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ON SPECTRAL DECOMPOSITION OF
IMMERSIONS OF FINITE TYPE

BANG-YEN CHEN AND MIRA PETROVIC

Let x : M —* Em be an immersion of finite type. In this paper we study the
following two problems: (1) When is the spectral decomposition of the immersion z
linearly independent? (2) When is the spectral decomposition orthogonal? Several
results in this respect were obtained.

1. INTRODUCTION

A submanifold M of a Euclidean m-space Em is said to be of finite type

[1, 2] if each component of its position vector field x can be written as a finite sum of
eigenfunctions of the Laplacian A of M (with respect to the induced metric), that is,
if

(1.1) x — c + xi + x2 H \-Xk

where c is a constant vector, x\,X2,... , a;* are non-constant maps satisfying As;,- =
liXi, i = 1 , . . . , k. If in particular all eigenvalues {£1,^2. • • • ,t.k) are mutually different,
then M is said to be of k-type. If we define a polynomial P by

(1.2)

then P(A)(x — c) = 0. Conversely, if M is compact and if there exists a constant vector
c and a nontrivial polynomial P such that P(A)(x — c) = 0, then M is of finite type
[1, pp.255-258]. If M is not compact, then the existence of a nontrivial polynomial P

such that P(A)(x — c) = 0 does not imply that M is of finite type in general. However,
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118 B-Y. Chen and M. Petrovic [2]

we remark in Section 4 that the existence of such a polynomial P guarantees that M
is of finite type when either M is of 1-dimensional or the polynomial P has exactly k
distinct roots where k — deg P.

The class of 1-type submanifolds M in Em has been classified by Takahashi [12].
In fact, he showed that the submanifolds M in Em for which

(1.3) Ax = Ix

are precisely either the minimal submanifolds of Em(l = 0) or the minimal submanifolds

of hyperspheres S"1"1 in Em (the case when I ^ 0, actually £ > 0).

As a generalisation of Takahashi's result, Garay [9, 10] studied the hypersurfaces

Mn in En+1 for which

(1.5) Ax = Ax,

where A is a diagonal matrix

(1.5)' A =

In [5], Dillen, Pas and Verstraelen observed that Garay's condition is not coordinate-
invariant and they considered the submanifolds in Em for which

(1.6) Ax = Ax+B

where A G R m x m and B G Rm. This setting generalises T. Takahashi's condition,
following Garay's idea, in a way which is independent of the choice of coordinates. In
[10], Garay proved that if a hypersurface M in En+1 satisfies his condition, it is either
minimal in En+1 or it is a hypersphere or it is a spherical cylinder (see, also [11]). In
[8], Dillen, Pas and Verstraelen proved that a surface in E3 satisfies their condition if
and only if it is an open part of a minimal surface, a sphere or a circular cylinder.

In the first part of this article we obtain precise relations between the spectral
decomposition (1.1) of an immersion x : M —* Em and condition (1.5) of Garay and
condition (1.6) of Dillen, Pas and Verstraelen. Some applications will be given in this
respect. In the second part we obtain a complete classification of hypersurfaces in En+1

satisfies condition (1.6) which generalises the main results of [8, 9, 10].
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2. SPECTRAL DECOMPOSITIONS

In the following, for simplicity, we assume that the eigenvalues {^i,... ,£*} asso-
ciated with the spectral decomposition (1.1) are mutually distinct. For each lt- we put

LEMMA 2 . 1 . Let x : M —+ Em be an immersion of Unite type. Then {or any i £
{ 1 , . . . , k} there exist linearly independent vectors c,-y £ Em and Unearly independent

{unctions fij £ V(ii), j = 1 , . . . ,mi such that

(2.1)

PROOF: Since Ax, = £iXi, there exist vectors CHJ (j = 1 , . . . ,n<) in £?"* and
functions <pij (j — 1 , . . . ,n<) in F(^i) such that

(2.2)

Let Ei = Span{aj i , . . . ,a,-nj} and cu,... ,Cjmj a basis of E{. Since V(£<) is a
vector space, (2.2) implies

(2-3)

for some functions fij £ V(li), j = 1, . . . , rrij. We claim that fn,... , fimi are linearly
independent functions in V(li). This can be easily seen as follows. In fact, if not, then
one of fn,... , fimi *8 a h ' n e a r combination of the others. Without loss of generality,
we may assume that

(2.4) fn =^2,bjfij, bj£R.
j=2

Then we have

(2.5)
j=2

which implies that dim Ei < m;. This is a contradiction. D

We need the following.
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DEFINITION 2.1: Let x : M -* Em be an immersion of Jfc-type. Assume that the
spectral decomposition of x is given by (1.1). Then the immersion x is said to be linearly
independent [3] if the set {cij \ i — 1 , . . . ,k;j — 1 , . . . ,m;} is linearly independent,
where c^ are given by Lemma 2.1. The immersion x is said to be orthogonal [3] if the
subspaces Ei,... ,Ek are mutually orthogonal, where Ei — Span{cji, . . . ,Cim{}, i =
l,...,k.

THEOREM 2 . 2 . Let x : M -> Em be an immersion of finite type. Then the
immersion of x is linearly independent if and only if x satisfies Ax = Ax + B for some
A e R m x m and B £ Rm.

PROOF: Let x : M —» Em be an immersion of finite type. Without loss of gener-
ality, we may assume x to be full.

(•<^) Assume that x satisfies Dillen-Pas-Verstraelen's condition, that is, there
exist A G Rm X m and B £ Rm such that Ax = Ax + B. Then, by (1.1) and Ax< = l&i,
we obtain

(2.6) Ac + B + (AXl - £lXl) + ••• + (Axk - ekxk) = 0.

Since A(Axi) - A(Axi) = £iAxi} (2.6) implies

(2.7) 4 ( A x 1 - e 1 x 1 ) + - - + e i ( A x k - £ k x k ) = 0 , j = l , 2 , - - .

Because £lt... ,£k are assumed to be mutually distinct, (2.7) yields

(2.8) Axi=£iXi, 1 = 1,2,...,*.

Combining (2.1) and (2.8) we get

m,-

(2.9) J2 (ACij - tiCiMij = 0 , 1 = 1 ,2 , . . . ,* .
i=i

From the linear independence of fn,... , fim{ (see Lemma2.1) we obtain Ac{j — £{Cij.
Since eigenvectors belonging to distinct eigenspaces of A are independent, the immer-
sion is linearly independent.

(^=>) Assume that the immersion z is linearly independent. For each Xi, let x;
be expressed as (see Lemma 2.1)

(2.10)
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where en,... , Cimi are independent vectors in Em and fn,... , fimi are independent
functions in V(tt). By definition, {cij \ i — 1 , . . . ,k; j = 1 , . . . ,m<} are linearly
independent. We put

(2.11) 5 = ( e n , . . . ,clmi,... , c t i , . . . ,ckmk).

Since the immersion x is assumed to be full, we have £ m> = m aua^ ^he matrix 5 is
nonsingular. Let D be the diagonal m x m matrix given by

(2.12) D= d i ag ( / l f . . . , * ! , . . . , 4 k , . . . . * i ) .

where £,• repeats m,- times. We put A = SDS-1 and i? = —Ac. Then by direct
computation we obtain Ax = Ax + B. U

THEOREM 2 . 3 . Let x : M -> Em be an immersion of Unite type. Then the

immersion x is orthogonal it and only it Ax = Ax + B for some symmetric matrix

AeRmxm and B &Rm.

PROOF: Without loss of generality we may assume x being full. Assume that
there exist a symmetric matrix A e R m x m and B G Rm such that Ax = Ax + B. Let
c^, i = 1, . . . ,k, j = 1, . . . ,m,- be the vectors given in Lemma 2.1. Then as in the
proof of Theorem 2.2, we have Acij = liCij. Since A is symmetric, distinct eigenspaces
of A are mutually orthogonal. Thus the immersion x is orthogonal.

Conversely, if the immersion x is orthogonal, one may choose a Euclidean coor-
dinate system such that xi £ Span{ei,... ,eT O l}r" ,** G Span{em_mk+i,... , e m } ,
where {ei, . . . ,em} is the canonical orthonormal basis of Em. It is easy to see that
with respect to this coordinate system, Ax = Dx — Dc, where D is the diagonal ma-
trix given by (2.12). Thus, with respect to the original coordinate system, we have
Ax = Ax + B, for some symmetric matrix A 6 R m x m and B G Rm. D

REMARK 2.4: It is easy to see that if Ax = Ax + B for some symmetric matrix
A G KmXm and B eRm, then, with respect to a suitable coordinate system of Em, it
satisfies Garay's condition ((1.5) together with (1.5)'.)

From Theorem 2.2 we obtain easy the following

COROLLARY 2 . 5 . Every k-type curve C which lies fully in E2k satisfies Dillen-
Pas-Verstraelen's condition (1.6).

PROOF: This corollary follows from Theorem 2.2 and that the fact that each
eigenspace of A of C is of dimension ^ 2. So, if a fc-type curve C lies fully in
E2k, then the immersion is linearly independent. D

From Theorem 2.3 we obtain the following new characterisation of W-curves.
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COROLLARY 2 . 6 . Let C be a curve in Em. Then C is a W-curve if and only
if the immersion of C in Em satisfies Ax = Ax + B for some symmetric matrix
AeRm*m and B eEm.

PROOF: Let x : C —» Em be an immersion of a curve C into Em. If Ax = Ax + B

for some symmetric matrix A G Rm X m and B e Em, then AH = AH. So, if P denotes
the characteristic polynomial of A, then by the Cayley-Hamilton theorem P(A) = 0
and thus P(A)H = 0. Therefore, by applying Proposition 4.1, C is of finite type.
Thus, we may apply Theorem 2.3 to conclude that the spectral decomposition

(2.13) z = c + xiH \-xk

is orthogonal. Thus x can be expressed as the following form:

k

(2.14) x = c + ^ (a< cos liS + b{ sin £,s),
«=i

where a{,6{ € Em and l\,... ,£k are mutually distinct non-negative real numbers.
Since the spectral decomposition (2.13) is orthogonal, Ei = Span{a,-,6j}, t = 1, . . . , k
are mutually orthogonal. Thus, by using the condition (x'(a),x'(s)) = 1, we may
conclude that either |a;| = |6,-| and a< J_ 6< or t{ = 0 , for each t. Therefore C is a
W-curve in Em. The converse is trivial. U

REMARK 2.7: Combining Corollaries 2.5 and 2.6 and results of [4, 5] we may
conclude that there exist infinitely many finite type curves and submanifolds in Em

which satisfy the condition Ax = Ax + B for some matrix A G Rm*"» and B 6 Rm,
but there exist no symmetric matrix A € R m x m and B G Rm with Ax = Ax + B.

3. CLASSIFICATION OF HYPERSURFACES

In this section we prove the following classification theorem which generalises the

main results of [8, 9, 10].

THEOREM 3 . 1 . A hypersurface M in En+1 satisfies Ax = Ax + B for some

A G R("+1)x(n+1) and B € Rn + 1 if and only if it is an open portion of a minima/
hypersurface, a hypersphere Sn or a spherical cylinder S* X En~l, £G {1,2,.. . ,n —1}.

PROOF: It is easy to see that if M is one of the hypersurfaces mentioned in The-
orem 3.1, then there exist A G R("+1)*("+i) and B G Rn + 1 such that Ax = Ax + B.

Conversely, assume that Ax = Ax + B for some A G R(n+1)x(n+1) and B G Rn + 1.
Denote by V and V the Levi-Civita connections of M and En+1, respectively. Let H,
h and D be the mean-curvature vector, the second fundamental form and the normal
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connection of M in En+1, respectively. By taking covariant derivative of both sides of
Ait = Ax + B and applying the formula of Weingarten, we may obtain

(3.1) AHX = -(AX)T and DXH = --(AX)N,
n n

where AH is the Weingarten map at H, (AX) and (AX) the tangential and the
normal components of AX, respectively. Thus, for any vector fields, X, Y tangent to
M, we find

(3.2) n(AHX,Y) = (AX,Y),

where ( , ) is the inner product of En+1. By taking covariant derivative of both sides
of (3.2) and applying the formulas of Gauss and Weingarten and (2.2), we obtain

(3.3) n((VzAH)X, Y) = (Ah(Z, X), Y) + (h(Y, Z), AX)

for X, Y, Z tangent to M. Thus, by combining (3.3) and the equation of Codazzi, we
get

(3.4) MXa) + (AX,t)}SZ = {n(Za) + {AZ,Q}SX,

where £ is a unit normal vector of M in En+1 and S = A(.

If M is minimal, there is nothing to prove. So, we may assume that M is not
minimal in En+1. Put W = {p G M \ H(p) ^ 0} . Then W is a nonempty open subset
of M. Let e i , . . . , en be an orthonormal frame field tangent to W which diagonalises
An. Then we have 5e,- — Kiei,i = 1 , . . . , n . Thus from (3.4) we find

(3.5) neja = -{Aej,£), j = l , . . . , n .

By using (3.5) and some computations, we may prove that the mean curvature a is
constant. Hence, (3.5) yields

(3-6) {h(ei,ei),Aej)=0, i?j.

Let W2 = {p 6 W | rank AH ^ 2}. Then W2 is open. From (3.6) we get

(3.7) (Aei)
N = • • • = (Aen)

N = 0, on W2,

(3.8) AX = nAHX, for X £ TW2.

CASE 1. W2 ̂  <j>. In this case, by taking exterior derivative of (3.8) with respect to a
tangent vector Y, we find

(3.9) n(VYAH)X = Ah{X, Y) - nh(Y, AHX), X, Y e-TW2.
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Thus, by taking the scalar product of (3.9) with H, we obtain

(3.10) (Ah(X,Y),H) = n(AHX,AHY), X,Y eTW2,

(3.11) (AHX,Y){A(,C) = n(A2
HX,Y)

which implies (n«i — (A£,£))iti = 0 for any eigenvalue ie; of An. Therefore, either
AH is proportional to the identity map or AH has exactly two distinct eigenvalues 0
and K ( ^ 0) . If the first case occurs, each connected component of W2 is an open part
of a hypersphere Sn of En+1. Thus, by continuity of AH , the whole hypersurface M
is an open portion of Sn. If the second case occurs, we denote by 2?i and T>2 the
eigenspaces of AH with eigenvalues of 0 and n, respectively. From (3.9) we find

(3.12) (ViMH)X = 0, for XeVu U e VJt i ? j ,

and

(3.13) (S7YAH)X = 0, for X,Y eV{ with X J_ Y.

Since the multiplicity of K is ^ 2 on W2> (3.13) implies that K is a nonzero constant
on the nonempty open subset of W2 where the multiplicity of *c is maximal. So, by
continuity, Wj = M and T)\ and T>2 define two distributions on M. Moreover, by using
(3.12) and (3.13), we may also prove that both distributions T>\ and Z>2 are integrable
and their maximal integrable submanifolds are totally geodesic in M. Therefore, locally,
M is the Riemannian product of two Riemannian manifolds Mi and Mi, where Mi and
Mi are maximal integrable submanifolds of "D\ and 2?2 , respectively. Since /»(X, U) = 0
for X £ Z>i and U G X>2, a lemma of Moore implies that M is locally the product of
two Euclidean submanifolds. Since M is a hypersurface of En+1, we further see that
M is open portion of a spherical cylinder En~t x St, 2 ^ i < n.

CASE 2. W2 = <l>. Since M is not minimal, W ^ <f>. So, there exist orthonormal frame

fields e i , . . . , en on W such that

I1"
(3.14) AH= .

V 0)
with respect to ei , . . . , en. From (3.3) and (3.6) we have

(3.15) Ae2 = • •• = Aen = 0,

(3.16) (Vx^if )ei = (Vei AH)X = {VXAH)Y
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for X, Y G T>2, where "D\ = Span{ei} and X>2 = Span{e2,.. . , c n } . By applying
(3.16) we may prove that both T>i and Z>2 are integrable and their maximal integrable
submanifolds are totally geodesic. Therefore, by applying deRham's decomposition
theorem, a lemma of Moore and (3.14), we conclude that locally W is the product of
a plane curve and a linear (n — l)-subspace, say C x En-1 C E2 x En-1. Since the
coordinates of CxE71*1 can be expressed as i ( s ,U2 , . . . ,wn) = (/(•«)>!/(•*)>W2,- • • jUn),
where s is the arc length of C, the condition Ax — Ax + B implies the immersion
y : C -> E2 satisfies Ay = Ey + D for some E G R 2 x 2 and D G R2. So the
mean curvature vector Hy of y satisfies AHy = EHy. Let P denote the characteristic
polynomial of E. Then P(A)Hy - P(E)Hy = 0 by Cayley-Hamilton's theorem. Thus,
by applying Proposition 4.1, C is a finite type curve in E2. Therefore, by applying
Theorem 3 of [6], C is an open portion of a circle. So, by continuity, M is an open
portion of a circular cylinder S1 x En~l m En+1. U

4. SOME FURTHER RESULTS AND REMARKS

As we mentioned in the Introduction, for a compact submanifold M in Em, the
existence of a nontrivial polynomial P such that P( A)(a; — c) = 0 for some c G Em (or
P(A)H — 0) guarantees M being of finite type. In this section, we would like to point
out that the same result holds for some important cases for noncompact submanifolds,
too.

PROPOSITION 4 . 1 . Let C be a curve in Em parametrised by asclength s. If
there is a nontrivial polynomial P of one variable such that P(A)H = 0, iAen C is of
Unite type.

PROOF: If there is a nontrivial polynomial (over R) such that P(A)H — 0, then
the immersion x — x(s) satisfies an ordinary differential equation with constant coeffi-
cients. Thus, x(s) takes the following form:

(4.1) x(S)

where m,lit G R and o<,6< G Em. Thus, we have

(4.2) x'{s) = £ > • ' JX)(B,-, cos(eits) + Cit

where
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(4.3) B,.,=

( ^ / ) eit ( # + ••• + b%t

(4.4) c i t = w ( & y + ••• + &;;/<«)

+ (6? + • • • + ^ 5 j j t A " 1 ) - 4, (a* + • • • + < /

Let /JJV = maxi{m} and V}v = {j | m = ^w}- If /*AT > 0, then, by using (4.2)
and (z'(a),x'(a)) = 1, we may obtain

(4.5) YJ (B"t c o s (^«s) + C"< s i n

So, by the independence of cos(£ffts), sin(£^r,a), t £ Vjy, we conclude B^t = Cfft = 0
for t G Vjy. From (4.3) and (4.4), we conclude that

which yields a contradiction. Therefore, fipr Sj 0, that is, m ^ 0 for any i. Similarly,
we may prove that fii ^ 0 for any i. Consequently, x takes the form:

(4.6) x(s) = ^ { ( o j + • • • + 4.s1') coa(tis) + (4j + • • • +

Let k = maxj{^}. Then we may rewrite (4.6) as follows.

(4.7) x(s) = ^2 (4 cos faa) + 6J sin fra))
i

«i cos (Us) + b[ sin (lis))a

0 4 c o s (^s) + 6 * s i n (*«•*

where the coefficient of a* is nonzero. If k > 0, then by comparing the coefficients of
s2k from the equation (x'(s),a;'(s)) = 1, we obtain

i ( - 4 sin (£ia) + b\ cos (£,S)) = 0,

which implies either ti = 0 or a\ = b\ — 0. From this we conclude that x(s) takes the
following form:

(4.8) x(s) = a0 + • • • + aks
k + £ (6; cos (£<s) + ct sin (£<a)).
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However, by applying the condition (x'(s),x'(s)) = 1 again, we have k < 1 for (4.8). D

PROPOSITION 4 . 2 . Let x : M -> Em be an immersion. If there exists a
polynomial P such that P(A)H = 0, then either M is of infinitely type or is ofk-type
with k < degP.

PROOF: Let P = td + c^**"1 H \-cn be a polynomial such that P(A)H = 0.
Suppose M is of Jfe-type with finite Jfe. Then we have the spectral decomposition

(4.9) x = c + xi + • • • + kk

with Axi = liXi, where {£i,... ,£k} are mutually distinct. Since Ax = —nH, n =
dimM, (4.9) implies

(4.10) -nAjH=l{+1x1 + •••+£{+1xk, j = 0 , 1 , 2 , . . . .

Thus, by P(A)H = 0, we find

(4.11) iiP(e1)x1 +•••+ ekP(£k)xk = 0.

By applying AJ to (4.11) we obtain

(4.12) ^ + 1 P ( / i ) * i + - - - + / i + 1 P ( / * ) * * = 0 , i = 0 ,1 ,2 , . . . .

Since £i,... ,£k are mutually distinct, (4.12) yields P(^i) = • •• = P(£k) = 0. There-
fore, k ^ degP. D

PROPOSITION 4 . 3 . Let x : M —> Em be an immersion. If there exist a vector
k

c e Em and a polynomial P(t) = f] (t - £i) with mutually distinct £i £k such

that P(A)(x - c) = 0, then M is of finite type.

PROOF: Consider the following linear system:

x — c = Xi + x2 + h xk,

Ax = £ix\ -(- £2x2 H 1- £kxk,
(4.13)

LI X — t j X\ T~ ^2 * 2 i i ^k "'Jb*

Since £\,... ,£k are mutua l ly dist inct , we may solve for X\,... ,xk in t e r m s of a;—
c, A z , . . . ,A*~ 1 a ; t o ob ta in

(4.14) Y[(ei ~ li)xi = n.k-ii11 ~ c) - 0-»,*-2Az

+ ... + (- l)*"2^ Ak~2x + (-l)*-^4"1*,
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where o*itj is the j'-th elementary symmetric function of l\,... ,l t-_i,lj+i,... ,lk- In
other words, we have

(4.15)

From the hypothesis of the theorem we have

(4.16) A ^ - o - i A ^ s + ozA*-2!

- • • • + ( - l ^ - V t . j A s + ( - I ) \ r 4 (* - c) = 0,

where <r,- is the j'-th elementary symmetric function of t\,t2,... ,t-k- From (4.13),
(4.14) and (4.16), we may obtain

(4.17)

Since £ i , . . . ,£t are mutually distinct, (4.17) yields Ax< = liXi and by (4.13) we have

x = c + *i + • • • + *t • This shows that Af is of finite type. U

REMARK 4.4: Proposition 4.2 and 4.3 remain true if M is a pseudo - Riemannian
submanifold of a pseudo-Euclidean space.

REMARK 4.5: For further results concerning linearly independent and orthogo-
nal immersions, see [3]. For examples, by applying the representation theory of Lie
groups, the first-named author proved in [3] that every equivaxiant isometric immersion
x : M —» Em from any compact Riemannian homogeneous space M into Em is an
orthogonal immersion, moreover, M is immersed into the adjoint hyperquadric Q of
Em (in the sense of [3]) by x as a minimal submanifold of Q.

REMARK 4.6: By applying Proposition 4.3, the first-named author and Li proved
in [7] that every 3-type hypersurface of a hypersphere 5 n + 1 in En+2 has non-constant
mean curvature.
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