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A NOTE ON DUALIZING GOLDIE DIMENSION 

BY 

PATRICK FLEURY 

1. Introduction and definitions. The purpose of this note is to offer a equali
zation of the concept of Goldie dimension and to prove a structure theorem 
(Theorem 3.1) for modules satisfying the conditions of this dualization. In this 
paper, all rings considered are associative with unit and all modules are unital. 
If Mi s a left jR-module, then a submodule, A, of M is termed small if A+H=M 
implies H=M for any other submodule, H, of M. It should be noted that if 
M^X^ F is a sequence of submodules of M, then if Y is small in X, it is small in 
M. 

We recall that a module is said to have finite Goldie dimension if it does not 
contain an infinite direct sum of submodules. This is equivalent to saying that, for 
any increasing sequence of submodules of M, I70ç [/jÇ f/2Ç • • • there is i and 
Ui is essential in XJi fory >/ . There are several possible ways to dualize this and we 
choose the following form which is sufficient for our purposes. 

DEFINITION 1.1. If M is a left i£-module, we say M has finite spanning dimension 
if for every strictly decreasing sequence of submodules UQ^. U{^. . . . , there is 
i and TJj is small in M for every y >i. 

For example, any Artinian module will satisfy this definition as will any local 
module in the sense of [4]. Further, if R is a left-semiprimary ring (i.e., it has 
dec module its Jacobson radical) and M=R, then M also satisfies this definition. 

We use the work spanning since codimension has other meanings in other con
texts. Furthermore, there is an analogy between the above definition and the 
definition of a basis in a vector space. One can define a basis as either a maximal 
set of linearly independent vectors or as a minimal set of vectors which span the 
space. The former, when generalized to modules, becomes the concept of Goldie 
dimension. The latter, as we shall see in theorem 3.1, is the analog of definition 
1.1 for a finite dimensional vector space. 

2. Elementary properties. Of fundamental importance in the study of Goldie 
dimension are uniform modules (those modules which are essential extensions of 
all submodules) and complements of submodules (modules which are maximal 
with respect to the property of having zero intersection with a given submodule). 
We give the dualization of these notions next. 
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DEFINITION 2.1. (a) Let M be a left i?-module. We call M hollow if every sub-
module of M is small in M. (b) If U is a submodule of M, we say the submodule X 
is a supplement of U in M if U+X=M but U+ Y^M for any proper submodule 
YoîX. 

Finding hollow submodules of a module with finite spanning dimension is 
easy. If M has finite spanning dimension, then if all of its submodules are small, 
M is itself hollow and we are done. If not, then there is Mx properly contained in 
M and there is an X1 in M with M1+X1=M but Xxj&M. If Mx has a submodule 
which is not small in M, say M2, then there is X2 and M2+X2=M but X2^M. 
Continuing in this way we obtain a strictly decreasing sequence M 2 M{2. M 2 2 . . . . 
By definition, there must be an Mt which contains no non-small submodules of 
M yet Mi is non-small itself. Now suppose Mi is not hollow. That is, we can find 
A and B contained in M{ such that neither A nor B equals M* yet A+B=M{. 
Since Mt is not small, there is X{ and Mi+Xi=M, but X ^ M . Thus 4 + i?+X;=M. 
Since A is small in M, we get B+X2=M. Since i? is small, we have Xi=M which 
is a contradiction. We thus have the following. 

LEMMA 2.2. If M has finite spanning dimension and X is a submodule of M which 
is not small, then X contains a hollow submodule. 

Now let us consider any module M. If X is a submodule of M, it is always pos
sible, using Zorn's lemma, to find a complement for X. Finding a supplement for 
X is not so easy. The next lemma shows that finite spanning dimension is just 
what we need for supplements. 

LEMMA 2.3. If M has finite spanning dimension, then every submodule of M has 
a supplement. 

Proof. We shall actually prove a little more. I.e., if iVis a submodule of M and 
N+X=M, then X contains a supplement of M. If N is small, it is clear that the 
supplement of N is M itself since the only submodule which we could add to N 
to obtain M is M itself. If, on the other hand, N is not small and i W M , we can 
find an X which is not M and N+X=M. If X is a supplement of N9 we are done. 
If not, there is X^ Zand N+X1=M. If X± is a supplement, we are done ; otherwise, 
we can obtain an X2. We proceed this way obtaining the chain X^XX^X2.... 
After a certain point, this sequence must terminate because every infinite sequence 
must contain only a finite number of non-small members and all the members here 
are certainly non-small. Thus X must contain a supplement of TV. Finally if N=M, 
then the supplement is the zero submodule. 

3. The main theorem. We are now in a position to state and prove our main 
theorem. Before we do that, however, we make a trivial observation which will 
help in understanding the proof. If TV is a small submodule of N' and N' is a sub-
module of M, then N is a small submodule of M. In particular, if N' is hollow and 
N'^M, then all proper submodules of N' are small in M. 
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THEOREM 3.1. Let M have finite spanning dimension. Then there is an integer 
p and M=NX+- • •+iV3, where each Ni is hollow for i = l , . . . ,p. Furthermore 
Nx-\ b # H hN^M. Finally, if M=Nx-\ \-N'q and this summation 
satisfies our first two conditions, then p=q. 

Proof. To begin, we pick a hollow submodule as we did preceding the statement 
of lemma 2.2. Let us call that submodule Nx. If NX=M, we are done. If not, we 
employ the following process. Since Nx is not small, it has a supplement Xx. So 
NX+XX=M but Nx+ Y?£M for any proper submodule Y of Xx. Now if all the 
submodules of Xx are small in M, then it is easy to show that Xx is hollow as we 
did preceding lemma 2.2. We then would have M as the sum of two hollow sub-
modules, neither of which can be deleted from the summation. If Xx has a sub-
module which is not small in M, say N29 we pick a supplement for N2 in M9 say 
X2. Then N2+X2=M. Intersecting both sides of the above equation with Xx and 
using the modular property of the submodule lattice of M, we see N2+X2 n Xx= 
Xx. Now it is possible to pick a supplement for N2 in Xl9 say X2. We note, from the 
fact that X2 C\XX^XX (otherwise N2 is small) that X2 is properly contained in Xx. 
We now have M=NX+N2+X2 and if we delete any of the terms we have a proper 
submodule of M. We continue in this way obtaining N39 Né9... et cetera. We 
note that the process must eventually stop since we have a strictly decreasing 
sequence XX^X2^. • • • and after a certain point, the submodules in this sequence 
must be small. Thus we obtain M=NX+- • '+N# where each Nt is hollow and we 
cannot delete any of them. 

Now suppose M=NX + - • -+Nq where each N't is hollow and none of the sub-
modules in the summation may be deleted. Without loss of generality, we may 
assume q>p- Consider N2+- • -+NP. This is a proper submodule of M by con
struction. We are going to show that for some /, Ni+N2+- • -+NP=M and none 
of the terms in the sum can be deleted. First, if N[+N2+- • -+N^M, then 
N[+Nf\ \-N3t=U+N2-\ \-Np where U is a proper submodule of Nx and 
thus is small in M. So N2 + - • .+N'q + u+N2+- • -+N9=N[ + - • '+N'Q+N2+- • • 
N^M. Thus ^2 + - • -+Nf

q+N2+- • -+NP=M since Uis small. Ifi\T2+JV2+- • • + 
NpT^M, we use the same process, this time adding N^-\ \-N'Q to get N^ + ' • • + 
Nq+N2+- - -+NV=M. We continue in this way to find that if there is no i<q—i 
with N'4+N2-\ \-NP=M9 then N'Q+N2-\ hN:p=M. In any case we now see 
there is / and N'i+N2-] \-N^M. Now we must consider the problem of de
letion. It is obvious, from the previous construction, that if we delete N'i9 we no 
longer have M. Suppose we delete N2. We then have N'i+N3+- • •+iVJ). If this 
equals M9 then consider N2-\ bNv=U+N3-i hNp where U is a proper 
submodule of N- and thus is small. Then Nx+U+Ns+ hNp=M, so Nx+ 
N3+- • -+NP=M since U is small. Thus we have successfully deleted N2 from the 
first summation. This is a contradiction, so we cannot delete N2. If we continue 
in this way, we find that we cannot delete any of the N/s left in ^ + ^ 2 + - • '+NP. 

4 
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Now after we have replaced Nx by N'i and changed neither the fact that the 
sum is M nor the fact that no term can be deleted, we replace N2 by some Nj 
and show the same two things. We continue this way, replacing all the possible 
iV/s. Then since q<p9 we find that after replacing all of the N/s that we have 
actually deleted some iVt-'s. This is a contradiction, so p=q. 

4. Further observations. From now on, we will term the integer determined in 
theorem 3.1 the spanning dimension of the module, M, and we will denote it by 
Sd(.M). We would like to be able to relate Sd(Af) to Sd(N) when iVis a submodule of 
M. Unfortunately, we are unable to deal with an arbitrary submodule since an 
arbitrary submodule might not have finite spanning dimension. However, we can 
prove the following. 

THEOREM 4.1. Let M have finite spanning dimension and Kçi M be a supplement. 
Then K has finite spanning dimension and ifSd(K)= Sd(M), K=M. 

Proof. By a supplement, we mean that K is a supplement of some submodule 
L of M. Now if X1^.X2^L • • • is a sequence of submodules of K, then there is an 
i and X5 is small in M for y >/ . If X5 is not small in K, there is L^^K) and X5+ 
Lj=K. But then, Xj+Lj+L=M. Since Xj is small in M, Lj+L=M and this 
contradicts the fact that K is a supplement of L. 

Now suppose Sd(X)= Sd(M). If K^M, pick L such that K+L=M and K 
is a supplement for L. Then L contains Lx which is a supplement for K. Clearly, 
then, 7^ is also a supplement for Lx. Using the decomposition of theorem 3.1 on 
both K and L, we see that if Sd(Li)>0 we would have Sd(K+Lx)> Sd(M) when, 
in fact, Sd(^+Xi)= Sd(M). Thus ^ = 0 , so K=M. 

THEOREM 4.2. Let M have finite spanning dimension and let Kç^M be a supple
ment. Then MjK has finite spanning dimension and Sd(M/i^)= Sd(M)—Sd(X)-

Proof. Actually, we show that MjK is Artinian. Since every Artinian module 
has finite spanning dimension, the first part of the result will then follow. So 
suppose X-^X^p. - - - is a strictly decreasing sequence of submodules of MjK. 
If we let/denote the natural map from M to M/K, thQnf-^1(X1)^f-^1(X2)^. • • • is 
a strictly decreasing sequence of submodules containing K. Since K is not small, 
nof^Xi) can be small in M. Thus the sequence of inverse images must terminate 
and this implies that the original sequence had to terminate. 

Now if K is a supplement, it is a supplement for some submodule L of M. 
Now L must contain Lx which is a supplement for K so K+LX=M. Once again, 
as in the previous proof, Kis a supplement for Lx. Thus Sd(i^)+Sd(L1)= Sd(M). 
We will show Sd(Lx)= $d(M/K). By theorem 3.1, L1=iVr

1+- • -+Nt where each 
Ni is hollow and no N{ may be deleted from the summation. Once again we denote 
the natural map from M to M/K by / . In that case, we see M/K=f(M)= 
f(K+Lx)=f(K)+f(Lx)=f(Lx)=:f(Nx)+- • -+f(Nt). Since it is well known that the 
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image of a small submodule of a module is again small,/(TV,) is hollow for each /. 
Furthermore, no f(N{) can be deleted from the sum for deletion in M/K would 
imply the possibility of deletion in M. Thus *= Sd(M/iT)= Sd(M)-Sd(K). 

5. The second decomposition. There is a fault with the decomposition of 
theorem 3.1; it is not direct and, usually, it will not be direct. We would thus 
be interested in conditions under which some aspects of directness would be assured. 
There is, for example, the following theorem. In it and in all the following we use 
the word semi-simple to mean that the radical of a module, the intersection of its 
maximal proper submodules, is zero. 

THEOREM 5.1. If a module has finite spanning dimension and is semi-simple, then 
it is a finite direct sum of simple modules. 

Proof. Let Af=iVxH YNt where each N{ is hollow. Each N{ is also simple 
because any submodule of Nt would have to be small and thus would be contained 
in the radical which is zero. Because no Nt can be deleted, it is easy to see that the 
sum is direct. 

COROLLARY 5.2. A module is semi-simple and Artinian if and only if it is a semi-
simple with finite spanning dimension. 

We have now treated the case of the module being semi-simple but there are 
still theorems which will help when semi-simplicity is not assumed. First, we return 
to theorem 4.1. From this theorem, we can conclude that the maximum number 
of elements in a strictly increasing sequence of complements must be Sd(M), 
because the strict containment of Kx in K2 implies the dimension of Kx is strictly 
less than the dimension of K2. We have now proved the following. 

PROPOSITION 5.3. If M has finite spanning dimension, then M has the ascending 
chain condition on supplements. 

PROPOSITION 5.4. If M has finite spanning dimension, then M has a maximal 
semi-simple supplement. 

Proof. Since the zero submodule is a semi-simple supplement, the set of all such 
is non-empty. Now, either we can use Zorn's lemma, or we can note that any 
strictly ascending chain of semi-simple supplements must end. Thus such a maximal 
supplement must exist. 

DEFINITION. We shall say that a module is .s3-free if it contains no non-zero 
semi-simple supplements. 

PROPOSITION 5.5. If M is sz-free, then Soc(Af)^ Rad(M). 

Proof. Let i b e a simple submodule of M. Let A $ Rad(A/), then there is a 
maximal submodule X and A^X. Thus A+X=M. Since A has no proper 
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submodules, it must be the supplement of X. The simplicity of A guarantees 
semi-simplicity. Thus if Soc(M) $ Rad(M), M is not s3-free. 

The converse of the above theorem is true provided we assume that M has 
finite spanning dimension. We mention this for the sake of completeness since v/e 
don't really need it. We make two remarks which are easily proved and which we 
leave to the reader. First, it is easy to show that if K+L=M, then Kis a supple
ment of L if and only if K n L is small in K. Next, it can be shown that the radical 
of M is the sum of all the small submodules of M. Thus, if a G Rad(M), Ra, the 
submodule generated by a, is in a finite sum of small submodules of M and thus it 
is small itself. 

THEOREM 5.6. Let M have finite spanning dimension. Then M is the direct sum of 
a maximal semi-simple supplement and an s3-free submodule. Furthermore, if 
M=KX®' • -®Kn®Px=Lx®- • -®Lt®P2 where KX®- • -®Kn and LX0- • -@Lt are 
both maximal semi-simple supplements andPx, P2 are sz-free, then n=t. 

Proof. Suppose Kis a maximal semi-simple supplement. Then it is a supplement 
for L^M. Now L^PX which is a supplement for K. Then M=K+PX and it is 
easy to see Kis a supplement for Px. Thus, by a preceding remark, K n Px is small 
in K. But K is semi-simple, so Px n ^={0} making M=PX+K direct. Since K 
is semi-simple with finite spanning dimension, by theorem 5.1, K=KX®- • -®Kn 

where each K{ is simple. 
The submodule Px is then s3-free, since, if it contains a semi-simple supplement, 

we would be able to find a larger submodule of M which is a semi-simple supple
ment and properly contains K. 

Nov/ suppose M=KX@- • • e^ n ©P 1 =L 1 0- • -@L 0 P 2 where the L's and JTs 
are simple. First we note that P x = f|!U ^ i© ' * '®Ki®' ' - © ^ © P i and each term 
in the intersection is maximal. Thus the radical of M is contained in Px. Similarly, 
it is contained in P2. 

Now suppose aePx but a $ Rad(Af). Then Ra is not small in Pl9 but if Pa were 
semi-simple, then we would be able to enlarge K and that is not possible. Thus, 
there is r e R and oj^ra e Rad(Af). 

Now we return to consideration of Kx®- • -®Kn. We shall try to alter this sum to 
get it contained in Lx@- • '®Lt but we shall not change its supplementary property. 
Then we shall have proved that n<t because of the dimensions of the two modules. 

It is possible that some of the K's, say p of them, are already contained in 
Lx@- • -®Lt. Then renumber them so that they become the first p of the K's. 
Thus K3)+1 is the first summand not contained in Lx®- • -®Lt. Now if k e Kp+X, 
then k=lx+- - m+lt+m where ra^O and m eP 2 . Since Kv+X is simple, we see that 
Rk=KJ)+1. In fact, if r ER and rk^O, then Rrk=KfP+1. We can also note that 
there is no r with rm=0 and r/t^O. If that were true, then Rrk^Lx+- - - + Lt and 
this is not so. Thus ann(&)3ann(m). Since r £ = 0 but rm^O implies a non-trivial 
dependence relation among m and the /'s, we also have ann(£)çann(m). 
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Now we might as well assume m e Rad(Af). If not, there is r e R and O^rtfi e 
Rad(Af). Thus r&^O and since Rrk=Kp+1, we find k e Rrk=Rrl±+- • -+Rrlt+ 
Rrm and the last term in the sum is in the radical of M. 

Now consider k—m=l±+• ••+/*. Since ann(&)=ann(m) is maximal, we find that 
ann(fc—m) is maximal. Thus R(k—m) is simple. Now consider Kx+' • -+KV+ 
R(k—m)+Kp+2A +Kn. It is easily seen that this sum is direct. If we look at 
(#1©- • -®Kp®R(k—m)©^+20- • - © J K J + J R W + P I we find that we may delete 
Rm since, by a remark previous to the proof, Rm is small. It is now easy to see that 
K-L®- - •®Kp@R(k—m)®K3t+2®' ' '®Kn is

 a supplement of Px and that the sum with 
Px is direct. Furthermore, the/?+l 's t term in the summation is now contained 
in Li©- • -®Lt. Continuing in this way, we can change all of the K's until each 
is contained in the sum of the L's. Since even the altered K's form a supplement, 
we must have n<t. Similarly we show t<n. Thus t=n. 

COROLLARY 5.7. If M is an Artinian module over R9 there is an integer n and 
M=K1@- - -®Kn®N where (i) each Ki9 f = l , . . . , n, is simple, (ii) N is s3-free, 
(iii) Kx+- • '+Kn is a maximal semi-simple direct summand, and (iv) any other 
semi-simple direct summand of M has at most n terms. 
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