of the
generic polynomial z" 4 a1z~ 1 + - - - 4 a, ink(t).

Let L be the splitting field of p(z) over K(t). Since L is afinite extension of
k(t), trdeg (L) = 1. Thus L is the function field of a unique smooth projective
curve X,,. The S,-action on L trandlates into a (regular) faithful S,-action on X,,.

5. Central extensions

Inthis sectionwe will provethat if G isacentral extension of G’ by acyclic group
of prime order then, under suitable hypotheses, ed;. (G) = ed(G') + 1.

We begin by recalling some well-known definitions concerning discrete valua-
tions. Let F beafieldandlet v: F* — Z beadiscrete valuation. Note: we assume
v(F*) = Z. As usual, we define F; = v~1(i) U {0} and F; = union of al F;
with j > i. Then F is alocal ring with maximal ideal F1 and fraction field
F. Denote the residue field by F' = F.o/F51. Then F1/Fs; isa 1-dimensional
vector space over F.

LEMMA 5.1. Assumethat v: F'* — Z isadiscretevaluation on afield F, and that
the residue field F* has characteristic . Let o be an automorphism of F of finite
order which preservesv, i.e, v o o = v. Assume that the automor phisms of F' and
F-1/F5;induced by o aretrivial. Then o is the identity automorphismof £'.

Proof. This is a standard fact which says, in essence, that there is no wild
ramification in characteristic zero. It is easily derived from [20, Cor. 2, Prop. 1V.7]
by passing to the completion and noting that o actstrivially onboth F and F~. 1/ F»
if and only if it actstrivialy on Fxq/Fs».

For completeness we also sketch a direct proof. First one can show that for
n=0,1,...ifz € F,theno(z) = z+ywherey € F5, 1. Thisisobviouswhen
n = 0, 1 and the general statement follows by induction.

It remainsto showthat y = O, i.e., o(z) = x. Assumethecontrary: v(y) = j for
somej > n+1.Sinceo(y) = y+zwherez € Fs 1, wehaveo™ (z) = z + my
modulo F ;1 for any m > 0. Since char (F»o/Fsj4+1) = char (F) = 0, this
implies that o has infinite order, contradicting our hypothesis.

LEMMA 5.2. Assumethat v: F* — Z is a discrete valuation on a field F' whose
residue field F' is of characteristic 0. Let G’ be a finite group of v-preserving
automorphisms of F'. Moreover, assume that elements of G fix the roots of unity in
F.If 7 € G inducesatrivial automorphismon F' then 7 liesin the center of G.
Proof. We want to show that any element 7' € G commutes with 7. Indeed,
consider the commutator o of 7 and 7. We want to prove that o = idr. Note that
o actstrivialy of F. Thusby Lemmab.1 it is sufficient to show that o also acts
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trivially on T = Fs1/Fs,. Since T is a 1-dimensional vector space over F', the
action of 7 onit is given by multiplication by aroot of unity w. Since 7' (w) = w,
one easily checksthat o actstrivialy onT'.

Now we come to our key result.

THEOREM 5.3. Let G be a finite group and let H be a cyclic subgroup of G of
prime order p. Assume that

(a) H iscentral.

(b) Thereexistsa character x: G — k* whichisnontrivial on H,

(c) H can be properly contained in a central cyclic subgroup H' of order » only
if the basefield & does not have a primitive rth root of unity.

Then ed;,(G) = edy,(G/H) + 1.

Remark 5.4. Notethat if & containsaprimitivep™th root of unity for sufficiently
large m (namely m > the p-exponent of G/[G, G]) then condition (b) is equivalent
to H N [G, G] = {1}. Indeed, denote the latter condition by (b'). It is clear that (b)
implies (b'). To prove the converseit is enough to lift anontrivial character of H to
the finite abelian group G/[G, G]. This can aways be done; see, e.g., [15, p. 49].
We also remark that condition (¢) isimmediate if H is maximal among the cyclic
subgroups of the center of G.

We now proceed with the proof of Theorem 5.3.

Proof. Let W beafaithful representation of G/ H andlet V bethe 1-dimensional
representation of G' given by x. By our assumptionon y, V = W & Vy isafaithful
representation of G. In particular, G C x(G) x G/H. By Lemma4.1 we have

edy (G) < edy(G/H) + edi,(x(G)).

Since x(G) hasal-dimensional faithful representation Vo, wehaveed, (x(G)) < 1
and thus

ed,(G) < edy(G/H) + 1.

It remains to prove the opposite inequality. Denote ed, (G) by d. By Lemma
2.7 there exists a G-invariant subfield F* C k(V') such that trdeg , F' = d and G
acts faithfully on F'. Since W is a G-invariant hyperplane in V, it defines a G-
invariant discrete valuation y: k(V)* — Z where u(«) isthe ‘order of vanishing
of a on W’ forany 0 # a € k(V'). Notethat the valuation ring k(1) »o consists of
those rational functions «w on V' whose domain of definition intersects W, and the
maximal ideal k(1)1 istheset of al a whichrestrict to 0 on . Thusthe residue

field (V') isnaturally isomorphic to thefield £ (17) of rational functionson W via
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an isomorphism which respects the G-action. Moreover, since H acts trivially on
W, itsaction on (V') descendsto atrivial actionon k(V) = k(W).

We now restrict i to F'. First note that u(F*) # (0). Indeed, assume the
contrary. Then F' C k(V')o. Taking the quotient by the ideal £(V')>1 givesa G-
equivariant embedding of fields F' — k(V'). Since H actstrivialy on k(V'), it also
actstrivialy on F. But G actsfaithfully on F', a contradiction. Thus u(F*) = rZ
for some positiveinteger . Thenv = (1/r)u: F* — Z isaG-invariant valuation.
Clearly Fuo C k(V)s0, Fs1 C k(V)s1and F C k(V) = k(W). Since Fsg isa
local domain and £ 1 isamaximal ideal, we have

trdeg, F’ < trdeg, F —1=d — 1. (5)

(Since F.1 isaprincipal ideal, we actually have equality; however, thisfact will not
be needed in the sequel.) We claim that G/ H acts faithfully on F'. Indeed, assume
the contrary: there existsasubgroup H' of G such that H' properly contains H and
the H'-action on F' istrivial. By Lemmab5.2 H' iscentral in G. Note that Lemma
5.2 appliesin this setting because k isalgebraically closedin k(W) (and thusin F')
which implies that elements of G automatically preserve al roots of unity. Denote
the order of H' by r. Consider the action of H' on F.1/F>5. Since Fs1/Fs5 is
a l-dimensional vector space over F, this action cannot be faithful. Otherwise H’
would be cyclic and F' would contain a primitive rth root of unity. This root of
unity would then havetoliein k, contradicting our assumption (c). Therefore, there
existsan element & € H' which actstrivially on both F' and F1/ F,. By Lemma
5.1, h actstrivially on F'. Thusthe G-action on F' is not faithful. This contradiction
provesthe claim.

We are now ready to finish the proof of the theorem. Since G/ H actsfaithfully
on F C k(W), we have ed;,(G/H) < trdeg,F; see Lemma 2.7. From (5) we
concludethat edy(G/H) < d — 1 =edy(G) — 1, i.e, edy(G) > edy(G/H) + 1,
as desired.

COROLLARY 5.5. Let p bea primeinteger, let k be afield containing a primitive
pth root of unity, let G be afinitegroup andlet G = G x Z/pZ. Assume that the
center of G isa p-group (possibly trivial). Then ed(G) = edy (Go) + 1.

Proof. Let H = {1} x Z/pZ. Then G and H satisfy the conditions of Theo-
rem53and G/H = Go.

In the sequel we will only use Corollary 5.5 rather than Theorem 5.3 itself.
However, the assumptions of Theorem 5.3 are, indeed, more general, even if & is
assumed to contain all roots of unity. In other words, there are groups G satisfying
the conditions of Theorem 5.3 which are not direct products of H and G/H. We
thank R. Guralnick for helping us construct one such example with | G |= p*.
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6. Further examples
6.1. ABELIAN GROUPS

We begin by determining the essential dimension of afinite abelian group. Recall
that the rank of such a group is equal to the smallest number of elements which
generateit. It can also be thought of asthe maximal number » suchthat (Z/pZ)" is
contained in G for some prime number p. Let m be the exponent of G and suppose
that the basefield k£ containsaprimitive mth root of unity. Then every representation
of G isadirect sum of characters. Since the dual group G isisomorphic to G, the
rank r is equal to the smallest dimension of a faithful linear representation of G
seeeg., [15].

THEOREM 6.1. Let G be a finite abelian group of exponent . Assume that the
base field k& contains a primitive mth root of unity. Then the essential dimension of
G isegual toitsrank.

Thisresult can be interpreted as saying that an r-dimensional faithful represen-
tation of G is‘incompressible’, i.e. it cannot be G-rationally mapped onto afaithful
G-variety of dimension < r — 1.

Proof. Since G has an r-dimensional faithful representation, it is enough to
show that ed;(G) > r. Since G' contains a copy of (Z/pZ)", we may assume
without loss of generdity that G = (Z/pZ)"; see Lemmad4.1(a). The theorem now
follows from Corollary 5.5.

6.2. GROUPS OF ESSENTIAL DIMENSION ONE

THEOREM 6.2. Assume that % is a field containing all roots of unity and that G
isafinite group. Then ed,(G) = 1if and only if G isisomorphicto a cyclic group
Z /nZ or adihedral group D,,, wherem is odd.

Proof. (a) Assume ed;(G) = 1 and let W be a faithful representation of G.
Then there exists a faithful G-curve Y and a dominant rational G-map W — Y.
This implies, in particular, that Y is a rationa curve and G is isomorphic to a
subgroup of Aut(Y') = PSL(k). The finite subgroups of PSL, (%) were classified
by Felix Klein. According to this classification, G isisomorphic to C,, = Z/nZ,
D,,, A4, Sy 0r As; seeeg., [13, Chapter 1]. (Recall that char (k) = 0 throughout
this paper. The classification of finite subgroups of PSL(%) is somewhat different
if char (k) # 0.)

It remains to determine which of these groups have essential dimension 1. The
groups C,, and D,,, with m odd lift to GL»(k). The natural projection £2\ {0} —
P1(k) shows that these groups have essential dimension 1; see Lemma4.4. Each
of the remaining groups containsacopy of Z /2Z x Z /2Z . Hence, by Lemma4.1(a)
and Theorem 6.1 their essential dimensionsare > 2.
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Remark 6.3. Theorem 6.1 cannot be extended to noncommutative groups. Here
by the rank of anoncommutative group G we mean the maximal rank of an abelian
subgroup in contains. Assume G is a group whose order is a product of distinct
odd primes. Then G hasrank 1. On the other hand, by Theorem 6.2 ed;, (G) = 1if
and only if G iscyclic. For al other G we haveedy,(G) > 1 = rank(G).

Remark 6.4. If k doesnot contain all roots of unity then we may haveto further
restrict our list. In this case the question of computing ed,. (G) leads to interesting
arithmetic problems even for cyclic groups G; for related results see [16].

6.3. SYMMETRIC GROUPS

Theessential dimension of thesymmetricgroup S, isof special interest tous. Recall
that it is equal to the number dj(n) defined in the introduction; see Corollary 4.2.

THEOREM 6.5. Let k be an arbitrary field of characteristic 0. Then

() edy(Sp+2) > €di(S,) + Lforanyn > 1.

(b) edy,(Sy) > [n/2] for anyn > 1.

(c) edi(S,) < n—3foranyn > 5.

(d) edy,(Se) = edi(Ss) = 2, edi(Se) = 3.

Proof. (a) SinceS, 2 containsS,, x Z/2Z, the desired inequality follows from
Corollary 5.5 and Lemma 4.1(a).

(b) We useinduction on n. Notethat ed; (1) = O and ed;(2) = 1. Theinduction
step is given by part (a).

(c) Consider the natural action of S,, onthen-dimensional vector spaceV = k".
By Theorem 3.1(b), ed;(S,) = edy(V'). Thus it is enough to construct an S, -
invariant subfield F' of k(x1,...,z,) such that the S,-action on F' is faithful
and trdeg . (F) < n — 3. Let F' be the extension of k£ which is generated by the
cross-ratios

[zi i@y i 2 ] = (Tm — @) (21 — 25) (Tm — wj)_l(xl — )™ (6)

asi, 4,1, m range over al unordered 4-tuples of distinct integers between 1 and n.
The symmetric group S,, permutes these cross-ratios among themselves. Thus our
field F'isS,-invariant. Moreover, for n > 5 no nontrivial element of S, fixesevery
one of the cross-ratiosin (6). Thus S, actsfaithfully on F.

It remains to show that trdeg , F' < n — 3. Note that we may assume without
loss of generality that k isalgebraically closed. Indeed, if & isthe algebraic closure
of k£ then

trdeg, F = trdeg(F ® k).

Theinclusion F C k(z4, ..., x,) inducesadominant rational map f: (P1)* — Y
where Y isak-variety whose function field is F'. Consider the diagonal PSL,(k)-
action on (P1)". Since the cross-ratios (6) are PSL-invariant, the fibers of f are
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unions of PSL,-orbits. For n > 5 a generic PSL,-orbit in (Pl)” is 3-dimensional.
Thus a generic fiber of f hasdimension > 3. By the fiber dimension theorem we
conclude that dim(Y’) < n — 3. (Note that f is dominant and % is algebraically
closed.) In other words, trdeg ,, /' < n — 3, asdesired.

(d) Parts (b) and (c) imply edx(Ss) = 2 and ed,.(Ss) = 3. Part (b) also implies,
ed,(S4) > 2. Since S is a subgroup of Ss, the opposite inequality follows from
Lemma4.1(a).

Remark 6.6. An alternative way to phrase our argument in part (b) isasfollows.
Note that the subgroup of S, generated by the transpositions (2; — 1,2i) (i =
1,...,[n/2]) isisomorphic to (Z /2Z)["/2. Theinequality of part (b) now follows
from a specia case of Theorem 6.1:

edy((2/22)") =r. ()

One cannot, however, get a sharper lower bound on ed,(S,) in this way since the
rank of an abelian subgroup of S, isalways < [n/2]; see[3, Thm 2.3(b)].

JP. Serre has found another proof of (7). Briefly, suppose that all extensions
with galois group (Z/2Z)" can be parametrized with n parameters (see Section 7
for the connection with essential dimension). Then al quadratic forms of rank r
can be parametrized with m parameters, sincethey arise (essentially) astraceforms
of ‘multiquadratic’ equations

f(z) = (2% — a1)(2? — ap)...(% — a).

Serre proves that the rth Stiefel-Whitney class of thisform is generically nonzero.
On the other hand, if . < r then H"(F') is zero for afield F' of transcendence
degree m over an algebraically closed field. Thusm > r, as desired.

6.4. ALTERNATING GROUPS
THEOREM 6.7. Let k be an arbitrary field of characteristic 0. Then

(a) edy, (An+4) > edy, (An) + 2foranyn > 4.
(b) ed,(A4) = edy,(As) = 2.
(c) edi(Ay) = 2[n/4] for anyn > 4.

Proof. (a) Thegroup A, 4 containsA,, x A4 and A4 containsZ /2Z x Z /2Z.
Thus by Lemma4.1(a),

ey (Anta) > edp(A, x Z/2Z x Z/22).

Thedesired inequality now resultsfrom applying Corollary 5.5 (twice) to the group
A, xZ/2Z xZ]/2Z.

(b) The inequalities ed, (A4) and ed,(As) > 2 follow from Lemma 4.1(a) and
Theorem 6.1, since both groups contain Z /2Z x Z /2Z. The opposite inequalities
follow from Theorem 6.5(d).
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(c) The claimed inequality clearly holdsfor n = 4,5, 6 and 7; see part (b). The
general case now follows from part (a) by induction on n.

7. Versal polynomials

In this section we introduce and study versal polynomials. Our main result is
Theorem 7.5 which relates versal polynomialswith galois group G to the essential
dimension ed; (G).

Recall that throughout this paper all fields contain the base field &, which is of
characteristic 0, and all field embeddingsfix & pointwise.

If p(t) = t" +agt" 1 +---+a, € F[t] isamonicirreducible polynomial, then
aspecialization of p isapolynomial ¢(t) € K|[t] over afield K, such that thereis
aring homomorphism ¢: ka1, ..., a,] — K with g(t) = t* + ¢(ag)t" 1 + .- +
P(an).

Let L/ K beafinitefield extension of degreen and let L* be the normal closure
of L over K. Thegroup G = Gal(L*#/ K) actson the n right cosets of its subgroup
Gal(L*/L). This defines an embedding

TGS, ®)

of G asatransitive subgroup of S,,. Renumbering then right cosetsof Gal (L*/L),
we see that 7 is defined up to conjugacy in S,. By abuse of terminology we shall
refer to by simply saying that G is atransitive permutation group. We will also
refer to this permutation group as the galois group of the (possibly nongalois)
extension L/ K or of any defining polynomial for this extension (over K). For the
remainder of this section we fix atransitive permutation group G asin (8).

DEFINITION 7.1. Let G be a transitive permutation group. An irreducible poly-
nomial p(t) € F[t] with galois group G over F' is said to be versal for G if for
every extension L/ K of degree n with group G there is a specialization ¢(t) of
p(t) suchthat L/K isaroot field of ¢, i.e., L isisomorphic to K[t]/(q(t)).

Remark 7.2. Our definition is similar to the definition of a generic polynomial
in[6] (whichis, inturn, closely related to the notion of generic extension in [18])
but isnot identical to it. Aside from the fact that we work with nongal oisextensions
and permutation (rather than abstract) groups, there are two main differences. First
of all, we do not require the field F' to be a purely transcendental extension of .
Consequently, while the existence of generic polynomialsin the sense of [6] isa
rather delicate question, versal polynomials always exist; see below. Secondly, a
specialization of aversal polynomial (in the sense we defined above) may not have
galois group G. We use the term “versal” instead of “generic’ to emphasize these
distinctions.

Our first observation is that there is a natural smallest field £}, which can play
the role of F' in the definition. Let p(¢) be a versal polynomia for a transitive
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permutation group G. Let L be aroot field of p(t) and L* be its normal closure
over F.Lety, - - -, y, betherootsof pin L. Then G permutesthey; accordingto (8)
and therefore actson thefield k(y1, . . . , yn ). L&t F), = k(ya, - - -, yn)© bethefixed
field under that action. The coefficientsof p(t) liein F},, and the galois group of p
over F, isequal to G (as a permutation group.) Thusthereis no loss of generality
in assuming that F' = F,. Note that by our construction £, /k(a1,...,ay,) iSan
algebraic extension.

Our next observation is that versal polynomials exist for any transitive permu-
tation group G. Indeed, let z1, ..., z, be agebraicaly independent over k. Set
Fa = k(:L‘l, . ,J?n)G and

p(t) = (t—z)(t—z2)---(t—xp) = t"+ast" 1+ +a, € Fglt].

Note that this is the same polynomial we considered in (1). The galois group of
p over Fg is equa to G (as a permutation group.) Since the coefficients a; are
algebraically independent over k, p can be specialized to any polynomial over any
field, and therefore p is versal.

Now we consider ageneralization of this construction along the lines suggested
in the introduction.

DEFINITION 7.3. Let 3, . .., x, beindependent variables over k£ and let F =
k(x1,...,7,)%. Anirreducible polynomial p(t) € Fg[t] of degree n is said to
be a generating polynomial for G if Fg(x1) isaroot field of p(t) over Fg, i.e,
Fa(z1) = Felt]/(p(t)).

THEOREM 7.4. A generating polynomial for G isversal for G.

The argument we present below is asimilar to the proof of [18, Thm 5.1]; see
also [14, Thm 1].

Proof. Letp(t) = " + byt" 1 + .- + b, € Fg[t] be agenerating polynomial
asin Definition 7.3. Then p(t) is the minimal polynomial over F for an element
y such that Fg(y) = Fg(z1). Fori = 0,1,...,n — 1 write  as an Fg-linear
combination of the powers of z;:

] n—1 ]
y =" fijri. 9)
j=0
Let f = det([f;;]) € Fg bethedeterminant of thethematrix [ f;;]. Theny generates
Fa(z1) over Fg if andonly if f # 0. Let y = y1,y2, - . ., y, be the conjugates of
y under G, i.e, theroots of p in k(z1,...,zy,). Write fi;,v; € k(z1,...,2,) 8
rational functions over acommon denominator:

fij = gij/4, y; = vi/d, 9ij, Vi, d € k[z1,...,Tp).
Let g = det(g;j)d € klz1,..., 2]
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In order to show that p is versal, we consider an extension L/ K of degree n
with galois group G. Let L# be the normal closure of L in K. Recall that the right
cosetsof H = Gal(L*#/L) in G can be numbered from 1 to n so that G' permutes
them according to (8). Since the embedding in (8) is only defined up to conjugacy,
we may assume without |oss of generality that the coset H = 1, H correspondsto
1. Let ¢;: L¥ — L* be arepresentative of the ith coset. Note that the restrictions
#1, ..., bn to L arethen distinct embeddings of L in L* over K.

We now view L as an n-dimensional vector space over K. Let U; C L be
the set of generators for the extension K C L. Then U is Zariski-open in L ~
K™ and is defined over K. By the primitive element theorem it is nonempty.
Let U, be the set of all z € L such that g(¢1(z),...,¢n(z)) # 0. By [15,
Thm V1.12.1, p. 309] and linear independence of characters, the embeddings ¢;
are algebraically independent. Hence, U, is also nonempty and Zariski-open. In
particular, we concludethat the set U = U1 N U isanonempty Zariski-open subset
of L defined over K.

Next we choose z € U and define aring homomorphism

k‘[xl,...,(L‘n] — L#

by sending z; to ¢;(z) for i = 1,...,n. Note that ¢1(z) = z. By our choice
of z, this homomorphism extends to a homomorphism . : R — L*¥ where
R = k[z1,...,Zn,y1,---,Yn, fij, 1/d, 1/ f]. Since L/ K has galois group G, this
homomorphismis G-equivariant. Thus ;, sends elementsof Fg = k(z1,...,2,)¢
to K and elementsof F(z1) to K (z) = L. Inparticular, the coefficientsby, . . . , b,
of p(t), liein R (up to sign they are symmetric polynomialsin y1,...,y,) and
p(b1), ..., pu(by) liein K.

Now consider the polynomial p(p) = " + pu(b1)t" "1 + - - - + p(by). Its roots
are u(y) = u(yr), u(v2), ..., u(yn) € L¥. In order to show that p(t) is versa, it
is sufficient to verify that the root field of p(p) over K is L, i.e,, K(u(y)) = L.
Applying 1 to both sides of (9), and remembering that (1) = z, we obtain

n—1
p(y) = u(fi)7.
j=0

Note that since 1/d € R, we have f;; € R for every 4, j. Thus u(f;;) are well-
defined elements of K. Moreover, by our choice of z, the determinant .(f) of the
above system isanonzero element of K. Thus K (u(y)) = K(z) = L, asdesired.

Given a transitive permutation group G, we would like to choose a versal
polynomia p(t) € F[t] for G in the most economical way. In other words, we
would like to define p(t) so that it would have the minimal possible number of
algebraically independent coefficients. Notethat thisnumber isequal totheminimal
possible value of trdeg, (F'). Indeed, recall that for agiven versal polynomial p we
have a canonical choice of the field of definition F' = F}, and that for this choice
of F' theextension F'/k(a1,...,a,) isagebrac.
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Our next result showsthat thisnumber is, infact, equal to theessential dimension
of G. Inparticular, it dependsonly onthe abstract group G, and not onn or aspecific
realization of G as a permutation group.

THEOREM 7.5. There exists a versal polynomial for a transitive permutation
group G with edy (G) algebraically independent coefficients (over k). There does
not exists a versal polynomial with fewer than edy (G) algebraically independent
coefficients.

Proof. Let p(t) be a versal polynomial for G with the minimal number of
algebraically independent coefficients. We shall denote this number by m. We
want to prove that m = ed,(G).

By Definition 7.1 this polynomial can be specialized to apolynomial ¢(¢) which
generates the extension F(z1) /F¢. In other words, ¢ is agenerating polynomial.
By Theorem 7.4 ¢(t) isalso versal. Since ¢(t) is aspecialization of p(t), it cannot
have more than m algebraically independent coefficients. By our choice of m, it
cannot havefewer than m algebraically independent coefficientseither. Thisproves
that we only need to consider generating polynomials, i.e., m istheminimal possible
number of algebraically independent coefficients of a generating polynomial for
G.

Note that a field Fp contains the coefficients of some generating polynomial
if and only if the extension F(z1)/F¢ is defined over Fp; see Definition 2.1(a).
Thus m is the minimal value of trdeg, (Fo) among all such Fy. In other words,
m = edi(Fg(z1)/F¢); see Definition 2.1(b). By Corollary 4.2 this number equals
edy (G), asclaimed.

COROLLARY 7.6. Every field extension F' C E of degree n (with & C F) is
defined over a field Fp such that trdeg ,, (Fo) < edy(S,).

Proof. Let G — S, be the galois group of E/F and let p(¢) be a versal
polynomial for G with m = ed,(G) algebraically independent coefficients. This
polynomial can then be specializedto apolynomial ¢(t) = " 4byt" 1 +---+b, €
F[t] whose root field over F'is E. In other words, E/F is defined over the field
Fo = k(b1,...,by). Since q is a speciadization of p, we have trdeg, (Fo) < m.
Finaly, notethat m = edy(G) < edi(S,); seeLemma4.1(a).
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