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Abstract. Let f(x) = �aix
i be a monic polynomial of degree nwhose coefficients are algebraically

independent variables over a base field k of characteristic 0. We say that a polynomial g(x) is
generating (for the symmetric group) if it can be obtained from f(x) by a nondegenerate Tschirnhaus
transformation. We show that the minimal number dk(n) of algebraically independent coefficients
of such a polynomial is at least [n=2]. This generalizes a classical theorem of Felix Klein on quintic
polynomials and is related to an algebraic form of Hilbert’s 13th problem.

Our approach to this question (and generalizations) is based on the idea of the ‘essential dimension’
of a finite group G: the smallest possible dimension of an algebraic G-variety over k to which one can
‘compress’ a faithful linear representation ofG. We show that dk(n) is just the essential dimension of
the symmetric group Sn. We give results on the essential dimension of other groups. In the last section
we relate the notion of essential dimension to versal polynomials and discuss their relationship to the
generic polynomials of Kuyk, Saltman and DeMeyer.

Mathematics Subject Classifications (1991): 12E05, 12F10, 14E05, 12F20, 14L30.
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1. Introduction

Let k be a field of characteristic 0. All fields in this paper will be assumed to
contain k and all field embeddings will fix k pointwise. All algebraic varieties
will be assumed to be irreducible. These varieties and all maps between them will
always be defined over k.

Suppose

p(x) = xn + a1x
n�1 + � � �+ an (1)

is the general polynomial of degree n. That is, we assume that the coefficients
a1; : : : ; an are algebraically independent indeterminates over k. We would like
to reduce the number of independent coefficients by means of a nondegenerate
Tschirnhaus transformation, i.e., by considering equations satisfied by

t = r0 + r1x+ � � �+ rn�1x
n�1 (mod p(x)); (2)

where the r0; : : : ; rn�1 are rational functions in the coefficients ai. For example,
whenn = 2, the equation satisfied by t = x+a1=2 is of the form q(t) = t2�c = 0
which has only one independent parameter. By a similar transformation, the general
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160 J. BUHLER AND Z. REICHSTEIN

cubic polynomial can be shifted to get a polynomial in which the coefficient of t2

is 0; by scaling the general cubic can be further reduced to the 1-parameter form
p(t) = t3 + at+ a. Similarly, the general quartic polynomial can be written in the
2-parameter form t4 + at2 + bt+ b. Later we will see that in this case the number
of parameters cannot be reduced to one.

One way to formalize this question is as follows. Suppose that E=F is a field
extension of degree n. We say that this extension is defined over a field F0 � F if
there exists an extension E0=F0 of degree n contained in E such that E0F = E.
(Note that this also implies E0 \ F = F0.)
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In other words, E=F is defined over F0 if there exists a primitive element �
whose minimal polynomial has all of its coefficients in F0. We define the essential
dimension of E=F over k, or edk(E=F ) for short, to be the minimal value of
trdeg k(F0), where trdeg k(F0) denotes the transcendence degree of F0 over k.
This is the minimal number of independent parameters one needs to write down a
generating polynomial for E over F .

Now let p(x) be the general polynomial as in (1). Set K = k(ai) and L =
K[x]=(p). The minimal number of parameters required to represent p is simply the
essential dimension edk(L=K); we shall denote this number by dk(n). Our earlier
observations can now be summarized by saying that

dk(2) = dk(3) = 1; dk(4) = 2:

A classical result of Hermite [11] shows that after a suitable substitution a general
polynomial of degree 5 can be written in the form t5+at3+bt+b. Thus dk(5) 6 2.
Felix Klein proved that dk(5) 6= 1 (which he called ‘Kronecker’s Theorem’); see
[13, 4], and [19]. Thus dk(5) = 2. In degree 6 one can use a theorem of Joubert [12]
to show that there exists a general polynomial of the form t6+at4+bt2+ct+c; see
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also Richmond [17]. This proves that dk(6) 6 3. (For modern proofs of Hermite’s
and Joubert’s results see Coray [5].) We shall later see that dk(6) is, in fact, equal
to 3.

One of the main results of this paper is the following generalization of the
above-mentioned theorem of Felix Klein.

THEOREM 1.1. dk(n) is a (not necessarily strictly) increasing function of n.
Moreover dk(n+ 2) > dk(n) + 1. In particular, dk(n) > [n=2] for any n > 1.

For a proof of Theorem 1.1 see Corollary 4.3 and Theorem 6.5. The best upper
bound on dk(n) we have is dk(n) 6 n � 3 for all n > 5; see Theorem 6.5(c).
We note that the result dk(4) > 1 was only briefly mentioned in Klein (see also
[19]) since quartic equations are solvable and hence, from the nineteenth century
perspective, less interesting.

The smallest value of n for which these results do not establish the exact
value of dk(n) is 7; we do not know whether dk(7) equals 3 or 4. This question
has a tangential relationship to Hilbert’s 13th problem, the most straightforward
form of which asks whether or not a seventh degree algebraic function can be
expressed in terms of continuous functions of two arguments. This was settled
by Kolmogorov and Arnold, and a number of generalizations have been obtained
(see, for example, the references listed in [10, Lorentz, p. 419]). Hilbert also
implied that the question can be interpreted purely algebraically; this approach to
the 13th problem is discussed at some length in his 1927 paper [9]. Additional
algebraic interpretations of Hilbert’s 13th Problem have been given by Arnold
and Shimura [10, p. 45–46], and by Abhyankar [1]. To be more precise about the
relationship between the algebraic form of Hilbert’s 13th Problem and and the
value of dk(7), we consider a variant of dk(n) defined as follows. Let p(x) be the
general polynomial of degree n as in (1) and let K = k(a1; : : : ; an) be as above.
We now want to reduce the number of independent coefficients of p by means of
a more general nondegenerate Tschirnhaus transformation (2) where r0; : : : ; rn�1

are radical expressions in a1; : : : ; an and elements of k. In other words, rather than
requiring that r0; : : : ; rn�1 lie in K as we did before, we now allow them to lie
in the solvable closure Ksolv of K . It is easy to see that p(x) remains irreducible
over Ksolv for any n > 5. Let M = Ksolv[x]=(p(x)). We now define d0k(n) to be
the essential dimension of the extension M=Ksolv. Our definition clearly implies
d0k(n) 6 dk(n).

Hilbert [9] gave upper bounds on d0k(n) for n 6 9. In particular, he showed
that d0k(5) = 1, d0k(6) 6 2 and d0k(7) 6 3. The question of whether or not d0k(6) is
actually equal to 2, explicitly mentioned by Hilbert in [9], was recently settled in
the affirmative by Abhyankar [1]. (The proof uses a sextic surface constructed in
Abyankhar’s thesis [2].) The question of whether or not d0k(7) is equal to 3 is an
algebraic version of Hilbert’s 13th problem. To the best of our knowledge, it is still
open. In fact, we are not aware of any (nontrivial) lower bounds on d0k(n) for any
n > 7.
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162 J. BUHLER AND Z. REICHSTEIN

Our investigation of dk(n) led us to a closer examination of the notion of
essential dimension. We study it from a more geometric point of view in Sections 2
and 3. Let G be a finite group and let G! GL(V ) be a faithful finite-dimensional
representation of G. Consider algebraic k-varieties Y with a faithful G-action for
which there exists a dominant G-equivariant rational map V ! Y defined over k.
The essential dimension ofG is the minimal possible dimension of Y as above. We
show that this number depends only on G and not on the representation we started
out with; see Theorem 3.1. We call it the essential dimension ofG over k or edk(G)
for short. In Section 4 we explore a number of consequences of Theorem 3.1. In
particular, we also show that the number dk(n) we introduced earlier is equal to
edk(Sn); see Corollary 4.2.

This brings us to the question of computing edk(Sn) and, more generally,
edk(G) for an arbitrary finite group G. In principle, since edk(G) is an invariant
of G it should be describable in terms of the group structure of G. We give such a
description for abelian groups (when k has appropriate roots of unity; see Theorem
6.1) but we appear to be rather far from being able to give a general formula
for edk(G) for an arbitrary group G. However, in Section 5, we prove a result
which can be viewed as a step towards such a formula. Namely, if H is a cyclic
central subgroup of G then under suitable conditions edk(G) = edk(G=H) + 1;
see Theorem 5.3 and Corollary 5.5. These results are used in Section 6 to classify
groups of essential dimension 1 and to compute and estimate edk(G) for some
specific G, including abelian, symmetric, and alternating groups. Klein’s proof of
‘Kronecker’s Theorem’ was actually accomplished by proving, in our language,
that edk(A5) > 1. This inequality is a special case of Theorem 6.7, which gives a
lower bound on the essential dimension of alternating groups.

Finally, in Section 7 we relate the essential dimension of a finite group G to
‘versal’ polynomials. This notion is related to Saltman’s work [18] on generic
field extensions; see also Demeyer [6], Kuyk [14] and our Remark 7.2. Our con-
struction is somewhat different; its general form can be traced back at least to
Grothendieck [8, Sections 2, 3]. Our main result here is that edk(G) is the mini-
mal number of algebraically independent coefficients for a versal polynomial with
galois group G; see Theorem 7.5.

2. Galois extensions

The notion of essential dimension of a finite extension E=F , introduced in the
previous section, arises naturally in the geometric context when E is galois over
F . In this section we take a closer look at this situation.

For convenience, we repeat the basic definition.

DEFINITION 2.1. Let E=F be a finite field extension of degree n.

(a) We say that E=F is defined over a subfield F0 of F if there exists an extension
E0=F0 of degree n such that E0 � E and E0F = E.
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(b) The essential dimension of E=F , which we will usually abbreviate as
edk(E=F ), is the minimal value of trdeg k(F0) as F0 ranges over all fields
for which E=F defined over F0.

LEMMA 2.2. LetE=F be a finite galois extension with galois groupG. Then there
is a galois extension E1=F1 with group G such that E1F = E and trdeg k(F1) =
edk(E=F ). In other words, in the above definition of the essential dimension of
E=F , we may assume without loss of generality thatE0 isG-invariant, theG-action
on E0 is faithful, and F0 = EG

0 .
Proof. ChooseE0=F0 as in the definition of essential dimension forE=F . Since

E is galois over F , it contains a normal closure E1 of E0 over F0. Let F1 = EG
1 .

By our construction E1 is G-invariant, the G-action on E1 is faithful (because
E1F = E), and [E1 : F1] = n. Moreover, since E1 is a finite extension of F0, we
have trdeg k(F1) = trdeg k(E1) = trdeg k(F0) = edk(E=F ), as desired.

LEMMA 2.3. Let E=F be a field extension of degree n and let E# be the normal
closure of E over F . Then edk(E=F ) = edk(E#=F ).

Proof. Denote the galois group Gal(E#=F ) by G and its subgroup Gal(E#=E)
by H . By Lemma 2.2 there exists a G-invariant subfield E1 of E# on which G acts
faithfully and such that trdeg k(E1) = edk(E#=F ). Denote EG

1 by F1, as above.
Now set E0 = EH

1 and F0 = F1. Then E0 � E,

[E0 : F0] = [G : H] = [E : F ]

and E0F = EH
1 F = (E1F )H = (E#)H = E. Thus edk(E=F ) 6 trdeg k(F0) =

edk(E#=F ).
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To prove the opposite inequality, choose E0=F0 such that F0 � F , [E0 : F0] =
n, E0F = E and trdeg k(F0) = edk(E=F ). Since E# is galois over F , it contains
a normal closure E1 of E0 over F0. By our construction G acts faithfully on
E1, E1F = E# and trdeg k(E1) = trdeg k(F0) = edk(E=F ). This shows that
edk(E=F ) > edk(E#=F ) and thus completes the proof of the lemma.

We now define the notion of essential dimension in the geometric setting. First
we introduce some terminology.

Let G be a finite group and let X be an (irreducible) algebraic variety. We call
X a G-variety if it is equipped with a regular algebraic action G � X ! X . A
subvariety Y � X is called a G-subvariety if Y is G-invariant. A G-variety is
faithful if every nontrivial element of G acts in a nontrivial way, i.e., the induced
map G! Aut(X) is injective. A rational map X ! Y is called a rational G-map
if it commutes with the action ofG. LinearG-varieties or representations ofGwill
be of special interest to us in the sequel. In this case X is a vector space and the
G-action is given by a group homomorphism G! GL(X).

We record the following simple observation for future reference.

LEMMA 2.4. Let G be a finite group and let X be a G-variety defined over k.
Denote the algebraic closure of k by k.
(a) Assume X(k) is dense in X(k). Then X is faithful if and only if G acts freely

on a nonempty open subset of X(k).
(b) Assume X is a k-unirational variety. Then X is faithful if and only if G acts

freely on a nonempty open subset of X(k).
Proof. (a) One implication is obvious: if G acts freely on a nonempty open

subset of X(k) then X is faithful. To prove the converse we may assume without
loss of generality that k = k. For g 2 G let X(k)g be the set of all points of X(k)
fixed by g. Since X is faithful, X(k)g is a proper closed subset of X(k) for every
g 6= 1G. Let Z be the union of all these sets. Then X nZ is a dense open subset on
which G acts freely.

(b) If X is k-unirational then X(k) is dense in X(k) and part (a) applies.

Given a faithful G-variety X , consider a dominant rational G-map f : X ! Y

where Y is also faithful. Such a dominant map can be thought of as a ‘compression’
of theG-action onX . Furthermore, since theG-action on Y is faithful, this process
does not lead to loss of ‘essential information’ about the original action onX . Thus
it is natural to ask how much a given faithful G-action can be compressed.

DEFINITION 2.5. Let X be a faithful G-variety. The essential dimension of X is
the minimal dimension of a faithful G-variety Y such that there exists a dominant
rational G-map f : X ! Y . We shall denote this number by edk(X).

Remark 2.6. Let k0 be a finite extension of k and let X be a faithful G-variety
defined over k. Our definition than implies that edk(X) > edk0(X). Equality does
not always hold; see Remark 6.4.
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It is now easy to see that our geometric Definition 2.5 of essential dimension is
closely related to the algebraic Definition 2.1.

LEMMA 2.7. Let X be a faithful G-variety, let E = k(X) be the field of rational
functions on X and let F = EG be the field of G-invariant rational functions on
X . Then edk(X) = edk(E=F ).

Proof. Dominant rationalG-equivariant maps f : X ! Y are in 1-1 correspon-
dence with G-invariant subfields E0 of E. Here E0 = k(Y ). Moreover, G acts
faithfully on Y if and only if it acts faithfully on E0. Since dim(Y ) = trdeg k(E0),
our assertion is a direct consequence of Lemma 2.2.

3. Essential dimension of a group

The purpose of this section is to prove that the essential dimension of a linear
action depends only on the group G and not on the corresponding faithful rep-
resentation. We will also show that faithful linear representations have maximal
essential dimension among all faithful G-varieties. More precisely, we shall prove
the following theorem.

THEOREM 3.1. Let G be a finite group.

(a) There exists a faithful G-variety Z with the following property. For every
faithful linear G-variety W , there exists a dominant rationalG-map W ! Z .

(b) The essential dimension of a faithful linear representation of a finite group G
depends only on the group and not on the representation. We shall call this
number the essential dimension of G and denote it by edk(G).

(c) Let X be a faithful G-variety. Then edk(X) 6 edk(G).

As noted earlier, part (c) can be interpreted as saying that linear G-varieties are
‘least compressible’ among all faithful G-varieties.

Let Vreg = k[G] be the group algebra of G. The points of Vreg are of the formP
agg where the sum is taken over all g 2 G. We shall view Vreg as a linear

G-variety with the G-action given by the (left) regular representation, i.e.

h
X
g

agg =
X
g

ag(hg):

LEMMA 3.2. (a) Let a; b 2 Vreg. Assume that the G-orbit of a has j G j distinct
elements. Then there exists a (regular) G-morphism � : Vreg ! Vreg such that
�(a) = b.

(b) Let Y and C be affine G-invariant k-subvarieties of Vreg such that C 6=
Vreg. Assume that the G-action on Y is faithful. Then there exists a G-morphism
� : Vreg ! Vreg such that �(Y ) 6� C .
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Proof. Given a polynomial p 2 k[Vreg]we define the morphism�p : Vreg ! Vreg
by

�p(x)!
X
g2G

p(g�1x)g

for every x 2 Vreg. By construction �p is a G-morphism, since for any h 2 G

�p(hx)!
X
g2G

p(g�1hx)g =
X

g0=h�1g2G

p(g0�1x)hg0 = h�p(x):

(a) Let b =
P
bgg. By our assumption g(a) 6= h(a) if g and h are distinct

elements of G. Thus we can choose p(x) 2 k[Vreg] such that p(g�1a) = bg. Now
let � = �p. Then �(a) = b, as desired.

(b) First assume that Y has a k-point a whose orbit has j G j distinct elements.
In this case part (b) is an easy consequence of part (a): we simply choose a k-point
b 62 C , find � : Vreg ! Vreg such that �(a) = b and let � = �.

Now we turn to the general case. Let Wd be the vector space of polynomials of
degree6 d on Vreg. One easily checks that the set Pd of all p such that �p(Y ) � C

is closed in Wd. In order to complete the proof of the lemma we need to show that
Pd 6= Wd for some d > 1. Assume the contrary: Pd = Wd for every d. Let k0 be a
finite field extension of k. Since Pd(k) = Wd(k) is dense in Wd(k

0), we see that
Pd(k

0) = Wd(k
0). On the other hand, we can choose k0 so that Y (k0) contains a

point a with exactly j G j elements in its orbit. Then as we noted above, there exist
a p 2 k0[Vreg] such that �p(Y ) 6� C . If p is a polynomial of degree d, this means
p 62 Pd. In other words, Pd(k0) 6= Wd(k

0), a contradiction.

LEMMA 3.3. Let W be a faithful linear G-variety. Then edk(W ) > edk(Vreg).
Proof. Let f : W ! Z be a dominant rational G-map such that Z is faithful

and dim(Z) = edk(W ). Then there is an open G-invariant subset Z0 of Z and an
open G-invariant subset W0 of W such that f restricts to a surjective morphism
W0 ! Z0. By our construction Z is a k-unirational variety. Thus Lemma 2.4(b)
implies that we can choosew 2W0(k) such that the G-orbit of z = f(w) 2 Z0(k)
contains exactly j G j points. Define a G-morphism � : Vreg !W by �(

P
agg) =P

agg(w) and consider the composition map f �� : Vreg ! Z . LetU be the closure
of image of f � � in Z . Since f � �(1G) = z, we see that z 2 U . By our choice of
z this implies that the G-action on U is faithful.

We have thus constructed a dominant rational G-map Vreg ! U defined over k.
Since U is a faithful G-variety, we have

edk(Vreg) 6 dim(U) 6 dim(Z) = edk(W );

as desired.

LEMMA 3.4. Let X be a faithful G-variety of essential dimension d. Then there
exists a dominant rational G-map X ! Y such that Y is a d-dimensional faithful
affine G-subvariety of Vreg.
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Proof. By the definition of essential dimension there exists a dominant rational
G-map f : X ! Z where Z is a faithful d-dimensional G-variety. Let � 2 k(Z)
be a primitive element for the finite field extension k(Z)G � k(Z). Then � : z !P
agg, where ag = g(�)(z), is a rationalG-mapZ ! Vreg. Let Y be the closure of

�(Z). We want to show that the composite map f � � : X ! Y has the properties
claimed in the lemma. Since dim(Y ) 6 dim(Z) = d, it is enough to show that
Y is a faithful G-variety. Note that the function field k(Y ) can be identified with
the subfield of k(X) generated by � and its translates. By our choice of �, G acts
faithfully on this subfield.

We are now ready to proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1:. Choose a faithful G-variety Z and a dominant rational
G-map f : Vreg ! Z such that dim(Z) = edk(Vreg). We will prove that this variety
has the property claimed in part (a) of Theorem 3.1.

By Lemma 2.4(b) there exists a dense open subset Z0 � Z such that G acts
freely on Z0(k). Let U be a dense open subset of Vreg such that f is regular on U
and f(U) � Z0. Let C be the complement of U in Vreg.

Now consider a faithful G-variety X of essential dimension d. By Lemma
3.4 there exists a dominant rational G-map 
 : X ! Y where Y is a faithful
d-dimensional G-subvariety of Vreg. By Lemma 3.2(b) there exists a G-morphism
� : Vreg ! Vreg defined over k such that �(Y ) 6� C . By our choice of C this means
that the composite rational map

f � � � 
 : X ! Vreg ! Vreg ! Z (3)

is well-defined. Moreover, the closure Z 0
� Z of its image intersects Z0 nontriv-

ially. Hence, the G-action on Z 0 is faithful. Thus

edk(X) 6 dim(Z 0) 6 dim(Z) = edk(Vreg): (4)

If X = W is a linear G-variety then by Lemma 3.3 edk(W ) > edk(Vreg).
Thus (4) implies (i) edk(W ) = edk(Vreg) and (ii) dim(Z 0) = dim(Z). Part (b) of
Theorem 3.1 is an immediate consequence of (i). Moreover, (3) is the map whose
existence is asserted in Theorem 3.1(a). Since edk(G) = edk(Vreg), part (c) follows
from (4).

4. Elementary properties

In this section we explore the consequences of Theorem 3.1.

LEMMA 4.1. (a) If H is a subgroup of G then edk(H) 6 edk(G).
(b) If G is a direct product of H1 and H2 then edk(G) 6 edk(H1) + edk(H2).
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Proof. (a) Obvious from the definition.
(b) For i = 1; 2 let Wi be a faithful representation of Hi and �i : Wi ! Yi be a

dominant rationalHi-map to a faithfulHi-variety Yi such that dim(Yi) = edk(Hi).
Then W = W1 �W2 is a faithful G-representation and Y = Y1 � Y2 is a faithful
G-variety for the natural (componentwise) action of G = H1 � H2. Moreover,
�1 � �2 : W ! Y is a dominant rational G-map. Thus edk(G) 6 edk(Y ) =
edk(H1) + edk(H2).

COROLLARY 4.2. Let G be a transitive subgroup of Sn, let x1; : : : ; xn be inde-
pendent variables over k and let FG be the fixed field for the natural (permutation)
action of G on E = k(x1; : : : ; xn). Then

edk(FG(x1)=FG) = edk(G):

In particular, the number dk(n), defined in the introduction, is equal to edk(Sn).
Proof. Note that E is the normal closure of FG(x1) over FG. Thus by Lemma

2.3 edk(FG(x1)=FG) = edk(E=FG). Now let V be the faithful n-dimensional
representation of G where the G-action is given by permuting the elements of a
fixed basis. Then we can identify E with k(V ) as fields with a G-action. In other
words, edk(E=FG) = edk(V ) = edk(G); see Theorem 3.1(b).

To prove the last assertion of the corollary, recall that we defined dk(n) as
edk(FG(x1)=FG) where G = Sn.

COROLLARY 4.3. dk(n) is a non-decreasing function of n. That is, dk(n) 6
dk(n+ 1) for every n > 1.

Proof. Since Sn � Sn+1, we have edk(Sn) 6 edk(Sn+1), see Lemma 4.1(a). In
other words, dk(n) 6 dk(n+ 1) by Corollary 4.2.

LEMMA 4.4. edk(G) = 0 if and only if G = f1g.
Proof. Consider a faithful representation V of G. By Lemmas 2.2 and 2.7,

edk(G) = 0 if and only if there exists a G-invariant subfield E0 of k(V ) such
that G acts faithfully on E0, and E0 is algebraic over k. Since k(V ) is a purely
transcendental extension of k, and k is algebraically closed in k(V ), this is only
possible if E0 = k. In particular, G acts trivially on E0. This action is faithful if
and only if G = f1g.

Remark 4.5. Assume edk(G) > 2 (this will always be true unless G is cyclic
or odd dihedral; see Lemma 4.4 and Theorem 6.2). Then we can find a faithful
G-variety X such that the inequality of Theorem 3.1(c) is strict. In fact: for any
finite group G there exists a curve with a faithful G-action.

Proof. Since G is isomorphic to a subgroup of Sn for some n, it is enough to
show that for any n > 2 there exists a curve Xn with a faithful Sn-action.
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To construct such a curve we need an irreducible polynomial p(x) over k(t)
with galois group Sn. Since k(t) is a Hilbertian field (see [7, Thm. 12.10]), p(x)
can be obtained by specializing the algebraically independent coefficients of the
generic polynomial xn + a1x

n�1 + � � �+ an in k(t).
Let L be the splitting field of p(x) over K(t). Since L is a finite extension of

k(t), trdeg k(L) = 1. Thus L is the function field of a unique smooth projective
curve Xn. The Sn-action on L translates into a (regular) faithful Sn-action on Xn.

5. Central extensions

In this section we will prove that if G is a central extension of G0 by a cyclic group
of prime order then, under suitable hypotheses, edk(G) = edk(G0) + 1.

We begin by recalling some well-known definitions concerning discrete valua-
tions. Let F be a field and let � : F �

! Z be a discrete valuation. Note: we assume
�(F �) = Z. As usual, we define Fi = ��1(i) [ f0g and F>i = union of all Fj
with j > i. Then F>0 is a local ring with maximal ideal F>1 and fraction field
F . Denote the residue field by eF = F>0=F>1. Then F>1=F>2 is a 1-dimensional
vector space over eF .

LEMMA 5.1. Assume that �:F �
! Z is a discrete valuation on a field F , and that

the residue field eF has characteristic 0. Let � be an automorphism of F of finite
order which preserves �, i.e., � � � = �. Assume that the automorphisms of eF and
F>1=F>2 induced by � are trivial. Then � is the identity automorphism of F .

Proof. This is a standard fact which says, in essence, that there is no wild
ramification in characteristic zero. It is easily derived from [20, Cor. 2, Prop. IV.7]
by passing to the completion and noting that� acts trivially on both eF andF>1=F>2

if and only if it acts trivially on F>0=F>2.
For completeness we also sketch a direct proof. First one can show that for

n = 0; 1; : : : if x 2 Fn then �(x) = x+y where y 2 F>n+1. This is obvious when
n = 0; 1 and the general statement follows by induction.

It remains to show that y = 0, i.e., �(x) = x. Assume the contrary: �(y) = j for
some j > n+ 1. Since �(y) = y+ z where z 2 F>j+1, we have �m(x) = x+my

modulo F>j+1 for any m > 0. Since char (F>0=F>j+1) = char ( eF ) = 0, this
implies that � has infinite order, contradicting our hypothesis.

LEMMA 5.2. Assume that �:F �
! Z is a discrete valuation on a field F whose

residue field eF is of characteristic 0. Let G be a finite group of �-preserving
automorphisms of F . Moreover, assume that elements of G fix the roots of unity in
~F . If � 2 G induces a trivial automorphism on eF then � lies in the center of G.

Proof. We want to show that any element � 0 2 G commutes with � . Indeed,
consider the commutator � of � and � 0. We want to prove that � = idF . Note that
� acts trivially of eF . Thus by Lemma 5.1 it is sufficient to show that � also acts
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trivially on T = F>1=F>2. Since T is a 1-dimensional vector space over eF , the
action of � on it is given by multiplication by a root of unity !. Since � 0(!) = !,
one easily checks that � acts trivially on T .

Now we come to our key result.

THEOREM 5.3. Let G be a finite group and let H be a cyclic subgroup of G of
prime order p. Assume that

(a) H is central.
(b) There exists a character �:G! k� which is nontrivial on H ,
(c) H can be properly contained in a central cyclic subgroup H 0 of order r only

if the base field k does not have a primitive rth root of unity.

Then edk(G) = edk(G=H) + 1.

Remark 5.4. Note that if k contains a primitive pmth root of unity for sufficiently
large m (namelym > the p-exponent of G=[G;G]) then condition (b) is equivalent
to H \ [G;G] = f1g. Indeed, denote the latter condition by (b0). It is clear that (b)
implies (b0). To prove the converse it is enough to lift a nontrivial character of H to
the finite abelian group G=[G;G]. This can always be done; see, e.g., [15, p. 49].
We also remark that condition (c) is immediate if H is maximal among the cyclic
subgroups of the center of G.

We now proceed with the proof of Theorem 5.3.

Proof. LetW be a faithful representation ofG=H and letV0 be the 1-dimensional
representation of G given by �. By our assumption on �, V = W �V0 is a faithful
representation of G. In particular, G � �(G)�G=H . By Lemma 4.1 we have

edk(G) 6 edk(G=H) + edk(�(G)):

Since�(G) has a 1-dimensional faithful representation V0, we have edk(�(G)) 6 1
and thus

edk(G) 6 edk(G=H) + 1:

It remains to prove the opposite inequality. Denote edk(G) by d. By Lemma
2.7 there exists a G-invariant subfield F � k(V ) such that trdeg kF = d and G

acts faithfully on F . Since W is a G-invariant hyperplane in V , it defines a G-
invariant discrete valuation �: k(V )� ! Z where �(�) is the ‘order of vanishing
of � on W ’ for any 0 6= � 2 k(V ). Note that the valuation ring k(V )>0 consists of
those rational functions � on V whose domain of definition intersects W , and the
maximal ideal k(V )>1 is the set of all � which restrict to 0 onW . Thus the residue
field gk(V ) is naturally isomorphic to the field k(W ) of rational functions on W via
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an isomorphism which respects the G-action. Moreover, since H acts trivially on
W , its action on k(V )>0 descends to a trivial action on gk(V ) = k(W ).

We now restrict � to F . First note that �(F �) 6= (0). Indeed, assume the
contrary. Then F � k(V )>0. Taking the quotient by the ideal k(V )>1 gives a G-

equivariant embedding of fields F ,! gk(V ). Since H acts trivially on gk(V ), it also
acts trivially on F . But G acts faithfully on F , a contradiction. Thus �(F �) = rZ
for some positive integer r. Then � = (1=r)�:F �

! Z is a G-invariant valuation.
Clearly F>0 � k(V )>0, F>1 � k(V )>1 and eF �

gk(V ) = k(W ). Since F>0 is a
local domain and F>1 is a maximal ideal, we have

trdeg k
eF � trdeg kF � 1 = d� 1: (5)

(SinceF>1 is a principal ideal, we actually have equality; however, this fact will not
be needed in the sequel.) We claim that G=H acts faithfully on eF . Indeed, assume
the contrary: there exists a subgroupH 0 ofG such thatH 0 properly containsH and
the H 0-action on eF is trivial. By Lemma 5.2 H 0 is central in G. Note that Lemma
5.2 applies in this setting because k is algebraically closed in k(W ) (and thus in eF )
which implies that elements of G automatically preserve all roots of unity. Denote
the order of H 0 by r. Consider the action of H 0 on F>1=F>2. Since F>1=F>2 is
a 1-dimensional vector space over eF , this action cannot be faithful. Otherwise H 0

would be cyclic and eF would contain a primitive rth root of unity. This root of
unity would then have to lie in k, contradicting our assumption (c). Therefore, there
exists an element h 2 H 0 which acts trivially on both eF and F>1=F>2. By Lemma
5.1, h acts trivially on F . Thus the G-action on F is not faithful. This contradiction
proves the claim.

We are now ready to finish the proof of the theorem. Since G=H acts faithfully
on eF � k(W ), we have edk(G=H) 6 trdeg k

eF ; see Lemma 2.7. From (5) we
conclude that edk(G=H) 6 d � 1 = edk(G) � 1, i.e., edk(G) > edk(G=H) + 1,
as desired.

COROLLARY 5.5. Let p be a prime integer, let k be a field containing a primitive
pth root of unity, let G0 be a finite group and let G = G0 �Z=pZ. Assume that the
center of G0 is a p-group (possibly trivial). Then edk(G) = edk(G0) + 1.

Proof. Let H = f1g � Z=pZ. Then G and H satisfy the conditions of Theo-
rem 5.3 and G=H = G0.

In the sequel we will only use Corollary 5.5 rather than Theorem 5.3 itself.
However, the assumptions of Theorem 5.3 are, indeed, more general, even if k is
assumed to contain all roots of unity. In other words, there are groups G satisfying
the conditions of Theorem 5.3 which are not direct products of H and G=H . We
thank R. Guralnick for helping us construct one such example with j G j= p4.
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6. Further examples

6.1. ABELIAN GROUPS

We begin by determining the essential dimension of a finite abelian group. Recall
that the rank of such a group is equal to the smallest number of elements which
generate it. It can also be thought of as the maximal number r such that (Z=pZ)r is
contained in G for some prime number p. Let m be the exponent of G and suppose
that the base field k contains a primitivemth root of unity. Then every representation
of G is a direct sum of characters. Since the dual group Ĝ is isomorphic to G, the
rank r is equal to the smallest dimension of a faithful linear representation of G;
see e.g., [15].

THEOREM 6.1. Let G be a finite abelian group of exponent m. Assume that the
base field k contains a primitive mth root of unity. Then the essential dimension of
G is equal to its rank.

This result can be interpreted as saying that an r-dimensional faithful represen-
tation ofG is ‘incompressible’, i.e. it cannot beG-rationally mapped onto a faithful
G-variety of dimension 6 r � 1.

Proof. Since G has an r-dimensional faithful representation, it is enough to
show that edk(G) > r. Since G contains a copy of (Z=pZ)r , we may assume
without loss of generality that G = (Z=pZ)r; see Lemma 4.1(a). The theorem now
follows from Corollary 5.5.

6.2. GROUPS OF ESSENTIAL DIMENSION ONE

THEOREM 6.2. Assume that k is a field containing all roots of unity and that G
is a finite group. Then edk(G) = 1 if and only if G is isomorphic to a cyclic group
Z=nZ or a dihedral group Dm where m is odd.

Proof. (a) Assume edk(G) = 1 and let W be a faithful representation of G.
Then there exists a faithful G-curve Y and a dominant rational G-map W ! Y .
This implies, in particular, that Y is a rational curve and G is isomorphic to a
subgroup of Aut(Y ) = PSL2(k). The finite subgroups of PSL2(k) were classified
by Felix Klein. According to this classification, G is isomorphic to Cn = Z=nZ,
Dn, A4, S4 or A5; see e.g., [13, Chapter 1]. (Recall that char (k) = 0 throughout
this paper. The classification of finite subgroups of PSL2(k) is somewhat different
if char (k) 6= 0.)

It remains to determine which of these groups have essential dimension 1. The
groups Cn and Dm with m odd lift to GL2(k). The natural projection k2

nf0g !
P
1(k) shows that these groups have essential dimension 1; see Lemma 4.4. Each

of the remaining groups contains a copy of Z=2Z�Z=2Z. Hence, by Lemma 4.1(a)
and Theorem 6.1 their essential dimensions are > 2.
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Remark 6.3. Theorem 6.1 cannot be extended to noncommutative groups. Here
by the rank of a noncommutative groupGwe mean the maximal rank of an abelian
subgroup in contains. Assume G is a group whose order is a product of distinct
odd primes. Then G has rank 1. On the other hand, by Theorem 6.2 edk(G) = 1 if
and only if G is cyclic. For all other G we have edk(G) > 1 = rank(G).

Remark 6.4. If k does not contain all roots of unity then we may have to further
restrict our list. In this case the question of computing edk(G) leads to interesting
arithmetic problems even for cyclic groups G; for related results see [16].

6.3. SYMMETRIC GROUPS

The essential dimension of the symmetric group Sn is of special interest to us. Recall
that it is equal to the number dk(n) defined in the introduction; see Corollary 4.2.

THEOREM 6.5. Let k be an arbitrary field of characteristic 0. Then

(a) edk(Sn+2) > edk(Sn) + 1 for any n > 1.
(b) edk(Sn) > [n=2] for any n > 1.
(c) edk(Sn) 6 n� 3 for any n > 5.
(d) edk(S4) = edk(S5) = 2, edk(S6) = 3.
Proof. (a) Since Sn+2 contains Sn�Z=2Z, the desired inequality follows from

Corollary 5.5 and Lemma 4.1(a).
(b) We use induction on n. Note that edk(1) = 0 and edk(2) = 1. The induction

step is given by part (a).
(c) Consider the natural action of Sn on the n-dimensional vector spaceV = kn.

By Theorem 3.1(b), edk(Sn) = edk(V ). Thus it is enough to construct an Sn-
invariant subfield F of k(x1; : : : ; xn) such that the Sn-action on F is faithful
and trdeg k(F ) 6 n � 3. Let F be the extension of k which is generated by the
cross-ratios

[xi : xj : xl : xm] = (xm � xi)(xl � xj)(xm � xj)
�1(xl � xi)

�1 (6)

as i; j; l;m range over all unordered 4-tuples of distinct integers between 1 and n.
The symmetric group Sn permutes these cross-ratios among themselves. Thus our
field F is Sn-invariant. Moreover, for n > 5 no nontrivial element of Sn fixes every
one of the cross-ratios in (6). Thus Sn acts faithfully on F .

It remains to show that trdeg kF 6 n � 3. Note that we may assume without
loss of generality that k is algebraically closed. Indeed, if k is the algebraic closure
of k then

trdeg kF = trdeg
k
(F 
k k):

The inclusion F � k(x1; : : : ; xn) induces a dominant rational map f : (P1)n ! Y

where Y is a k-variety whose function field is F . Consider the diagonal PSL2(k)-
action on (P1)n. Since the cross-ratios (6) are PSL2-invariant, the fibers of f are
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unions of PSL2-orbits. For n > 5 a generic PSL2-orbit in (P1)n is 3-dimensional.
Thus a generic fiber of f has dimension > 3. By the fiber dimension theorem we
conclude that dim(Y ) 6 n � 3. (Note that f is dominant and k is algebraically
closed.) In other words, trdeg kF 6 n� 3, as desired.

(d) Parts (b) and (c) imply edk(S5) = 2 and edk(S6) = 3. Part (b) also implies,
edk(S4) > 2. Since S4 is a subgroup of S5, the opposite inequality follows from
Lemma 4.1(a).

Remark 6.6. An alternative way to phrase our argument in part (b) is as follows.
Note that the subgroup of Sn generated by the transpositions (2i � 1; 2i) (i =
1; : : : ; [n=2]) is isomorphic to (Z=2Z)[n=2]. The inequality of part (b) now follows
from a special case of Theorem 6.1:

edk((Z=2Z)r) = r: (7)

One cannot, however, get a sharper lower bound on edk(Sn) in this way since the
rank of an abelian subgroup of Sn is always 6 [n=2]; see [3, Thm 2.3(b)].

J-P. Serre has found another proof of (7). Briefly, suppose that all extensions
with galois group (Z=2Z)r can be parametrized with m parameters (see Section 7
for the connection with essential dimension). Then all quadratic forms of rank r

can be parametrized withm parameters, since they arise (essentially) as trace forms
of ‘multiquadratic’ equations

f(x) = (x2
� a1)(x

2
� a2):::(x

2
� ar):

Serre proves that the rth Stiefel-Whitney class of this form is generically nonzero.
On the other hand, if m < r then Hr(F ) is zero for a field F of transcendence
degree m over an algebraically closed field. Thus m > r, as desired.

6.4. ALTERNATING GROUPS

THEOREM 6.7. Let k be an arbitrary field of characteristic 0. Then

(a) edk(An+4) > edk(An) + 2 for any n > 4.
(b) edk(A4) = edk(A5) = 2.
(c) edk(An) > 2[n=4] for any n > 4.

Proof. (a) The group An+4 contains An � A4 and A4 contains Z=2Z� Z=2Z.
Thus by Lemma 4.1(a),

edk(An+4) > edk(An � Z=2Z� Z=2Z):

The desired inequality now results from applying Corollary 5.5 (twice) to the group
An � Z=2Z� Z=2Z.

(b) The inequalities edk(A4) and edk(A5) > 2 follow from Lemma 4.1(a) and
Theorem 6.1, since both groups contain Z=2Z � Z=2Z. The opposite inequalities
follow from Theorem 6.5(d).
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(c) The claimed inequality clearly holds for n = 4; 5; 6 and 7; see part (b). The
general case now follows from part (a) by induction on n.

7. Versal polynomials

In this section we introduce and study versal polynomials. Our main result is
Theorem 7.5 which relates versal polynomials with galois groupG to the essential
dimension edk(G).

Recall that throughout this paper all fields contain the base field k, which is of
characteristic 0, and all field embeddings fix k pointwise.

If p(t) = tn+a1t
n�1+ � � �+an 2 F [t] is a monic irreducible polynomial, then

a specialization of p is a polynomial q(t) 2 K[t] over a field K , such that there is
a ring homomorphism �: k[a1; : : : ; an]! K with q(t) = tn + �(a1)t

n�1 + � � �+
�(an).

Let L=K be a finite field extension of degree n and let L# be the normal closure
of L overK . The group G = Gal(L#=K) acts on the n right cosets of its subgroup
Gal(L#=L). This defines an embedding

� : G ,! Sn (8)

of G as a transitive subgroup of Sn. Renumbering the n right cosets of Gal(L#=L),
we see that � is defined up to conjugacy in Sn. By abuse of terminology we shall
refer to � by simply saying that G is a transitive permutation group. We will also
refer to this permutation group as the galois group of the (possibly nongalois)
extension L=K or of any defining polynomial for this extension (over K). For the
remainder of this section we fix a transitive permutation group G as in (8).

DEFINITION 7.1. Let G be a transitive permutation group. An irreducible poly-
nomial p(t) 2 F [t] with galois group G over F is said to be versal for G if for
every extension L=K of degree n with group G there is a specialization q(t) of
p(t) such that L=K is a root field of q, i.e., L is isomorphic to K[t]=(q(t)).

Remark 7.2. Our definition is similar to the definition of a generic polynomial
in [6] (which is, in turn, closely related to the notion of generic extension in [18])
but is not identical to it. Aside from the fact that we work with nongalois extensions
and permutation (rather than abstract) groups, there are two main differences. First
of all, we do not require the field F to be a purely transcendental extension of k.
Consequently, while the existence of generic polynomials in the sense of [6] is a
rather delicate question, versal polynomials always exist; see below. Secondly, a
specialization of a versal polynomial (in the sense we defined above) may not have
galois group G. We use the term “versal” instead of “generic” to emphasize these
distinctions.

Our first observation is that there is a natural smallest field Fp which can play
the role of F in the definition. Let p(t) be a versal polynomial for a transitive
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permutation group G. Let L be a root field of p(t) and L# be its normal closure
overF . Let y1; � � � ; yn be the roots of p inL. ThenG permutes the yiaccording to (8)
and therefore acts on the field k(y1; : : : ; yn). Let Fp = k(y1; : : : ; yn)

G be the fixed
field under that action. The coefficients of p(t) lie in Fp, and the galois group of p
over Fp is equal to G (as a permutation group.) Thus there is no loss of generality
in assuming that F = Fp. Note that by our construction Fp=k(a1; : : : ; an) is an
algebraic extension.

Our next observation is that versal polynomials exist for any transitive permu-
tation group G. Indeed, let x1; : : : ; xn be algebraically independent over k. Set
FG = k(x1; : : : ; xn)

G and

p(t) = (t� x1)(t� x2) � � � (t� xn) = tn + a1t
n�1 + � � �+ an 2 FG[t]:

Note that this is the same polynomial we considered in (1). The galois group of
p over FG is equal to G (as a permutation group.) Since the coefficients ai are
algebraically independent over k, p can be specialized to any polynomial over any
field, and therefore p is versal.

Now we consider a generalization of this construction along the lines suggested
in the introduction.

DEFINITION 7.3. Let x1; : : : ; xn be independent variables over k and let FG =
k(x1; : : : ; xn)

G. An irreducible polynomial p(t) 2 FG[t] of degree n is said to
be a generating polynomial for G if FG(x1) is a root field of p(t) over FG, i.e.,
FG(x1) ' FG[t]=(p(t)).

THEOREM 7.4. A generating polynomial for G is versal for G.

The argument we present below is a similar to the proof of [18, Thm 5.1]; see
also [14, Thm 1].

Proof. Let p(t) = tn + b1t
n�1 + � � �+ bn 2 FG[t] be a generating polynomial

as in Definition 7.3. Then p(t) is the minimal polynomial over FG for an element
y such that FG(y) = FG(x1). For i = 0; 1; : : : ; n � 1 write yi as an FG-linear
combination of the powers of x1:

yi =
n�1X
j=0

fijx
j
1: (9)

Let f = det([fij ]) 2 FG be the determinant of the the matrix [fij ]. Then y generates
FG(x1) over FG if and only if f 6= 0. Let y = y1; y2; : : : ; yn be the conjugates of
y under G, i.e., the roots of p in k(x1; : : : ; xn). Write fij ; yi 2 k(x1; : : : ; xn) as
rational functions over a common denominator:

fij = gij=d; yi = vi=d; gij ; vi; d 2 k[x1; : : : ; xn]:

Let q = det(gij)d 2 k[x1; : : : ; xn].

comp3949.tex; 1/08/1997; 10:46; v.7; p.18

https://doi.org/10.1023/A:1000144403695 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000144403695


ON THE ESSENTIAL DIMENSION OF A FINITE GROUP 177

In order to show that p is versal, we consider an extension L=K of degree n
with galois group G. Let L# be the normal closure of L in K . Recall that the right
cosets of H = Gal(L#=L) in G can be numbered from 1 to n so that G permutes
them according to (8). Since the embedding in (8) is only defined up to conjugacy,
we may assume without loss of generality that the cosetH = 1GH corresponds to
1. Let �i : L#

! L# be a representative of the ith coset. Note that the restrictions
�1; : : : ; �n to L are the n distinct embeddings of L in L# over K .

We now view L as an n-dimensional vector space over K . Let U1 � L be
the set of generators for the extension K � L. Then U1 is Zariski-open in L '

Kn and is defined over K . By the primitive element theorem it is nonempty.
Let U2 be the set of all x 2 L such that q(�1(x); : : : ; �n(x)) 6= 0. By [15,
Thm VI.12.1, p. 309] and linear independence of characters, the embeddings �i
are algebraically independent. Hence, U2 is also nonempty and Zariski-open. In
particular, we conclude that the setU = U1\U2 is a nonempty Zariski-open subset
of L defined over K .

Next we choose z 2 U and define a ring homomorphism

k[x1; : : : ; xn]! L#

by sending xi to �i(z) for i = 1; : : : ; n. Note that �1(z) = z. By our choice
of z, this homomorphism extends to a homomorphism � : R ! L# where
R = k[x1; : : : ; xn; y1; : : : ; yn; fij ; 1=d; 1=f ]. Since L=K has galois group G, this
homomorphism is G-equivariant. Thus � sends elements of FG = k(x1; : : : ; xn)

G

toK and elements of FG(x1) toK(z) = L. In particular, the coefficients b1; : : : ; bn
of p(t), lie in R (up to sign they are symmetric polynomials in y1; : : : ; yn) and
�(b1); : : : ; �(bn) lie in K .

Now consider the polynomial �(p) = tn + �(b1)t
n�1 + � � � + �(bn). Its roots

are �(y) = �(y1); �(y2); : : : ; �(yn) 2 L#. In order to show that p(t) is versal, it
is sufficient to verify that the root field of �(p) over K is L, i.e., K(�(y)) = L.
Applying � to both sides of (9), and remembering that �(x1) = z, we obtain

�(y)i =
n�1X
j=0

�(fij)z
j :

Note that since 1=d 2 R, we have fij 2 R for every i; j. Thus �(fij) are well-
defined elements of K . Moreover, by our choice of z, the determinant �(f) of the
above system is a nonzero element of K . Thus K(�(y)) = K(z) = L, as desired.

Given a transitive permutation group G, we would like to choose a versal
polynomial p(t) 2 F [t] for G in the most economical way. In other words, we
would like to define p(t) so that it would have the minimal possible number of
algebraically independent coefficients. Note that this number is equal to the minimal
possible value of trdeg k(F ). Indeed, recall that for a given versal polynomial p we
have a canonical choice of the field of definition F = Fp and that for this choice
of F the extension F=k(a1; : : : ; an) is algebraic.
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Our next result shows that this number is, in fact, equal to the essential dimension
ofG. In particular, it depends only on the abstract groupG, and not onn or a specific
realization of G as a permutation group.

THEOREM 7.5. There exists a versal polynomial for a transitive permutation
group G with edk(G) algebraically independent coefficients (over k). There does
not exists a versal polynomial with fewer than edk(G) algebraically independent
coefficients.

Proof. Let p(t) be a versal polynomial for G with the minimal number of
algebraically independent coefficients. We shall denote this number by m. We
want to prove that m = edk(G).

By Definition 7.1 this polynomial can be specialized to a polynomial q(t) which
generates the extension FG(x1)=FG. In other words, q is a generating polynomial.
By Theorem 7.4 q(t) is also versal. Since q(t) is a specialization of p(t), it cannot
have more than m algebraically independent coefficients. By our choice of m, it
cannot have fewer thanm algebraically independent coefficients either. This proves
that we only need to consider generating polynomials, i.e.,m is the minimal possible
number of algebraically independent coefficients of a generating polynomial for
G.

Note that a field F0 contains the coefficients of some generating polynomial
if and only if the extension FG(x1)=FG is defined over F0; see Definition 2.1(a).
Thus m is the minimal value of trdeg k(F0) among all such F0. In other words,
m = edk(FG(x1)=FG); see Definition 2.1(b). By Corollary 4.2 this number equals
edk(G), as claimed.

COROLLARY 7.6. Every field extension F � E of degree n (with k � F ) is
defined over a field F0 such that trdeg k(F0) 6 edk(Sn).

Proof. Let G ,! Sn be the galois group of E=F and let p(t) be a versal
polynomial for G with m = edk(G) algebraically independent coefficients. This
polynomial can then be specialized to a polynomial q(t) = tn+b1t

n�1+ � � �+bn 2

F [t] whose root field over F is E. In other words, E=F is defined over the field
F0 = k(b1; : : : ; bn). Since q is a specialization of p, we have trdeg k(F0) 6 m.
Finally, note that m = edk(G) 6 edk(Sn); see Lemma 4.1(a).
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