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PRIMES IN SEQUENCES ASSOCIATED TO POLYNOMIALS
(AFTER LEHMER)

MANFRED EINSIEDLER, GRAHAM EVEREST anp THOMAS WARD

Abstract

Ina paper of 1933, D. H. Lehmer continued Pierce’s study of inte-
gral sequences associated to polynomials generalizing the Mersenne
sequence. He developed divisibility criteria, and suggested that prime
apparition in these sequences — or in closely related sequences —
would be denser if the polynomials were close to cyclotomic, using
a natural measure of closeness.

We review briefly some of the main developments since Lehmer’s
paper, and report on further computational work on these sequences.
In particular, we use Mossinghoff’s collection of polynomials with
smallest known measure to assemble evidence for the distribution of
primes in these sequences predicted by standard heuristic arguments.

The calculations lend weight to standard conjectures about
Mersenne primes, and the use of polynomials with small measure
permits much larger numbers of primes to be generated than in the
Mersenne case.

1. Introduction

Let f € Z[x] be a monic polynomial with factorization
f)=x—a1)...(x —aq) (1)

over the complex numbers. Following Pierd®] and Lehmer12], define a sequence of
integers by

d
An(f) =] Tleg —1I. )
i=1
For example, iff (x) = x — 2, thenA, (f) = 2" — 1 is the classical Mersenne sequence.
Pierce and Lehmer studied the possible factora pff), and Lehmer in particular used
these results to compute large primes. For our purposes, the detailed arguments concer
possible factors are not relevant, but three key observations by Lehmer are:

L if joy| # 1fori = 1,...,d thenA,(f)/An-1(f) = M(f) = [Tjo -1 leil:
2. it M(f)iscloseto 1, thed\,(f) may be expected to be prime often;
3. prime factors oA, satisfy (essentially) linear congruences.

Itis clear from Kronecker's lemma thaf (f) = 1 if and only if f is cyclotomic. Lehmer
made an extensive search for non-cyclotomic polynomials with measure close to 1, a
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Primes in sequences associated to polynomials (after Lehmer)

his example of degree 10 (referred to belowfay with M(f) = 1.176... is still the
closest known. He also made the prescient remark that for non-cyclotomic polynomials,
zero on the unit circlécontributes an oscillating factor which, although it never vanishes
or becomes infinite, cannot be estimated readiigtd went on to usé/ (/) as a natural
measure of growth in this case also (cf. the convergence (3), discovered later).

Many subsequent authors have shed new light on various aspects of the ségu€iige
and the associated growth rat& /). Mahler [15] pointed out that Jensen’s formula gives
the integral form

1 .
m(f) =logM(f) = /0 log | f (2™ |dt

for the measure, which is now called the (logarithnhighler measuref 1. A huge amount

of work has gone into attempts to resolvehmer’s problemare there polynomials with
arbitrarily small positive logarithmic measure? For an overview of this circle of results
from a theoretical perspective, s&¢ §nd B]. The view of polynomials with small measure
as being small perturbations of cyclotomic ones is explored. M. [For recent results on
computations of Mahler measures and their connections with other parts of mathemati
see [4], [7], [14] and [16].

To each polynomial of the fornil] there is an associated endomorphiBfof the d-
torus, given by the natural action of the companion matrix of no zero of f is a root of
unity, thenTy is an ergodic transformation with respect to Lebesgue measure, aifd is
the number of points of periodunderTy. Expansiveness dfy as a topological dynamical
system corresponds to Lehmer’s condition that # 1 fori = 1,...,d. Finally, the
topological entropy of; is equal ton( f). This links arithmetic properties of the sequence
to dynamical properties of the corresponding toral endomorphism —8geyccordingly,
we call the polynomialf expansivef |«;| # 1fori =1,...,d, ergodicif no «; is a root
of unity, andquasihyperbolidf it is ergodic but not expansive.

Finally, the convergence observed by Lehmer in the expansive case does not extent
the quasihyperbolic case (sé& 8, Theorem 2.16], but the more robust convergence

1
~10g A, (/) — m(f) ©

extends to the quasihyperbolic case by Gelfond’s Diophantine resultsYserd [13]).
Some measure of the Diophantine subtlety involved in convergence (3) may be seen
the sequence corresponding fp (defined below):A, (f1) behaves asymptotically like
(1.176...3 but A, (f1) = 1 for values of: as large as 74. These dramatically small values
for relatively large values of are reflected in the graphs below by the irregular early
behaviour.

2. Arithmetic ofA,,

The polynomial (1) is said to beeciprocal if x? f(x~1) = f(x). Boyd [1, 3] and
Mossinghoff [16] have carried out extensive calculations of Mahler measures; 1®jm [
we use the list of the 100 irreducible polynomials with smallest known positive Mahle
measure. These are all reciprocal (a beautiful result of Snatthghows that iff is non-
reciprocal andf (0) f (1) # 0, thenm(f) > m(x3 — x — 1) = 0.281...), and are known
to divide polynomials with coefficients ifD, +1}. If f is a reciprocal polynomial, then
A, (f)/A1(f) is a perfect square far odd, by the following argument. ¥ is a zero off,
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let K = Q(a) andK’ = Q(e + o~ 1). Then

An(f) = INg " — 1)
= I[Nkl — DNkl +a +...+a" )
= A1(f) x INg @ V2 Ny jgla™ D24 4 a0/,

Nowé = o~ =D/2 4 4 o®=D/2is an integral element at’, so

Nk 0®) = (Ngg®))?

is a square. Accordingly, defifg, (/) by I', (f)2 = A, (f)/A1(f) for oddn > 1.

Prime values of", () may arise for composite values of and such values are called
anomalous. In the expansive case it is clear that the anomalous primes are finite in numt
and this remains so in the quasihyperbolic case, for a deeper reason.

Proposition 1. If f is an ergodic polynomial, then there are only finitely many anomalous
primes in the sequend&, (1)), or in (A, (f)/A1(f)) in the non-reciprocal case.

Proof. First notice that the sequence is multiplicative. Wiite= M(f)l/2 for the square
root of the Mahler measure gf, andrl’",, for ', ( f). (Note that a similar argument holds for
(AL (f)/A1(f)) in the non-reciprocal case.) By Baker’s theorem ($3ddr references),
there are constani$, B, C > 0 with

AM" > T, > BM"/n.

It follows that only finitely many: can havd™, = 1.
Now an anomalous prime occurs WhEp),, is prime withm,n > 1. 1f [, andl’,, are
both 1, thenn andn are bounded by the previous paragraph. On the other hand,
Con/ T > BM™ JA(mn)S M™ = DM" "V /(mn)€ .
If the left-hand-side is 1, then there is an upper bound of the form
E + F(logn + logm)
for n(m — 1), which bounds botm andn.
This precludes,,,, = I';, for all but finitely manym andn. O
Recall thatk is the field defined by the chosen irreducible polynonfiahnd let

hg = class number oK
r1 = the number of real embeddings &f
r» = half the number of complex embeddingsiof
wg = the number of unit roots iX ;
Rk = theregulator ofK;
dg = the discriminant off’;

2"1(2m)2hk Ry
PK = —— (75—
T wk k]
Define as usual the Dedekind zeta-function koby
1
(s) = VYL 4
Ck > Neo@’ (4)

q
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whereg runs through the ideals @k, with Laurent expansion at= 1 given by

PRkt (5)

{k(s) = 1

and Euler product form

1 -1
“TT1(1- 6
) 1;[( NK/@(p)S) ©

wherep runs through the prime ideals dfx . Finally, there is the number-field analogue
of Merten’s theorem (see [10], [11] c2(]).

Proposition 2.

1
Z —log (1— N—> =loglogx + y +logpgx + O(1/logx)
Ni /() <x K/Q(P)

wherep runs through the prime ideals @dx, andy = 0.577... is the classical Euler
constant.

3. Heuristic arguments

The Mersenne numberaf,, = 2" — 1 are well-known, and 38 values afare known
for which M,, is prime. An elegant probabilistic argument due to Wagst] gives the
following expected distribution of prime values #1,. If n1, ny, ... are the primes for
which M,,; is prime, thenj/log, log, My, is conjectured to converge to a constant. This
is a consequence of the simple linear congruences satisfied by factafs @fom the
Euler—Fermat theorem), and Merten’s theorem.

In the Lehmer case, essentially the same argument may be applied, but the arithme
of the sequence and the analytic properties of the corresponding zeta function are mi
involved. The calculations described below give the following results.

1. There is compelling numerical evidence to suggest that
J
—_— E 7
log Iogl"nj O (7)
for some positive limitEy as j — oo, whereny, ny, ... is the sequence of prime
indices for whichl“nj is prime.
2. A naive number-field analogue of Wagstalff’s heuristics suggest&ihist given by
Wr = 2e /m(f), which is compatible with the numerical evidence.

3. The more subtle quantit/; = 2¢¥«’ /m(f) (or 2¢7% /m(f) in the non-reciprocal
case) is sometimes closer to the obser#igd though we do not have a heuristic
rationale for this, and the calculation gf (or yx) itself presents considerable
difficulties for extensions of large degree.

4. Thediscrepancyetween the observed valuef and either of the heuristic constants
is substantial enough to suggest that more subtle arithmetic phenomena are at wc

To explain the heuristic argument, we follow essentially Caldwell's exposition of the
Wagstaff heuristics (available on the WWW ‘Prime Pages’ site — SpeAssume thap
is prime. Ifp is a prime ideal inDx with

Nko®) | Ngjga? — 1)
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thenNg o(p) = 1 modp. It follows that the probability of", ( f) being prime is increased
by the ratioNg ,q(p)/(Nk, o) — 1) for each prime ideap of Og with prime norm
Ngo(p) < p. The set

{r | vis anideal ofOg with Ng q(t) < x}

has asymptoticallyx x members, of which:/logx are prime ideals with prime norm. It
follows that the probability that an integral idedk a prime ideal with prime norm i® g
is 1/(pk log Nk g (v)).

In the Mersenne case, the resulting product is estimated using Merten’s theorem; he
we use PropositioRinstead. The discussion above suggests that the probability sl
is prime is approximately

20" < Ni/g(®) )
P = VA S
) (pm(f)>NK/Q)gp (Nija®) =D

= 20y (¢” px logp + O(1/p))
pm(f) '

So the expected number of (non-anomalous) prime valu&s, of) with p < x is given

by (p running through the rational primes)

Shw-ZEY ()

PSX P<l NgP<p NK/Q(p) -1
2e7 Z log p
mH\,;< P

~<2€y )IO X
m) 09"

Notice that in the Mersenne case, the sum is taken over, alieighted according to the
probability that: is prime; summing instead over primgswithout weighting, as we have
done here, gives the same estimate.

If we write n1, na, ... for the sequence of indices for which, is prime, this suggests
that the number of prlme values Bf; withn; < x is apprOX|mateI)(2eV/m(f)) logx. It
follows that

I n;
0glogl,  m(f). ®
Jj 2ev

Notice that the effect of any further congruence conditions on possible facténg( ¢f
will be to asymptoticallyincreasethe number of primes appearing in the sequence, so the
relationship

2e7
f =
m(f)
between convergenceg)@nd B) is expected. However, the results shown in Tatde not
give a consistent inequality; if anything, they suggest the reverse (see S&ction
In the case of non-reciprocal polynomials, the factor 2 (which came from the fact the
', is logarithmically half ofA,,) needs to be removed, so for non-reciprogahe letters
Ey, Wy, Cy will be used for the analogous quantities also.

©)
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Three questions were therefore examined numerically. Firstly, is the sequence associc
to a polynomial with small Mahler measure very rich in primes? Secondly, do calculation
suggest the distributior’} for prime apparition in these sequences with some limiting con-
stant? Thirdly, does the ‘limiting constant’ observed lend support to the heuristic argumen

The results are — unsurprisingly — mixed. The first question can be answered wit
an emphatic ‘yes’: in a short search on modest equipment, sequences have been fo
containing over one hundred primes. The second is answered with an equivocal ‘yes’: t
analogous plots for the polynomials of small measure do look linear (details of the statistic
method used are given below). The third question probably requires a deeper understanc
of the arithmetic of",,, but the numbers agree fairly well. In particular, the number of primes
found does decrease as the Mahler measure increases.

In light of this, it would be of interest to find a reformulation of the Mersenne heuristics
in whichy appears, not via Merten’s Theorem, but as the second coefficient of the Laure
expansion of the Riemann zeta functiors at 1.

A feature of this work is that the use of polynomials with very small measure give:
significant data on Mersenne-like problems without the difficulty of testing excessivel
large numbers for primality. The idea of using polynomials with small measure in this wa
comes directly from Lehmer’s paper.

4. Description of the calculations

Given a candidate polynomigl with small Mahler measure, the prime valuesidbr
which T, (f) is prime up to some limit were computed. Composite values foir which
I, (f) is prime give rise to thenomalougrimes. Primality testing was for pseudo-primality
to ten randomly chosen bases: in particular, the lack of an analogue of the Lucas—Lehn
test means that the primality test used is the Miller—Rabin test. Thus, in this paper, prin
values ofl",, or A,/ A1 areprobableprimes. All the calculations were done using PARI-GP;
see [18] for more details.

For the first two polynomials in the Mossinghoff list,

fl(x)=xlo+x9—x7—x6—x5—x4—x3+x+1

and

Fox) = By X7 16 (15 (12 11 (109 08 7 (64,8 24 11
the calculations were performed foup to 200 000. For each of the remaining polynomials
f3, ..., fao, ranging in degree from 10 to 52, the calculations were performexd tqrto
50000. The full list of polynomials is in the papérd]. In order to gain more insight into
how much of the prime behaviour is governed simply by the field arithmetic, the sam
calculation was also carried out for the ‘negative’ polynomiﬁF(x) = fi(—=x).

The constanyg has also been computed in some cases (aghwssome non-reciprocal
cases), though this requires extensive calculation itself. The method adopted is to use
Laurent expansion (5) and estimage = lim,_ 1+ ((s —1)¢x/(s) — pk’), With K replacing
K’ in the non-reciprocal case, using GP’s ability to compute values of the Dedekind ze
functions for number fields of small degree.

The empirical constan is found using a least-squares linear regression.
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5. Results

We present several graphs of log Iog (f) againstj, which indicate the asymptotic
linearity (Figuresl—9). On each graph, the number on the abscissa is the total number
non-anomalous primes found for that polynomial. In each case the valugs &, and
E; are given. The graphs have been chosen from the (small) sample of polynomials f
which yx (or yk+) can be computed. As mentioned above, the non-reciprocal polynomial
do not have the factor 2 in the expressionsifoandC. The numerical constants have been
rounded to three decimal places.

Tablel gives some data for the Mersenne case, some simple non-reciprocal polynomia
and for thosefy; for which C could be computed (the polynomig}, of degree 18, is
included here despite the fact that we have been unable to cor@pyteFor the non-
reciprocals, the growth rate is much higher by Smyth’s result, and so the calculations &
limited. In addition to the Mersenne case and some polynomials fidhfpr which C
could be found, some non-reciprocal polynomials of small height have been chosen. The
non-reciprocal polynomials are those with smallest Mahler measure in the list of irreducib
non-cyclotomic factors of trinomials with smallest known Mahler measures — we than
David Boyd for providing this list of trinomials. Tableis thus a mixed bag of polynomials
selected on the basis of having small measure for polynomials of a certain shape, or
being of relatively small degree. Talleecords

1. the polynomialf;

the Mahler measur# ( f);

the range searched<ln < R

the numbew of non-anomalous primes found;

the empirical constarii; found using least-squares;
the heuristic constar;

7. the heuristic constaut;.

The polynomials in Tablé are arranged in order of increasing Mahler measure.
Table2 summarises the bulk of our results. It lists the following quantities:

the numbey of the polynomial in the list from [16];
the Mahler measuréf (f;°);

N(fji), the number of non-anomalous prime valuefp(fji);
E =, the least-squares estimate;
J

ook wbd

A w DR

5. W=, the value computed using the heuristic argument above.
J

The polynomials are again arranged in order of increasing Mahler measure.

6. Open problems

Several problems are suggested by this work, of which the most pressing seem to be
following. What is behind the examples in whiély is smallerthan W,? Can a heuristic
argument be found that predici with the same level of accuracy as that seen in the
Mersenne case? In particular, significant differences bet\Egedef- in Table2 suggest

that more accurate heuristics must involve the polynomial itself, and cannot depend or
on the arithmetic of the field defined by the polynomial.
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9.7

208
Figure 1: Graph ofloglogT,, (f1) against; for n < 200, 000
Ef = 25.719,Wy, = 21.949,G, = 24.767.

9.6

182
Figure 2: Graph ofloglogl',; (f2) against,j for n < 200, 000,
Ey = 21.852 Wy, = 20.640.
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84

137
Figure 3: Graph oflog IogI‘n_/ (f10) againstj for n < 50, 000,
Ey,=18.507,Ws, = 18.191,G,, = 18.844

85

140
Figure 4: Graph ofloglogI',; (f26) against;j for n < 50, 000,
Efe = 19.384 Wy, = 17.364Cp, = 18.782
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85

128
Figure 5: Graph ofloglogI',; (f33) against;j for n < 50, 000,
Ef, = 18.984 Wy, = 17.187,G,, = 17.869.

85

47
Figure 6:Graph oflog logT', (x3—x—1)againstj forn < 20, 000,
E; =6.807,W; = 6.334Cy = 6.398.
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8.6

49
Figure 7: Graph ofloglogT,, (x® — x*+x% — x ++ 1) against; for
n < 20,000E; = 6.128,W; = 5.939,G = 5.930

8.7

50
Figure 8: Graph ofloglogI',; (x® — x° + x3 — x2 + 1) against;
for n < 20,000 E; = 6.519,W; = 5.793,G; = 5.942
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8.2

37
Figure 9: Graph ofloglogTy; (x° 4+ x2 — 1) againstj for n <
20,000, Ef =5.411,W; =5.735,G = 5.968.

Table 1. Mahler measur®, numbersN of prime values of", or A, found forn < R,
empirical constank, and two heuristic constantg andC for selected polynomials.

f M(f) R N Ey Wy Cr
f1 1.176 200,000 208 25.719 21.940 24.767
2 1.188 200,000 182 21.852 20.640
fio 1.216 50,000 137 18.507 18.184 18.884
f-10 1.216 50,000 133 18.219 18.184 18.884
f26 1.227 50,000 140 19.384 17.358 18.782
f-26 1.227 50,000 145 21.297 17.358 18.782
/33 1.230 50,000 128 18.984 17.180 17.869
f-33 1.230 50,000 132 18.083 17.180 17.869
x—x-1 1.325 20,000 47 6.807 6.334 6.398
x®—x241 1.325 20,000 46 5963 6.334 6.398

x> —x*4+x2—x+1 1.350 20,000 49 6.128 5.939 5930
XO4x*—x2—x—-1 1.350 20,000 51 6.479 5939 5.930
X0 — x5+ x3—x24+1 1.360 20,000 50 6.519 5.793 5942
x4+ x5 —x3—x24+1 1.360 20,000 51 7.474 5793 5942
xO+x2-1 1.364 20,000 37 5411 5735 5968
x—2 2 3,021,377 37 2549 2569 2.569
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Table 2: NumbeW of prime values ofI',,), Mahler measura/, empirical constank, and

heuristic constan¥ for polynomialsfi, ..., faoandf; , ..., f;0 n < 50, 000.
Jo M) =M(;) N Ej Wy, = Wf}— Ef}— N(fi)
1 1.1762 173 25.899 21.940 23.493 166
2 1.1883 151 22.482 20.640 23.420 156
3 1.2000 137 18.912 19.535 19.724 133
4 1.2013 171 24.618 19.413 20.803 146
5 1.2026 126 19.644 19.307 22.004 155
6 1.2050 148 21.374 19.100 18.356 132
7 1.2079 128 18.211 18.854 21.109 144
8 1.2128 136 19.127 18.461 18.905 136
9 1.2149 145 22.572 18.291 18.542 128
10 1.2163 137 18.507 18.184 18.219 133
11 1.2183 134 19.974 18.032 19.211 135
12 1.2188 135 18.619 17.998 19.594 140
13 1.2190 122 16.996 17.983 19.885 135
14 1.2194 114 16.258 17.954 21.704 151
15 1.2197 137 18.941 17.934 17.399 130
16 1.2202 115 16.667 17.892 16.919 124
17 1.2234 145 20.884 17.663 19.529 136
18 1.2237 136 18.806 17.639 15.666 113
19 1.2242 133 19.967 17.603 20.437 141
20 1.2255 145 19.655 17.517 19.093 132
21 1.2256 143 19.681 17.509 17.947 124
22 1.2258 125 17.293 17.495 17.837 128
23 1.2260 142 20.807 17.475 19.863 146
24 1.2264 138 20.496 17.447 15450 111
25 1.2269 125 16.902 17.413 17.207 118
26 1.2277 140 19.384 17.358 21.297 145
27 1.2281 108 14.658 17.333 19.296 129
28 1.2294 136 19.935 17.242 14921 105
29 1.2295 124 17.069 17.236 19.872 135
30 1.2300 128 17.973 17.207 18.011 123
31 1.2302 128 18.594 17.189 17.003 116
32 1.2302 119 16.009 17.187 17.521 129
33 1.2303 128 18.984 17.180 18.083 132
34 1.2307 125 17.453 17.157 17.693 125
35 1.2313 127 17.617 17.117 17.708 129
36 1.2322 121 17.901 17.059 17.297 122
37 1.2326 143 19.657 17.032 16.448 123
38 1.2326 128 17.987 17.031 18.130 125
39 1.2336 122 17.154 16.963 17.194 127
40 1.2343 116 15.852 16.918 16.316 112
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