A NOTE ON DUALIZING GOLDIE DIMENSION

BY
PATRICK FLEURY

1. Introduction and definitions. The purpose of this note is to offer a dualization of the concept of Goldie dimension and to prove a structure theorem (Theorem 3.1) for modules satisfying the conditions of this dualization. In this paper, all rings considered are associative with unit and all modules are unital. If M is a left R-module, then a submodule, A, of M is termed small if $A+H=M$ implies $H=M$ for any other submodule, H, of M. It should be noted that if $M \supseteq X \supseteq Y$ is a sequence of submodules of M, then if Y is small in X, it is small in M.

We recall that a module is said to have finite Goldie dimension if it does not contain an infinite direct sum of submodules. This is equivalent to saying that, for any increasing sequence of submodules of $M, U_{0} \subseteq U_{1} \subseteq U_{2} \subseteq \cdots$ there is i and U_{i} is essential in U_{j} for $j \geq i$. There are several possible ways to dualize this and we choose the following form which is sufficient for our purposes.

Definition 1.1. If M is a left R-module, we say M has finite spanning dimension if for every strictly decreasing sequence of submodules $U_{0} \supseteq U_{1} \supseteq \ldots$, there is i and U_{j} is small in M for every $j \geq i$.

For example, any Artinian module will satisfy this definition as will any local module in the sense of [4]. Further, if R is a left-semiprimary ring (i.e., it has dcc module its Jacobson radical) and $M=R$, then M also satisfies this definition.

We use the work spanning since codimension has other meanings in other contexts. Furthermore, there is an analogy between the above definition and the definition of a basis in a vector space. One can define a basis as either a maximal set of linearly independent vectors or as a minimal set of vectors which span the space. The former, when generalized to modules, becomes the concept of Goldie dimension. The latter, as we shall see in theorem 3.1, is the analog of definition 1.1 for a finite dimensional vector space.
2. Elementary properties. Of fundamental importance in the study of Goldie dimension are uniform modules (those modules which are essential extensions of all submodules) and complements of submodules (modules which are maximal with respect to the property of having zero intersection with a given submodule). We give the dualization of these notions next.

Received by the editors November 15, 1972 and, in revised form, February 28, 1973.

Definition 2.1. (a) Let M be a left R-module. We call M hollow if every submodule of M is small in M. (b) If U is a submodule of M, we say the submodule X is a supplement of U in M if $U+X=M$ but $U+Y \neq M$ for any proper submodule Y of X.

Finding hollow submodules of a module with finite spanning dimension is easy. If M has finite spanning dimension, then if all of its submodules are small, M is itself hollow and we are done. If not, then there is M_{1} properly contained in M and there is an X_{1} in M with $M_{1}+X_{1}=M$ but $X_{1} \neq M$. If M_{1} has a submodule which is not small in M, say M_{2}, then there is X_{2} and $M_{2}+X_{2}=M$ but $X_{2} \neq M$. Continuing in this way we obtain a strictly decreasing sequence $M \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ By definition, there must be an M_{i} which contains no non-small submodules of M yet M_{i} is non-small itself. Now suppose M_{i} is not hollow. That is, we can find A and B contained in M_{i} such that neither A nor B equals M_{i} yet $A+B=M_{i}$. Since M_{i} is not small, there is X_{i} and $M_{i}+X_{i}=M$, but $X_{i} \neq M$. Thus $A+B+X_{i}=M$. Since A is small in M, we get $B+X_{2}=M$. Since B is small, we have $X_{i}=M$ which is a contradiction. We thus have the following.

Lemma 2.2. If M has finite spanning dimension and X is a submodule of M which is not small, then X contains a hollow submodule.

Now let us consider any module M. If X is a submodule of M, it is always possible, using Zorn's lemma, to find a complement for X. Finding a supplement for X is not so easy. The next lemma shows that finite spanning dimension is just what we need for supplements.

Lemma 2.3. If M has finite spanning dimension, then every submodule of M has a supplement.

Proof. We shall actually prove a little more. I.e., if N is a submodule of M and $N+X=M$, then X contains a supplement of M. If N is small, it is clear that the supplement of N is M itself since the only submodule which we could add to N to obtain M is M itself. If, on the other hand, N is not small and $N \neq M$, we can find an X which is not M and $N+X=M$. If X is a supplement of N, we are done. If not, there is $X_{1} \subseteq X$ and $N+X_{1}=M$. If X_{1} is a supplement, we are done; otherwise, we can obtain an X_{2}. We proceed this way obtaining the chain $X \supseteq X_{1} \supseteq X_{2} \ldots$ After a certain point, this sequence must terminate because every infinite sequence must contain only a finite number of non-small members and all the members here are certainly non-small. Thus X must contain a supplement of N. Finally if $N=M$, then the supplement is the zero submodule.
3. The main theorem. We are now in a position to state and prove our main theorem. Before we do that, however, we make a trivial observation which will help in understanding the proof. If N is a small submodule of N^{\prime} and N^{\prime} is a submodule of M, then N is a small submodule of M. In particular, if N^{\prime} is hollow and $N^{\prime} \subseteq M$, then all proper submodules of N^{\prime} are small in M.

Theorem 3.1. Let M have finite spanning dimension. Then there is an integer p and $M=N_{1}+\cdots+N_{p}$ where each N_{i} is hollow for $i=1, \ldots, p$. Furthermore $N_{1}+\cdots+\hat{N}_{i}+\cdots+N_{p} \neq M$. Finally, if $M=N_{1}^{\prime}+\cdots+N_{q}^{\prime}$ and this summation satisfies our first two conditions, then $p=q$.

Proof. To begin, we pick a hollow submodule as we did preceding the statement of lemma 2.2. Let us call that submodule N_{1}. If $N_{1}=M$, we are done. If not, we employ the following process. Since N_{1} is not small, it has a supplement X_{1}. So $N_{1}+X_{1}=M$ but $N_{1}+Y \neq M$ for any proper submodule Y of X_{1}. Now if all the submodules of X_{1} are small in M, then it is easy to show that X_{1} is hollow as we did preceding lemma 2.2. We then would have M as the sum of two hollow submodules, neither of which can be deleted from the summation. If X_{1} has a submodule which is not small in M, say N_{2}, we pick a supplement for N_{2} in M, say X_{2}^{\prime}. Then $N_{2}+X_{2}^{\prime}=M$. Intersecting both sides of the above equation with X_{1} and using the modular property of the submodule lattice of M, we see $N_{2}+X_{2}^{\prime} \cap X_{1}=$ X_{1}. Now it is possible to pick a supplement for N_{2} in X_{1}, say X_{2}. We note, from the fact that $X_{2}^{\prime} \cap X_{1} \neq X_{1}$ (otherwise N_{2} is small) that X_{2} is properly contained in X_{1}. We now have $M=N_{1}+N_{2}+X_{2}$ and if we delete any of the terms we have a proper submodule of M. We continue in this way obtaining N_{3}, N_{4}, \ldots et cetera. We note that the process must eventually stop since we have a strictly decreasing sequence $X_{1} \supseteq X_{2} \supseteq \cdots$ and after a certain point, the submodules in this sequence must be small. Thus we obtain $M=N_{1}+\cdots+N_{p}$ where each N_{i} is hollow and we cannot delete any of them.

Now suppose $M=N_{1}^{\prime}+\cdots+N_{q}^{\prime}$ where each N_{i}^{\prime} is hollow and none of the submodules in the summation may be deleted. Without loss of generality, we may assume $q>p$. Consider $N_{2}+\cdots+N_{p}$. This is a proper submodule of M by construction. We are going to show that for some $i, N_{i}^{\prime}+N_{2}+\cdots+N_{p}=M$ and none of the terms in the sum can be deleted. First, if $N_{1}^{\prime}+N_{2}+\cdots+N_{p} \neq M$, then $N_{1}^{\prime}+N_{2}+\cdots+N_{p}=U+N_{2}+\cdots+N_{p}$ where U is a proper submodule of N_{1} and thus is small in M. So $N_{2}^{\prime}+\cdots+N_{q}^{\prime}+U+N_{2}+\cdots+N_{p}=N_{1}^{\prime}+\cdots+N_{q}^{\prime}+N_{2}+\cdots$ $N_{p}=M$. Thus $N_{2}^{\prime}+\cdots+N_{q}^{\prime}+N_{2}+\cdots+N_{p}=M$ since U is small. If $N_{2}^{\prime}+N_{2}+\cdots+$ $N_{p} \neq M$, we use the same process, this time adding $N_{3}^{\prime}+\cdots+N_{q}^{\prime}$ to get $N_{3}^{\prime}+\cdots+$ $N_{q}^{\prime}+N_{2}+\cdots+N_{p}=M$. We continue in this way to find that if there is no $i \leq q-1$ with $N_{i}^{\prime}+N_{2}+\cdots+N_{p}=M$, then $N_{q}^{\prime}+N_{2}+\cdots+N_{p}=M$. In any case we now see there is i and $N_{i}^{\prime}+N_{2}+\cdots+N_{p}=M$. Now we must consider the problem of deletion. It is obvious, from the previous construction, that if we delete N_{i}^{\prime}, we no longer have M. Suppose we delete N_{2}. We then have $N_{i}^{\prime}+N_{3}+\cdots+N_{p}$. If this equals M, then consider $N_{2}+\cdots+N_{p}=U+N_{3}+\cdots+N_{p}$ where U is a proper submodule of N_{i}^{\prime} and thus is small. Then $N_{1}+U+N_{3}+\cdots+N_{p}=M$, so $N_{1}+$ $N_{3}+\cdots+N_{p}=M$ since U is small. Thus we have successfully deleted N_{2} from the first summation. This is a contradiction, so we cannot delete N_{2}. If we continue in this way, we find that we cannot delete any of the N_{i} 's left in $N_{1}^{\prime}+N_{2}+\cdots+N_{p}$.

Now after we have replaced N_{1} by N_{i}^{\prime} and changed neither the fact that the sum is M nor the fact that no term can be deleted, we replace N_{2} by some N_{j}^{\prime} and show the same two things. We continue this way, replacing all the possible N_{i} 's. Then since $q<p$, we find that after replacing all of the N_{i} 's that we have actually deleted some $N_{i}^{\prime \prime}$'s. This is a contradiction, so $p=q$.
4. Further observations. From now on, we will term the integer determined in theorem 3.1 the spanning dimension of the module, M, and we will denote it by $\operatorname{Sd}(M)$. We would like to be able to relate $\operatorname{Sd}(M)$ to $\operatorname{Sd}(N)$ when N is a submodule of M. Unfortunately, we are unable to deal with an arbitrary submodule since an arbitrary submodule might not have finite spanning dimension. However, we can prove the following.

Theorem 4.1. Let M have finite spanning dimension and $K \subseteq M$ be a supplement. Then K has finite spanning dimension and if $\operatorname{Sd}(K)=\operatorname{Sd}(M), K=M$.

Proof. By a supplement, we mean that K is a supplement of some submodule L of M. Now if $X_{1} \supseteq X_{2} \supseteq \cdots$ is a sequence of submodules of K, then there is an i and X_{j} is small in M for $j \geq i$. If X_{j} is not small in K, there is $L_{j}(\neq K)$ and $X_{j}+$ $L_{j}=K$. But then, $X_{j}+L_{j}+L=M$. Since X_{j} is small in $M, L_{j}+L=M$ and this contradicts the fact that K is a supplement of L.

Now suppose $\operatorname{Sd}(K)=\operatorname{Sd}(M)$. If $K \neq M$, pick L such that $K+L=M$ and K is a supplement for L. Then L contains L_{1} which is a supplement for K. Clearly, then, K is also a supplement for L_{1}. Using the decomposition of theorem 3.1 on both K and L, we see that if $\operatorname{Sd}\left(L_{1}\right)>0$ we would have $\operatorname{Sd}\left(K+L_{1}\right)>\operatorname{Sd}(M)$ when, in fact, $\operatorname{Sd}\left(K+L_{1}\right)=\operatorname{Sd}(M)$. Thus $L_{1}=0$, so $K=M$.

Theorem 4.2. Let M have finite spanning dimension and let $K \subseteq M$ be a supplement. Then $M \mid K$ has finite spanning dimension and $\operatorname{Sd}(M \mid K)=\operatorname{Sd}(M)-\operatorname{Sd}(K)$.

Proof. Actually, we show that M / K is Artinian. Since every Artinian module has finite spanning dimension, the first part of the result will then follow. So suppose $X_{1} \supseteq X_{2} \supseteq \cdots$ is a strictly decreasing sequence of submodules of M / K. If we let f denote the natural map from M to M / K, then $f^{-1}\left(X_{1}\right) \supseteq f^{-1}\left(X_{2}\right) \supseteq \cdots$ is a strictly decreasing sequence of submodules containing K. Since K is not small, no $f^{-1}\left(X_{i}\right)$ can be small in M. Thus the sequence of inverse images must terminate and this implies that the original sequence had to terminate.

Now if K is a supplement, it is a supplement for some submodule L of M. Now L must contain L_{1} which is a supplement for K so $K+L_{1}=M$. Once again, as in the previous proof, K is a supplement for L_{1}. Thus $\operatorname{Sd}(K)+\operatorname{Sd}\left(L_{1}\right)=\operatorname{Sd}(M)$. We will show $\operatorname{Sd}\left(L_{1}\right)=\operatorname{Sd}(M / K)$. By theorem 3.1, $L_{1}=N_{1}+\cdots+N_{t}$ where each N_{i} is hollow and no N_{i} may be deleted from the summation. Once again we denote the natural map from M to M / K by f. In that case, we see $M / K=f(M)=$ $f\left(K+L_{1}\right)=f(K)+f\left(L_{1}\right)=f\left(L_{1}\right)=f\left(N_{1}\right)+\cdots+f\left(N_{t}\right)$. Since it is well known that the
image of a small submodule of a module is again small, $f\left(N_{i}\right)$ is hollow for each i. Furthermore, no $f\left(N_{i}\right)$ can be deleted from the sum for deletion in M / K would imply the possibility of deletion in M. Thus $t=\operatorname{Sd}(M \mid K)=\operatorname{Sd}(M)-\operatorname{Sd}(K)$.
5. The second decomposition. There is a fault with the decomposition of theorem 3.1; it is not direct and, usually, it will not be direct. We would thus be interested in conditions under which some aspects of directness would be assured. There is, for example, the following theorem. In it and in all the following we use the word semi-simple to mean that the radical of a module, the intersection of its maximal proper submodules, is zero.

Theorem 5.1. If a module has finite spanning dimension and is semi-simple, then it is a finite direct sum of simple modules.

Proof. Let $M=N_{1}+\cdots+N_{t}$ where each N_{i} is hollow. Each N_{i} is also simple because any submodule of N_{i} would have to be small and thus would be contained in the radical which is zero. Because no N_{i} can be deleted, it is easy to see that the sum is direct.

Corollary 5.2. A module is semi-simple and Artinian if and only if it is a semisimple with finite spanning dimension.

We have now treated the case of the module being semi-simple but there are still theorems which will help when semi-simplicity is not assumed. First, we return to theorem 4.1. From this theorem, we can conclude that the maximum number of elements in a strictly increasing sequence of complements must be $\operatorname{Sd}(M)$, because the strict containment of K_{1} in K_{2} implies the dimension of K_{1} is strictly less than the dimension of K_{2}. We have now proved the following.

Proposition 5.3. If M has finite spanning dimension, then M has the ascending chain condition on supplements.

Proposition 5.4. If M has finite spanning dimension, then M has a maximal semi-simple supplement.

Proof. Since the zero submodule is a semi-simple supplement, the set of all such is non-empty. Now, either we can use Zorn's lemma, or we can note that any strictly ascending chain of semi-simple supplements must end. Thus such a maximal supplement must exist.

Definition. We shall say that a module is s^{3}-free if it contains no non-zero semi-simple supplements.

Proposition 5.5. If M is s^{3}-free, then $\operatorname{Soc}(M) \subseteq \operatorname{Rad}(M)$.
Proof. Let A be a simple submodule of M. Let $A \nsubseteq \operatorname{Rad}(M)$, then there is a maximal submodule X and $A \nsubseteq X$. Thus $A+X=M$. Since A has no proper
submodules, it must be the supplement of X. The simplicity of A guarantees semi-simplicity. Thus if $\operatorname{Soc}(M) \nsubseteq \operatorname{Rad}(M), M$ is not s^{3}-free.

The converse of the above theorem is true provided we assume that M has finite spanning dimension. We mention this for the sake of completeness since we don't really need it. We make two remarks which are easily proved and which we leave to the reader. First, it is easy to show that if $K+L=M$, then K is a supplement of L if and only if $K \cap L$ is small in K. Next, it can be shown that the radical of M is the sum of all the small submodules of M. Thus, if $a \in \operatorname{Rad}(M), R a$, the submodule generated by a, is in a finite sum of small submodules of M and thus it is small itself.

Theorem 5.6. Let M have finite spanning dimension. Then M is the direct sum of a maximal semi-simple supplement and an s^{3}-free submodule. Furthermore, if $M=K_{1} \oplus \cdots \oplus K_{n} \oplus P_{1}=L_{1} \oplus \cdots \oplus L_{t} \oplus P_{2}$ where $K_{1} \oplus \cdots \oplus K_{n}$ and $L_{1} \oplus \cdots \oplus L_{t}$ are both maximal semi-simple supplements and P_{1}, P_{2} are s^{3}-free, then $n=t$.

Proof. Suppose K is a maximal semi-simple supplement. Then it is a supplement for $L \subseteq M$. Now $L \supseteq P_{1}$ which is a supplement for K. Then $M=K+P_{1}$ and it is easy to see K is a supplement for P_{1}. Thus, by a preceding remark, $K \cap P_{1}$ is small in K. But K is semi-simple, so $P_{1} \cap K=\{0\}$ making $M=P_{1}+K$ direct. Since K is semi-simple with finite spanning dimension, by theorem $5.1, K=K_{1} \oplus \cdots \oplus K_{n}$ where each K_{i} is simple.
The submodule P_{1} is then s^{3}-free, since, if it contains a semi-simple supplement, we would be able to find a larger submodule of M which is a semi-simple supplement and properly contains K.

Now suppose $M=K_{1} \oplus \cdots \oplus K_{n} \oplus P_{1}=L_{1} \oplus \cdots \oplus L \oplus P_{2}$ where the L 's and K 's are simple. First we note that $P_{1}=\bigcap_{i=1}^{n} K_{1} \oplus \cdots \oplus \hat{K}_{i} \oplus \cdots \oplus K_{n} \oplus P_{1}$ and each term in the intersection is maximal. Thus the radical of M is contained in P_{1}. Similarly, it is contained in P_{2}.

Now suppose $a \in P_{1}$ but $a \notin \operatorname{Rad}(M)$. Then $R a$ is not small in P_{1}, but if $R a$ were semi-simple, then we would be able to enlarge K and that is not possible. Thus, there is $r \in R$ and $o \neq r a \in \operatorname{Rad}(M)$.

Now we return to consideration of $K_{1} \oplus \cdots \oplus K_{n}$. We shall try to alter this sum to get it contained in $L_{1} \oplus \cdots \oplus L_{t}$ but we shall not change its supplementary property. Then we shall have proved that $n \leq t$ because of the dimensions of the two modules.

It is possible that some of the K 's, say p of them, are already contained in $L_{1} \oplus \cdots \oplus L_{t}$. Then renumber them so that they become the first p of the K 's. Thus K_{p+1} is the first summand not contained in $L_{1} \oplus \cdots \oplus L_{t}$. Now if $k \in K_{p+1}$, then $k=l_{1}+\cdots+l_{t}+m$ where $m \neq 0$ and $m \in P_{2}$. Since K_{p+1} is simple, we see that $R k=K_{p+1}$. In fact, if $r \in R$ and $r k \neq 0$, then $R r k=K_{p+1}$. We can also note that there is no r with $r m=0$ and $r k \neq 0$. If that were true, then $R r k \subseteq L_{1}+\cdots+L_{t}$ and this is not so. Thus ann $(k) \supseteq \operatorname{ann}(m)$. Since $r k=0$ but $r m \neq 0$ implies a non-trivial dependence relation among m and the l 's, we also have $\operatorname{ann}(k) \subseteq \operatorname{ann}(m)$.

Now we might as well assume $m \in \operatorname{Rad}(M)$. If not, there is $r \in R$ and $0 \neq r m \in$ $\operatorname{Rad}(M)$. Thus $r k \neq 0$ and since $\operatorname{Rrk}=K_{p+1}$, we find $k \in \operatorname{Rrk}=R r l_{1}+\cdots+R r l_{t}+$ Rrm and the last term in the sum is in the radical of M.

Now consider $k-m=l_{1}+\cdots+l_{t}$. Since ann $(k)=\operatorname{ann}(m)$ is maximal, we find that $\operatorname{ann}(k-m)$ is maximal. Thus $R(k-m)$ is simple. Now consider $K_{1}+\cdots+K_{p}+$ $R(k-m)+K_{p+2}+\cdots+K_{n}$. It is easily seen that this sum is direct. If we look at $\left(K_{1} \oplus \cdots \oplus K_{p} \oplus R(k-m) \oplus K_{p+2} \oplus \cdots \oplus K_{n}\right)+R m+P_{1}$ we find that we may delete $R m$ since, by a remark previous to the proof, $R m$ is small. It is now easy to see that $K_{1} \oplus \cdots \oplus K_{p} \oplus R(k-m) \oplus K_{p+2} \oplus \cdots \oplus K_{n}$ is a supplement of P_{1} and that the sum with P_{1} is direct. Furthermore, the $p+1$ 'st term in the summation is now contained in $L_{1} \oplus \cdots \oplus L_{t}$. Continuing in this way, we can change all of the K 's until each is contained in the sum of the L 's. Since even the altered K 's form a supplement, we must have $n \leq t$. Similarly we show $t \leq n$. Thus $t=n$.

Corollary 5.7. If M is an Artinian module over R, there is an integer n and $M=K_{1} \oplus \cdots \oplus K_{n} \oplus N$ where (i) each $K_{i}, i=1, \ldots, n$, is simple, (ii) N is $s^{3}-f r e e$, (iii) $K_{1}+\cdots+K_{n}$ is a maximal semi-simple direct summand, and (iv) any other semi-simple direct summand of M has at most n terms.

References

1. A. W. Goldie, Rings with maximum condition, Mimeographed notes, Yale University, Department of Mathematics (1964).
2. J. Lambek, Lectures on rings and modules, Toronto, Blaisdell (1966).
3. K. W. Roggenkamp and V. Huber-Dyson, Lattices over orders, I, Lecture notes in mathematics, no. 115, Berlin, Springer-Verlag (1970).
4. R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc., v. 155, no. 1, March 1971, pp. 233-256.

Department of Mathematics, State University College, Plattsburgh, New York 12901

