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Abstract. Let k be a field and X = Spec(k[z, 1!]). Katz proved that a differential equations
with coefficients in k((+~!)) is uniquely extended to a special algebraic differential equation
on X when k is of characteristic 0. He also proved that a finite extension of k((r~!)) is uniquely
extended to a special covering of X when k is of any characteristic. These theorems are called
canonical extension or Katz correspondence. We shall prove a p-adic analogue of canonical
extension for quasi-unipotent overconvergent isocrystals. As a consequence, we can show that
the local index of a quasi-unipotent overconvergent is equal to its Swan conductor.
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1. Introduction

Let G, = SpecC[t,#7!]. Then the inclusion i: Spec C((¢))— G, induces an
inverse image functor i*: MC(G,,/C) - MC(C((1))/C) from the category of
locally free Og,,-module with connection to the category of C((#))-vector space with
connection. In [20, (2.4.10)], Katz proved that this functor induces an equivalence
between the full subcategory of the special objects [loc. cit. (2.4.9)] in
MC(Gy, ¢ /C) and MC(C((£))/C). On the other hand, in [19, 1.4.1], Katz also proved
its ‘covering version’. To be precise, let k be a field of characteristic p > 0. Then he
proved that the inverse image functor from the category of the special finite étale
covering of G, x to the category of finite étale coverings of Spec k((¢)) is an equiva-
lence of categories.

The purpose of this paper is to study p-adic analogue of these theorems. Let k be a
field of characteristic p > 0 and consider the inclusion i: Spec k((¢)) — G, .. We shall
prove the equivalence between the category of special overconvergent isocrystals
(cf. [2]) on Gy, and the category of ‘local’ overconvergent isocrystals
(Theorem 7.15.). This result is a generalization of the covering version and the ana-
logue of differential equation version of Katz correspondence.
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As an application, we can give another proof of a theorem of Tsuzuki on the
equality of the irregularity and the Swan conductor (Theorem 8.6), cf. [24, 29].
Moreover, the existence of canonical extension implies that the category of local
quasi-unipotent overconvergent isocrystals has a fiber functor and, hence, it is a neu-
tral Tannakian category.

We only treat the case of quasi-unipotent overconvergent isocrystals in this paper,
but it seems to the author that there should be Katz correspondence for a larger cate-
gory. For example, Garnier has shown that the analogous theorem holds for all the
overconvergent isocrystals of rank one [15]. On the other hand, Richard Crew con-
jectured that that every local overconvergent F-isocrystal is quasi-unipotent, and
recently Yves André [1] and Zoghman Mebkhout have announced proofs of this
conjecture independently.

Now we explain the contents of this paper. In the first section, we review the basic
properties of the Robba ring, which plays the role of a local field at a closed point of
a usual algebraic curve in the context of this paper. (It is called local algebra in
Crew’s paper [10, 4].) We also define some terminology for modules with connection.
In Section 3 we review the theory of overconvergent isocrystals in our case. In Sec-
tion 4 and Section 5 we study unipotent objects and étale objects. In Section 6 we
define special objects. In Section 7 we prove a local decomposition theorem for
quasi-unipotent overconvergent isocrystals, which corresponds to a theorem of
Levelt [23]. As a consequence, we get the Katz correspondence. In Section 8 we
define the breaks and break-decomposition for a quasi-unipotent overconvergent
isocrystal. Then we show the equality of the irregularity defined by Christol and
Mebkhout and the swan conductor. As a result, the ramification filtration is compa-
tible with the filtration defined by Christol and Mebkhout [5, 6] (Corollary 8.8.). Let
us mention that R. Crew has also given the proof of the above theorem using the
canonical extension independently [9].

2. The Robba Ring

In this section, we review the basic properties of the Robba ring (local algebra in
Crew’s terminology) and prove some lemmas, cf. [5], [10, 4.5], [30, 2].

2.1. DEFINITION

Let k be a perfect field of characteristic p > 0. Let K be a complete discrete valuation
field of characteristic 0 with residue field k£ and Oy its ring of integers. We denote by
| | the (multiplicative) valuation of K normalized so that |p| = p~!.

For an interval 7 in the set [0, co] of nonnegative extended real numbers, we denote
by A(/) the K-algebra of formal Laurent series in the variable ¢ convergent for any
number x of the completion of the algebraic closure of K such that |x| € I.

When 7 is closed, then A(/) have obvious topologies. When [ is open or half-open, we

give A(/) the inverse limit topology arising from the equation

https://doi.org/10.1023/A:1020233201909 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020233201909

KATZ CORRESPONDENCE 3

A= [ AU).

JcI,Jelosed

Then we define Robba ring R, to be lim A([4, 1)) and regard it as topological K-
algebra given the inductive limit topolo"éil. We observe that

) ay EK,
Rii=1 D @' | 0<V¥p < Llalp" — 0(n— o0),
n=—00 0<3i< 1, a,i" = 0(n — —o0)

We often denote Rk, by Rk, R or R, if confusion does not occur.
We define subrings K()" and Ox(t)" of Rk by

a, € K,
AC > 0,Vn > 0,]a,| < C, ,

[o¢]
K = Z ant"
0<3i<],|a,i" = 0(n — —o0)

n=—00

a, € OK,
3C > 0,Yn > 0, |a,| < C,

(/)KU)T = Z anln
0<3dl<,]a)i" = 0(n — —o0)

n=—00

Then K(7)' is a Henselian discrete valuation field with the ring of integers Ox(n’
with respect to the Gauss norm [24, 2]. We define the residue field of R, to be that
of Ox(n)t. We call K the coefficient field of R ,.

Let 1 be a positive number such that A<1. For A<r<1 and
=30 ant" € A([%, 1)), we define |f], = sup,cy, la,|r". Note that it is possible
that | f]; = co. If r < 1, it is a non-Archimedean valuation of A([4, 1)).

LEMMA 2.1. Kt is algebraically closed in R,.
Proof. First note that f € K(r)" if and only if lim sup,_, ;- |f], < co. Suppose that
x € Rk, is algebraic over K(#)T. Then there exist u; € K(7)" (1 < i< n)such that

X 4w x4, =0, (1)

We can choose 0 < A < 1 so that uy,...,u,, and x are all belong to A([4, 1)). Since
limsup,_, - |u], is bounded for all 1 < i< n, if limsup,_, ;- |x|, = oo, there exists
A<r<1 such that |x|, is larger than any ||, and 1. Then we have
|x" + u X" - 4+ u,_1x|, > |u,l,, which contradicts (1). Therefore limsup, .-
x|, < oo and hence x belongs to K(r). O

Let E be the residue field of Og(7)" and F a finite separable extension of E. Since
K(#)" is Henselian, there exists a finite étale extension O of Ok (r)" with residue field
F. Let F be the field of fractions of O and K’ an unramified extension of K whose
residue field is that of F. Then, by [24, 3.4], F ~ K (u)".
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LEMMA 2.2. F®, Ry~ R
i)

Proof. It is obvious that K'(r) ® ot Rk~ Rk, If we replace K()f by K,
we can assume that K’ = K. Then as in [24, 3.4], there exists b; € tOk][t]] such that

u" + b b, =0,

where m is the degree of F over E. Then the assertion is clear from the previous
lemma. O

We denote F ®K(r>T Rk by Ri(F) or Rig(F), R(F) if confusion does not occur.

2.2. FROBENIUS STRUCTURE

Let ¢ be a Frobenius endomorphism of K. We denote by K, the subfield of K con-
sisting of the elements fixed by ¢". We assume that

K, contains a uniformizer of K. (2)

Then, if K, is the maximal absolutely unramified subfield of K, we have
K1 ®o, Ko >~ K. Let K’ be a finite extension of K and K|, the maximal absolutely
unramified subfield of K'. Suppose that K’ satisfies the condition that

there exists a subfield L of K’ totally ramified over K; 3)

which contains a uniformizer of K'.
For such an extension K, we extend the Frobenius endomorphism ¢ so that its
action on L is trivial. We denote the Frobenius on K also by ¢. Note that for
any finite extension K’ of K, there exists a finite extension of K” of K’ which satisfies
the condition (3) ([7, 1.8], [30, 2.4.1]).

Let ¢ be a lifting to Og(n)" of the Frobenius endomorphism x > x” of the residue
field E. In the rest of this paper, we always assume that the restriction of ¢ to K satis-
fies the above condition. We shall show that ¢ extend uniquely to the continuous
endomorphism of Rg.

LEMMA 2.3. Let {fi}2, be a sequence of elements of A([4,1)). If lim;_,  |fil, = 0 for
any r € [A, 1), then Y. f; converges to an element of A([4,1)).
Proof. Since A([A, 1)) is complete ([5, 2.1], [10, 4.2]), it is clear. O

By Lemma 2.3, we can define a map ¢: Rx — Rg by

¢ (Z ay t") =" lane(r)".

ne’z nez,

LEMMA 2.4. Let n be a uniformizer of K and q = p". Let f =" a,t" € Rg,. Then
there exists an ro < 1 such that, for any r such that ro <r <1, ["()|, < |f -
Proof. Since we can write ¢"(f) = ut?! + h(t) with a unit u of Ok and A(?) €
nOx(t), |¢"(7)|, = 4 for r close enough to 1. Then |¢"(f)|, < sup; |@" (@)™ (D). <
sup; |air? = | fl0. 0
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LEMMA 2.5. ¢:Rg — Rk is continuous.

Proof. As an fundamental system of neighborhoods of 0 of A([4, 1)), we can take
Uer=1{f11Ifl, < e for Vr e I} for closed interval I C [4, 1) and ¢ > 0. By Lemma 2.4,
there exists an ry such that for any fe A4, 1), |o(f)|, < |f|,» for any r such that
ro <r <1. Then if fe U, 1}, @(f) € U,;,[,ﬂl‘,g] and, hence, @: A[A, 1) — A[/’, 1) is
continuous. Taking inductive limit, we can see that ¢: Rx — Rk is continuous,
because lim A[4, 1) is also the topological inductive limit [10, 4.2]. O

Since K(7)" is dense in Rx and R is separated, ¢ is the unique continuous endo-
morphism of R extending ¢ on K(7)". We call such an endomorphism a Frobenius
of RK.

Let ¢ be a Frobenius of R, and F a finite separable extension of E. Let Of be a
finite étale extension of Ox(¢)" with residue field F and F its field of fractions. Since
Ox(1)T is Henselian, a Frobenius endomorphism of K(t)" extends uniquely to that of
F. Thus we can uniquely extend ¢ to R, (F) = ‘7:®1<<t)7 Rk, so that p(a ® b) =
@(a) ® @(b). This homomorphism is also a Frobenius endomorphism of Ry .

2.3. CONNECTION AND FROBENIUS

We denote by MC(Rg/K) the category of projective Rg-modules M of finite type
with K-connection V: M — M @ Qg,. Here Qg, is defined to be Rgdz/zt.

With the obvious notions of tensor product and internal hom, MC(Rk/K) is a
rigid Abelian K-linear tensor category [12].

PROPOSITION 2.6 (R. Crew [10, 6.1]). If (M, V) is an object of MC(Rk/K), then M
is a free Rg-module.

For an object (M,V) in MC(Rk/K), we define its cohomology groups by
HY(M) = KerV, Hy (M) = Cok V.

A @"-structure ¢, on (M, V) is a ¢"-linear map ¢,: M — M which commutes with
V such that its linearization

D, =1d®¢, RkQM —> M
0" o"

is an isomorphism of Rg-modules. We say a triple (M, V, ¢,) is a ¢"-V-module over
Rk if (M, V) is an object in MC(Rg/K) and ¢,, is a ¢"-structure on it. A morphism
fi(M,V,0,) — (M',V', ¢,) of ¢"-V-modules is an Rg-linear map which commutes
with connections and ¢"-structures. We denote the category of ¢"-V-modules by
MCF,(Rk/K). Then MCF,(Rk/K) is also a rigid Abelian K,-linear tensor category.
If confusion does not occur, we often denote an object of MCF,(Rg/K) by M
instead of (M, V, ¢,) for simplicity. Let K’ be a finite extension of K which satisfies
the condition (3). We extend the Frobenius endomorphism ¢ to K’ as described in
the paragraph following condition (3) and denote also by ¢. Let M' = M ®x K'.
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Then V' = Vg ® id and ¢, ® ¢" define a connection and a ¢"-structure on M’ respec-
tively, so there is a natural functor MCF,(Rg/K) - MCF,(Rk /K).

LEMMA 2.7. Let ¢ be a Frobenius of Ri. Let 0 =td/dt and p,(t) = 0¢"(1)/
@"(1) =, cit’. Then ¢y = q=p" and |w,|, — |p,l1 < || when r — 17. Here 7 is a
uniformizer of K.

Proof. Let ¢"(f) = Y b;t', then b, is a unit and b; = 0(mod n) if i # ¢. Therefore
_q+t Dizg iz%ti_q _q+t qizg qg’—;t"q + 2 il — q)Z—;t"“’
IR A DI '
If we put g(1) = Y., (bi/by)i"~?, then g(1) € nOk(1)" and

g +g+0g o,y
un—17+g—q+<ag><2( g )

My

m=0

Since

m __ 1 m+1
(098" = —— &™)

has no constant term, the assertion is clear. O

PROPOSITION 2.8. Let w € Q. If ¢"(w) = w, then w = 0.
Proof. For simplicity we assume that n = 1, but we can prove the general case in
the same way. Let us write

;dt dt
= ; b;t 7 = gT .
If p(w) =w, then g = p(g)n with u = 0¢(t)/p(f). We will show that g =0. By
Lemma 2.7, there exist rp < 1 and 0 < C < 1 such that g € A([rp, 1)) and |u|, < C
for any r such that rp < r < 1. It is easy to see that for any such r, there exists an
integer i such that |g|, = |b;|r.

Suppose that g # 0. Then the integer i is bounded, for any fixed r. We denote the
maximum of such i by 7;(r) and the minimum by #y(r). First we consider the case that
there exists an r such that iy = i;(#’) = 0. Since i;(+') = i;(r) if ¥/ > r, we can assume
that |p(2)|, < |g|,» by Lemma 2.4. Then

|(P(g)|) < |g|rl’ = |bi1|rpi1 < |bi1|riI < |g|l

and, hence, |g|, = |up(g)|, < C|gl|,, a contradiction.

Next assume that i = #;(r) < 0 for any r. Let 1y be a real number such that the
assertion of Lemma 2.4 holds for n = 1. Put iy = iy(+?) for r such that rop < < 1.
Since iy(rg) < ip(i?),

o) 5 o= — Dl Bl 18l
> =Dl =8
|bj, |rfo lgl, g1,
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Thus if we choose r so that r?P~Dd(0) < 1/C, we have |g|,,» < |g|,/C and, hence,

lgl, = lup@)l, < lullgl, < C(1/O0)lgl, = Igl,

a contradiction. |

COROLLARY 2.9. Ry =" :={(fe Rx | ¢"(f) =f} = K, (cf. Section 2.2).
Proof. Let fe R%ﬂzl. Since dog =@ od, df satisfies the assumption of
Proposition 2.8 and, hence, df = 0. Therefore '€ K and the assertion is clear. []

3. Overconvergent Isocrystals

We briefly review the overconvergent isocrystals in our case. Let k and K be as in
Section 2. Let X = Gy,,x = Speck[r,17!] C X = IP,IC, and take those formally smooth
liftings X = Spf Ok{t, 1"} cX = J@}QK For a smooth formal scheme ) over Ok, we
denote its Raynaud generic fiber by V.

We denote the category of overconvergent isocrystals (resp. overconvergent F-iso-
crystals) on X [2, (2.3.6), (2.5.1)] by lsocT(X/K) (resp. F—IsocT(X/K)). Let A" be the
weak completion of 4 = O[t, '] and Q .+ the differential module of A" in the sense
of Monsky—Washnitzer [25, Th. 4.2], [31, (2.3)]. Then we have

Af = A" @ K~ lim T(V,03,)
]

o0
:{ Z a,t"

n=—00

||

a, € K, |a,|A"" — 0(jn| = o0)

for some A > 1

Q 4 ::QAT ® K~ lim I'(V,Qyp),
Ak N

where ] X[ is the tube of X inXx and ¥ runs through a cofinal set of strict neighbor-
hoods of | X[ in X, cf. [2, §1.1, §1.2]). We denote by MC(A%/K) (resp. MCT(4%,/K))
the category of A;Q—module projective of finite type with integral connection
Vi M — M®Q ; (resp. the full subcategory of MC(AL/K) of objects with connec-
tion whose Tayﬂfr series converges on a strict neighborhood of the diagonal in
Xk x Xg (cf. [2, (2.5.2)])). Since AZ is a Noetherian ring [14], IsocT(X/K) is equiva-
lent to MCT(4}/K).

PROPOSITION 3.1. If (M, V) is an object of MC(AL/K), then M is a free A-module.
Proof. Proof is almost same with that of [10, 6.1]. ]

Let ¢ be a lifting of Frobenius of 4 = A" ® k. We denote by MCF,,(A};/K) the
category of A}-modules projective of finite type M with an integrable connection
Vand a ¢"-linear endomorphism ¢, of M which commutes with V and its linearization

Q,: ("M, 9™V) — (M, V).

is an isomorphism of A;-modules.
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THEOREM 3.2 (P. Berthelot [2, (2.5.7)]). If (M, V, ¢,) is an object ofMCFn(AL/K),
then Taylor series of V converges on a strict neighborhood of the diagonal inXx xX.

Proof. In [2, (2.5.7)], only the case where n = 1 is proven, but the same proof is
available for any n > 2. O

Thus, there is a forgetful functor from MCFn(A};/K) to MCT(AE/K).

COROLLARY 3.3. (P. Berthelot [2, (2.5.1)]). There exists an equivalence of cate-
gories between F-IsocT(X/K) and MCFl(A};/K).

MC(A}/K) and MC' (4% /K) (resp. MCF, (4} /K) for n > 1) are rigid Abelian ten-
sor categories over K (resp. Kj,).
The inductive limit

lim (VNJ0[, Ox,),

where V runs through the set of strict peighborhoods of X\ {0}[ in Xk, is isczmorphic
to a Robba ring Rk over K. (J0[ and ]X\ {0}[ denote the tubes of 0 and X in X, cf. [2,

§1.1, §1.2]).

In the rest of this paper we fix a parameter ¢ of X, then we have a canonical injec-
tion AI@—) Rk. We also fix a Frobenius ¢ of Rk such that qo(AL) C AL. Then we
have canonical functors

MC(A4}/K) - MC(Rx/K),
MCF,(4}./K) - MCF,(Rk/K).
We denote (M, V, ¢,) (resp. (M, V)) simply by M if confusion does not occur.

4. Unipotent Objects

In this section, we study unipotent objects. R denotes either Rg or A};.

Let (M, V) be a free R-module of finite rank with connection. We say (M, V) is uni-
potent if it is a successive extension of the trivial object (R, d) by itself. We denote by
MC"(R/K) the full subcategory of MC(R/K) of unipotent objects. The next theo-
rem is classical (cf. [20, (2.4.3)]).

THEOREM 4.1. The functor (Vo,N)+> (Vo ®k R, V), where the connection V s is
defined as V(v ® 1) = Nv@dt/t, induces an equivalence of the category of finite-
dimensional K-vector space with a nilpotent endomorphism and MC“ni(R/ K).

Proof. Let 0 =1td/dr and Ry = {> ,.,ait' € R| ay=0}. Then 0: Ry — Ry is
bijective. We denote V(rd/dr) also by 0. Then,

(M, V)~ <U Ker 8”,8)

n>0

gives an inverse functor. [
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COROLLARY 4.2. The functor (M,V)+— (M ®A-§- Rk, V& 1) induces an equivalence
of categories between MC““i(A}L(/K) and MC““i(RKK/ K).

LEMMA 4.3. If (M,V) is unipotent, then there exists a @-structure on (M,V).*
Proof. By Theorem 4.1, we are reduced to the case of (Vy ® Rk, V) where Vj is a
K-vector space of dimension r and the representation matrix of N is given by

0 1 0
N= -
0 1
0 0
for some basis v = (vy,...,v,) of V. Let Ry be as in the proof of Theorem 4.1 and 7

the inverse operator of 9: Ry — Ry. Let u =Y., cit' = d(¢(1))/ (7). By Lemma 2.7,
the constant term of p is p. We put @' = u—p € Ry.
Consider ¢-linear morphism ¢; on (M,V) determined by ¢,(v® 1) = (v ® 1)4

with
fo fi o fs
ph pfi  phH
A= o r*h | 4)
0

Then the condition that V and the above ¢-linear morphism commute is equivalent
to 04 = —NA + uA@(N). This means that f; (i = 1,2,...,r — 1) satisfy the following
equations:

8f0=0, afl:/“t/ﬁfl (i:1727"'7r_1)' (5)
We show that we can define g; € R for i=1,2,...,r — 1 inductively by

gr=u, g=pIlg) (>2).
and that g; € Ry. Then for any n-tuple op,...,0,_; of elements of K,
fi=oaol(g) + - -+ ai—1d(g1) + o; satisfy (5), and, if oy # 0, ¢, is a @-structure.

The existence of g; is trivial if i=1. Assume that g; is well-defined for

1 <i<,j—1and belong to Ry. Then the existence of g; is evident. Since d(I(')*") =
G+ DI Y =G+ DIW)Yg:, I(W)Yg, € Ry. For i < jand m > 0, we also have

A" I(gi)) = mpl 1) (gi) + 1) "g;

= mI()" g1 + 11)"g;.

This implies that, if I(u)"g; € Ry, then I(1)" 'giy1 € Ro. Tt follows immediately
from these observations that g; € Ry. O

*B. Chiarellotto, B. Le Stum and E. Pons have also shown this result, cf. [4, 5.2.2].

https://doi.org/10.1023/A:1020233201909 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020233201909

10 SHIGEKI MATSUDA

COROLLARY 4.4. We can regard naturally MC““i(AE/K) as a full subcategory of
MCT(4}/K).
Proof. 1t follows immediately from Lemma 4.3 and Theorem 3.2. O

Remark 4.5. If M is indecomposable, it is also easy to see by direct calculation that
the matrices of above form give the all-Frobenius structures, but there is a better way
to see this.

In general, let (P, V,,) be a ¢"-V-module over R and v/, another ¢"-structure on
(P,V). We denote those linearizations by ¥, and ¥/. Then W, o ¥,' gives an
automorphism of (P,V). Conversely, for any automorphism of f of (P,V), fo ¥,
is a ¢"-structure on (P,V). Thus we have one-to-one correspondence between the
set of ¢"-structures on (P,V) and the set of automorphisms of (P,V) if at least
one ¢@"-structure exists.

By the lemma below dim Homy(M, M) =n. Then for (o,...,a,—1) running
through K", the above matrices (4) give all the ¢"-linear morphisms on (M, V).

LEMMA 4.6. Let U, and U, be indecomposable unipotent R-modules with connection.
Then dim Homy (U, U;) = min(rank U}, rank U5).

Proof. This follows easily by direct calculation. O

COROLLARY 4.7. The inverse image functor
MCF" (4% /K) — MCF"™(R/K)
is an equivalence of categories.

Proof. Let (M, V) be an object in MC"™(Rg/K). By Corollary 4.2, there exists a
sub—AL—module with connection (MT, V") in MC"(4}/K) whose inverse image is
(M,V). It is sufficient to show that every ¢”-structure ¢, of (M,V) extends to
(M7, V"'). As in Remark 4.4, ¢"-structures on M (resp. M") correspond to horizontal
automorphisms of M (resp. M"). Since the natural map

Homy(M', M") — Homy(M, M)

is isomorphism by Corollary 4.2, the assertion is clear. O

5. Ktale Objects

In this section, we study étale objects. We use the same notation as in Section 3.

5.1. GLOBAL CASE

Let (M,V, ¢,) be an object in MCF,,(AE/K). We say (M, V, ¢,) is unit-root if there
exists a sub-4"-module L of M projective of finite type such that

) M~A4p® 4L,
(i) @, (L) C L,

6
(i) ©, =1d® ¢, : AT®%L — L is an isomorphism ©

of AT-modules.
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We say that a finite étale covering U — X = Spec(4’ ®o, k) is special if it is tame at
0 and if its geometric monodromy group has a unique p-Sylow subgroup (cf. [19
1.3.1]). Let U — X be a special Galois covering. Since (AT, (n)) is a Henselian couple
[24, 2.2], there exists a finite étale Galois extension B’ of AT such that
Spec(B" ®0, k) ~ U uniquely up to isomorphisms.

We denote by Repi?n (nl(X , *)) the full subcategory of the category of finite-dimen-
sional continuous representations of 7;(X, %) over K, consisting of objects such that
71 (X, %) acts through a finite quotient corresponding to some special Galois covering
of X. Let V be an object in Repy - (m1(X, %)) and BT a finite étale Galois extension of
AT which corresponds to a spemal Galois covering U — X such that 7;(X, %) acts on
V through Gal(B"/A"). Let BZ = B ®0, K. We define

D i (=&, "™,

where ¢ € 71(X, *) acts on V ®x, BJf by 0 ® 0. Note that it does not depend on the
choice of Bf. We endow D T(V) with ¢"-structure ¢, =1d ® ¢". Here ¢" on the
right-hand side is Frobenius 6f A’ uniquely extended to BT

LEMMA 5.1. There exists a unique connection V on M = DAT (V) which commutes
Kol

with ¢,. Moreover, (M,V,,) is a unit-root object in MCFH(AZ/K).
Proof. By Galois descent [22, 5.1], M is projective A}r(-module of finite type (and
hence free by Proposition 3.1) and

M® ; By~ V®x, B. (7)

The existence and the uniqueness of the connection that commutes with ¢, follows
from a similar argument as in [13, A.2.2.4] and Proposition 2.8. We remark that the
connection naturally extended to M ® T BT V ®k, BL is given by V(x ® 1) = 0 for
xel.

Let Ok, be the integer ring of K, and V a Ok, -lattice of V. Replacing V by the sum
of its translates by the action of 7;(X, %), we can assume that V is stable by n; (X, *).
Then L = (V ®0y, BF)™=(**) satisfies the three conditions of (6). OJ

We say an object (M, V, ¢,) (resp. (M,V)) in MCFn(AL/K) (resp. MC%(AL/K)) is
special unit-root (resp. special étale) if it comes from a representation of the Galois
group of a special Galois covering of X in the above way (resp. if there exists a
@"-structure ¢, on (M,V) for some n such that (M, V, ¢,) is special unit-root). We
denote the full subcategory of MCF,,(A x/ K) (resp. MCT(A x/ K)) of special unit-root
(resp. special étale) objects by MCF;P* (4 K/ K) (resp. MCSS(A /K)). By Lemma 5.1,
we can regard DA as a functor from Rep¥ &, (M (X, %)) to MCF,”"(4 K/ K).

We say an object (M,V, (p,,) in MCF (AK/K) is special étale if (M, V) is spec1a1
¢étale as an object in MCT(A x/K). We denote the full subcategory of MCF,,(A /K
of special étale objects by MCF;C(AL/K).
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Let (M,V, ¢,) be an object in MCF,;*""(4 K/ K). Let V be a finite representation of
1 (X, %) over K,, such that M >~ D f (V) in MCF (AK/K) Take a special covering U

of X such that n;(X, *) acts on V through Gal(U/X) and let B be the finite étale
extension of AT corresponding to U — X. We choose U so that W) C B'. Here
W(F ) is a Witt ring with residue field I». Let Bl = Bt ® K. Then we define

Vi (M)=M® ;B i={xe M® ; B | 9,(x) = x).
Kl Ag Ay

Here ¢, acts on M ® BT by ¢, ® ¢". V A (M) does not depend on the choice of

B'. We endow V 1 (M) with an action of 7r1(X x) by id ® ¢ for ¢ € (X, *). Thus
we can define a functor vV At from MCF;"(4 /K) to Repy (m1(X, %)).

LEMMA 5.2. IfIF, Ck, VAT is a quasi-inverse of DA+ and, hence,
KM Kol
Dy MCF (4}/K) — Rep}? (m1(X, )
tn ;

is an equivalence of categories.
Proof. Suppose that M is isomorphic to DT (V) for some object V in

Repy? - (m1 (X, *)). Let BT be as in the definition of D Then
Vi, O =V @, BY™ @ ¢ By

~(V ®k, B! )(ﬂrl
~ V®K ( BK)qJ” 1
n__ /1:1

Thus we only have to show that By ={xe B | @"(x)=x}=K,. If x By) ,
then dx = d¢”(x) = ¢"(dx). This implies dx = 0. In fact, we can assume that x € B'
and in this case it follows from a similar argument as in [13, A.2.2.4], by embedding x
in the completion of BT with respect to the p-adic topology. As a result, x belongs to
the maximal unramified extension K’ of K in BL. Since Iy C k, K, = K,. O

5.2. LOCAL CASE

We say an object (M, V) in MC(Rk/K) is étale if there exists a finite separable exten-
sion F of the residue field £ of Rk such that (M @z, Rk(F),V ® Rk(F)) is trivial in
MC(Rk(F)/KF). Here Kr is the algebraic closure of K in R(F).

We say an object (M, V, ¢,) in MCF,(Rx/K) is unit-root if there exists a free sub-
Ok(t)T-module L of M such that

HOM~L ®Ok(z)

(ii) ¢, (L) C L,
(iii) 1 ® ¢, : Ok(t yf ®g,L — L is an isomorphism
of Ok () -modules,

TRK7

®)
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We denote by MC®(Rk/K) (resp. MCFY'(Rg/K)) the full subcategory of
MC(Rk/K) (resp. MCF,(Rk/K)) of étale (resp. unit-root) objects.

We say an object (M,V, ¢,) in MCF,(Rk/K) is étale if (M, V) is étale as an object
in MC(Rk/K). We denote by MCF:(Rk/K) the full subcategory of MCF,(Rk/K)
of étale objects.

LEMMA 5.3. If (M,V) e MC(Rk/K) is étale, then (M,V) has a unit-root @"-
structure for sufficiently large n.

Proof. It suffices to show that (M, V) has a unit-root ¢"-structure for some n. Let F
be a finite Galois extension of E trivializing (M, V) and G = Gal(F/E). Let V| be the
kernel of V® R(F) on M ® R(F). Then V| is stable under the action of G and it is a
representation of G over K. By the theorem of Brauer [27, Theorem 24], if K, for some
n has a mth primitive root of unity for sufficiently large m, V| has a K,-lattice V" which
is stable under the action of G. Then M =~ (V Qk, R(F))¢ and the assertion is clear.

In general, there exists a finite Abelian extension K of K such that M ® K’ has a
unit-root ¢"-structure ¢, for some n. Then ¢, commutes with the action of Gal(K'/
K) and, by Galois descent, M itself has a unit-root ¢"-structure. O

Let E be the residue field of R¢ and G = Gal(E*P/E). We denote by Rep[,i(f(G) the
category of finite-dimensional continuous representations of G on which G acts
through finite quotients. For an object V' in Repf}‘n‘(G), take a finite Galois extension

F of E such that G acts on V through Gal(F/E). We define
Dren(V) = (V @k, Ri(F))®.  (cf. Section 2.1)

Here 6 € G acts on V' @ Rg(F) by ¢ ® 6. We endow Dg, ,(V) with ¢"-structure ¢,
by id ® ¢". It is obvious that Dg, ,(V) is independent of the choice of F.

LEMMA 5.4. There exists a unique connection V.on M = Dy, ,(V) which commutes
with ¢,. Moreover, (M,V,@,) is a unit-root object in MCF (R k/K).
Proof. Let F be as in the definition of Dg, ,. As in the proof of Lemma 5.1, we have

DR, n(V) @ry Ri(F) =~ V ®k, Ri(F) ©)

and the assertion follows from Lemma 2.2 and Proposition 2.8. We remark that the
connection naturally extended to Dg, (V) ®r, Rx(F) =~ V ®k, Ri(F) is given by
Vx®1)=0forx®1 € V@ Rk(F). ]

We say an object (M, V, ¢,) in MCF}"(Rg/K) is finite unit-root if it is isomorphic
to Dg, (V) for some object V' in Rep?(rn‘(G). We denote the full subcategory of
MCF,"(Rk/K) of finite unit-root objects by MCFE‘”(RK/K). By Lemma 5.4, we
can regard Dy, , as a functor from Rep?gs(G) to MCF,g“r(RK/K).

LEMMA 5.5. Let M,N be objects in MCF"(Rg/K). If an endomorphism of
Ri-modules from M to N commutes with ¢"-structures, then it also commutes with
connections.
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Proof. We reduce to the case that M is (Rg, d, ¢"). Then the set of endomorphisms
from R to N that commutes with ¢"-structures is isomorphic to {x € N | ¢,(x) = x}
and we only have to show that it is annihilated by the connection V on N. By
Corollary 29 and Lemma 54, we have N?='C N®g, Rx(F)"~' =
(V ®k, Ri(F)?=! = V' ®k, K,. Then the assertion is clear from the last remark in
the proof of Lemma 5.4. O

Remark 5.6. It is easy to see that Lemma 5.5 does not hold without assumption
that ¢"-structures are unit-root.

Let (M,V, @,) be an object in MCF""(Rx/K). By definition, there exists an object
V in Rep?(f:(G) such that M ~ Dg, ,(V). Take a finite Galois extension F of E such
that G acts on V through Gal(F/E) and that the residue field contains I,». We define

VRga(M) = (M @, Re(F)™”~" = (x € M ®r, Rx(F) | ¢,,(x) = x}.

Here ¢, acts on M ®x, Rx(F) by ¢, ® ¢". We endow Vg, ,(M) with Galois action
by id ® ¢ for o € G. Obviously Vg, ,(M) is independent of the choice of F.

LEMMA 5.7. If Fpn Ck, Vryn is a quasi-inverse functor of Dg, . and hence
Dryn : Repi(G) — MCF)" (R /K)

is an equivalence of categories.
Proof. We can prove the assertion in a similar way as in the proof of Lemma 5.2
by Corollary 2.9. ]

In general, the functor Dy, , can be defined for finite-dimensional representations
of G over K, such that the inertia [ acts through a finite quotient. We call such a
representation with finite monodromy.

We briefly review the construction of the functor by Tsuzuki [28, 4] with our nota-
tion. Let £ = K(r)" and denote by O its ring of integers Ox(n)'. For a finite separable
extension of F of the residue field E of Og, we denote a finite étale extension of O
with residue field F by Of and its field of fractions by F. Let K’ be the coefficient field
of RKQ) (cf. Section 2.1) and let F be the image of F ®x K" in K| ®7z, W(E"®).
Here KU is the completion of the maximal unramified extension of K, F is an alge-
braic closure of E and W(E*2) is a Witt ring with residue field EF. We define

£ = lim 7,
FIE
where F runs through all finite separable extensions over E. Let G = Gal(E*P/E). For
a representation V of G with finite monodromy over K, we define the functor Dy, , by

Drea(V) = (V ®x, €)° ®¢ Ry (10)
It is easy to see that, if V' is an object of Repf;(;‘(G), then the above functor is compa-

tible with the functor already defined.
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The next theorem means that any overconvergent F-isocrystal has finite mono-
dromy.

THEOREM 5.8 (N. Tsuzuki [28, 4.2.6]). Any object in MCF}" (Rk/K) comes from a
representation of G with finite monodromy.

COROLLARY 5.9. Any object in MC*'(Rg/K) is isomorphic to the image under the
forgetful functor of an object in MCF™(R/K) for some n.

Proof. Let (M,V) be an object in MC®(R/K). By Lemma 5.3, there is a
@"-structure ¢, on (M, V) such that (M, V, ¢,) is an object of MCF,"(R/K). Then M
can be written as Dg,(V) with a representation ' with finite monodromy by
Theorem 5.8. We use the same notation as in the paragraph following Lemma 5.7. Since
K, is locally compact, the action of the inertia / of G is trivialized by some finite Galois
extension F of E. Let H = Gal(E*P/F). Since I N H acts trivially on V, we obtain

(V @k, K @p K ~ V @k, K (11)
(cf. [13, A.1.2.4], [28, 4.2.2]). Thus if we put ¥ = (V ®x, K)"’, then
M=(V®g &’ ®:R
~ (V @k, K @ F)° ®¢ R)
~ (V@r K" Qg F)’ @ R
~ (V@rF)’ @R
~(Ver F)'M @R

By (11), V is a K'-vector space of dimension equal to r = dimg, V. We fix an iso-
morphism ¥ ~ @' K’ and define a Frobenius action ¢/, on ¥ so that it is compatible
with the action € ¢" on the right-hand side of the above isomorphism. Then ¢),
extends to the ¢”"-structure of (M,V) by (12) and (M,V,¢)) is an object of
MCF™(Rk/K). O
5.3. KATZ CORRESPONDENCE FOR ETALE OBJECTS

By [19, 1.4.7], and Lemma 5.2, Lemma 5.7 above, we have the next proposition.
PROPOSITION 5.10. If F)» C k, the inverse image functor

MCF" (4} /K) - MCF™(R/K)
is an equivalence of categories.

The forgetful functors
MCF" (4}, /K) — MC*(4}/K),
MCF™(Rx/K) - MC*(Rx/K)

are faithful but not full if K, ZK. However, we have the next lemma.
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LEMMA 5.11. Let M and N be objects in MCF;p“r(A};/K) (resp. MCFE‘“(RK/K)).
Then for some finite unramified extension K of K, we have

Ho (M',N') ®, K' ~ Hom (M',N)

mMCFspur(AT /K/) MCSE(AT /K’)
n K )<

(resp. HomMCFg.T(RK,/K,)(M’, N) ®k, K' = Homyceg,, /5 (M, N')).

Here M/ = M @ K and N = N @ K'.

Proof. We only give the proof of the case of Rg. The case of AL can be proven in
the same way.

It suffices to prove in the case that M is 1= (Rg,d,¢"). Let (N,V,0p,) €
MCF™(R/K) and let ¥ be an object in Repf,gj(G) such that N >~ Dg, ,(V). Take a
finite Galois extension F of E such that G acts on V through Gal(F/E) and that the
residue field contains ['y. Then we have Homycpnr g, /) (1,N) = No=1 by
Lemma 5.5.

Let K be the coefficient field of Rg(F) (cf. Lemma 2.2). We denote
{x € L| Vx =0} by LY for module with connection (L, V). Then we have

Homyjceg, k(1 N) = ((V ®k, Ri(F))Y
= (V @k, Rx(F)")°
= (V®k, K)°.

On the other hand, by Lemma 5.5
Homycprur iz, /501 N) 2 ((V @k, Ri(F)9)=!
= ((V ®x, Rx(F)™="°
= (V &k, K,)°.

After extending scalars, we can assume that K’ = K. Then the assertion is clear. []
COROLLARY 5.12. The inverse image functor
1: MC*(A},/K) - MC*(Rg/K)

is an equivalence of categories.
Proof. For any positive integer n, we have a diagram

MCFPur (Al /K) — MCF™ (R /K)
forgetfulJ' l forgetful

MCee (Al /K) —— MC*(Rk/K).
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Here ¢’ is also an inverse image functor. By Proposition 5.10, if I, C k, /' is an
equivalence of categories. Since any object in MC®(Rk/K) is an image by forgetful
functor of an object in MCF,E'"(RK/ K) for sufficiently large n by Corollary 5.9, 1 is
essentially surjective. We show that 1 is fully faithful. Let us denote MC*(Rx/K)
(resp. MCSE’(A;/K)) by Cx and let M, N be objects in Cx. Then it is easy to see that
Home, (M, N) ® K' ~ Hom¢,, (M ® K', N ® K’). On account of this, the full faithful-

ness follows from Lemma 5.11. O

COROLLARY 5.13. The inverse image functor
MCF*(4},/K) - MCF(Rk/K)

is an equivalence of categories.
Proof. 1t follows from the same argument as in the proof of Corollary 4.7. []

5.4. SCALAR EXTENSION

Let L = K™ be the completion of the maximal unramified extension of K. We call an
object (M, V, ¢,) in MCF,(Rk) geometrically irreducible it M ®x, R, is irreducible
(i.e. it has no proper subobject) in MCF, (R /L’) for any finite extension L’ of L. We
call an object (M, V) in MC(Rg) is geometrically irreducible if M @k K’ is irreducible
in MC(Rg ) for any finite extension K’ of K satisfying (3). We call objects (M, V, ¢,)
and (M', V', ¢}) in MCF,(Rg) are geometrically isomorphic if (M, V, ¢,) @z, Ry and
(M, V', ¢l) ®r, Rr are isomorphic in MCF,(R,//L’) for any finite extension L’ of L
satisfying (3). The next lemma shows that, in MC(R/K), ‘geometrically isomorphic’
means isomorphic.

LEMMA 5.14. Let M and N be objects in MC(R/K), and let L be a finite extension
field of K. Then there exists an isomorphism M ~ N in MC(Rk/K) if and only if there
exists an isomorphism M Qx L >~ N ®k L in MC(R./L).

Proof. If M ~ N, it is obvious that M ® L ~ N® L. We show the converse.
Suppose that M @ L ~ N® L. We use a similar argument as in [20, (4.1.2)]. Let
r = rank(M) = rank(N) and consider a commutative diagram

det
Homy(M,N) — — Homy(A"M, \'N)
\: A
det®L . .
HomyMQ® L,LN®L) —> Homy(A'MQL,AN'NRQL).

Since

Homy(A\'M, A'N) @ L~ Homy(\'M& L, A'NeL) =L,

we have Homy(A"M, \"N) ~ K, and a horizontal map /2 M — N is isomorphism if
and only if det(f) is a nonzero element of this K-vector space. We fix a basis
(fi,...,fm) of Homy(M,N) over K. Then det is a polynomial function on the
finite-dimensional K-vector space Homy(M, N). Since
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Homy(M,N)® L ~ Homy(M ® L,N® L)

(f1,...,fm) also gives a basis of Homy(M ® L, N ® L) and for this basis det ®L is
represented by the same polynomial. Because K is infinite, if det vanishes identically
on Homy(M, N) then it also vanishes on Homy(M ® L, N ® L). O

LEMMA 5.15. Let (M,V,¢,) be a geometrically irreducible finite unit-root ¢,-V-
module over Rg. Then for i = 0,1 we have

K, if M is the trivial object,
0, otherwise.

Hy(M) =~

Proof. If i = 0, the assertion is clear. Consider the case i = 1. Since
Hy(M ®k L) = Hy(M) ® L

for any finite extension L over K (we regard M ® L as an object in MC(R /L)), we
can assume that I, C k. Let F be a finite Galois extension of the residue field £ of
Rk such that Gal(E*P/E) acts on V = Vg, ,(M) through Gal(F/E). Replacing n by a
multiple and K by a finite extension, we can assume that the regular representation
W = K,[Gal(F/E)] of Gal(F/E) decomposes as a direct sum @;_, V; of representa-
tions such that V; ®k, Kf;lg are all irreducible and that the coefficient field (Section
2.1) of R(F) is also K. Under these condition, Dg, (W)~ ., M; with
M; = Dg,»(V;) and M is isomorphic to some M;. Let V), be a unit representation.
Since HIV(DRN,(W)) ~ HIV(RK(F)) ~K, we have @, HIV(Mi) ~ K. Since
HIV(MO) ~ K, HIV(M,-) are all 0 for 1 < i < r. This proves the assertion. O

6. Special Objects

Combining the results of the last two sections, we can define the notion of special
objects and get the equivalence.

DEFINITION 6.1. An object M in MCT(A}/K) is called special if it is a finite
direct sum of objects of the form P ® U where P is special étale and U is uni-
potent (cf. Corollary 4.4). We call an object (M,V, ¢,) in MCF,,(A}/K) special if
(M, V) is special as an object in MCT(AL/K). We denote the full subcategory of
MCT(AL/K) (resp. MCF”(AJ}(/K)) of special objects by MCSp(AL/K) (resp.
MCF;P(4}/K)).

DEFINITION 6.2. An object M in MC(Rk/K) is called special if it is a finite
direct sum of objects of the form P ® U where P is étale and U is unipotent. We
call an object (M,V, ¢,) in MCF,(Rk/K) special if (M, V) is special as an object in
MC(Rk/K). We denote the full subcategory of MC(Rg/K) of special objects by
MC*®(Rk/K).
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7. Quasi-Unipotent Objects

In this section, we shall show that locally all the quasi-unipotent objects are special.
This result is an analogue of the theorem of Levelt [23] for quasi-unipotent overcon-
vergent isocrystals (cf. [20, II]).

7.1. DEFINITION

First we recall the definition of quasi-unipotence.

DEFINITION 7.1. We say an object (M,V) in MC(Rg/K) is quasi-unipotent if
there exists a finite separable extension F of the residue field of Rx such that
(M ®ry Ri(F),V ® Ri(F)) is unipotent in MC(R(F)/Kr). Here K is the algebraic
closure of Kin R(F). We say an object (M, V, ¢,) in MCF,(Rk/K) is quasi-unipotent
if (M, V) is quasi-unipotent as an object in MC(Rg/K). We denote the full sub-
category of MC(Rg/K) (resp. MCF,(Rg/K)) of quasi-unipotent objects by
MC*"(Rg/K) (resp. MCF"(Rk/K)).

7.2. LOCAL DECOMPOSITION THEOREM

It is obvious that the special objects in MC(Rg/K) are quasi-unipotent. We will
show that the converse is also true. We denote the identity matrix of degree m by
I,,. We denote by N,,, a nilpotent matrix of size mn

0 Iy 0
0 II‘I‘I

U

0 0

LEMMA 7.2. Let F be a finite separable extension of E. By Lemma 2.2, there is a
Sinite extension K' of K and u € Rg(F) such that Rg(F) ~ Ry . Let 0 = td/dt. We
extend the operation of 0 to Ri(F) by

dudx

Suppose that Q = (q;) € M(mayny, miny; Rix(F)) satisfies the differential equation

aQ = QNm1J1| - NmzmQ-

If ny = ny, then Q can be written in the form
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01 O -+ QOn

0=10 o . Qi€ M(my,my; K).
0>
0 o

Proof. We begin by observing that ‘log# does not appear in any ‘algebraic’
extension of Rk. To be precise, if f € Rx(F) and df € K, then f€ K and 9f = 0.
Replacing K by K’, we can assume that K’ = K. Then by [24, (3.4.1)] ¢ can be written
in the form

t=u'(a+au+---), ag € Ok[[A*, ai € Ok[[f]] for i> 0.
Here s is the degree of F over E. Let g(u) = >, (a;/ap) u', then

1 s(1+¢)+dug ~

—Ot =—— =549, -2y ).

; Tre g ;}( gy
Here 0, = u d/du. Therefore, if Jf = ¢ € K, then

C .
O f=-0gt=c|s+0, — .
==l vou( Zeoor)

Since (9,2)¢’ = 1/(j + 1)0,&*" has no constant term, ¢ must be 0 and the assertion is
clear.
Now we prove the lemma. Let us write Q = (Q;;) with

Qi € M(my, my, Ri(F)).

By the assumption, we have

00i1 = —Qit1,1,

00ij=0ij-1—0i1; (I<i<nm—12<j<n), (13)
aan.l = 0;

001,j=0mj-1 2<j<m). (14)

By (14) and the observation above, we see Q,,; =0 (1 <j<n;) and Q,,, € K.
Similarly we can prove that

an—k,/‘ =0 (1 <] <n —k),
(15)

On-rjeK (m—k<j<m)

for 1 < k < n, by induction on k using (13). O
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We denote by @'_; N, ., the nilpotent matrix

le S 0
Nl712,l12

0 N my,n,

COROLLARY 7.3. Let N=@&._, Nyp, with ny >ny > --->n, and n ="y, m;m;.
Suppose that Q = (q;) € M(n; Rx(F)) satisfies a differential equation

90 = ON — NO.

Then q; = 0 for (i,j) such that my <i, 1 <j< my.

PROPOSITION 7.4. Suppose (M, V) is a quasi-unipotent object in MC(Rk/K). If M
is irreducible, then M is étale.

Proof. Let (M, V) be a quasi-unipotent Rx-module over Rk of rank n. Let F be a
finite Galois extension of E such that M’ = M ® R(F) is unipotent. We denote its
Galois group by G. Then there exists a basis f = (f1,...,f,) of M’ such that

d¢ .
Vf:fN®7,W1thN: Ny 11> 02 > 02 > 0.

r

i=1
For ¢ € G, let o(f) = fO, with Q, € Rg(F). Since ¢ and V commute, we have
00, = O;N — NQ,.

By Corollary 7.3, we have ¢;; = 0 for (i, j) such that m; < iand 1 <j< m. Let M be
a sub-Rg(F)-module generated by fi, ..., f,,, then M| is stable under the action of G
and the connection V. By Galois descent, there exists V-module M| over R such
that M| = M| ®g, Rk(F). Therefore if M is irreducible, n; = 0. This implies
N =0, ie., M is étale. O

For objects M, M’ in MC(Rk/K), we define
Exty(M, M") = H,(Hom(M, M')).

We also denote ExtOV(M, M) by Homy(M, M’). Then Homy(M, M’) is isomorphic to
Homyicr,/x(M, M') and Extlv(M, M’) is isomorphic to the group of classes of
extensions of M’ by M in MC(Rk/K).

LEMMA 7.5. Let (M,V) and (M',V) be quasi-unipotent geometrically irreducible
V-modules over Rg. Then for i =0, 1,

K, if M is isomorphic to M,

Exti (M, M') =
v ) 0, otherwise.

Proof. Suppose that M is isomorphic to M’. We can assume that M’ = M. By
Proposition 7.4, M is étale. Therefore we are able to equip M with finite unit-root

https://doi.org/10.1023/A:1020233201909 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020233201909

22 SHIGEKI MATSUDA

@"-structure for some n. We can replace K by a finite extension of K so that I')» C k.
Let V= Vg, x(M). Then by Lemma 5.7, V' is an irreducible representation of
G = Gal(E**P /E) such that G acts on V' through a finite quotient. Here E is the residue
field of Rk (cf. 2.1). Moreover, by the assumption that M is geometrically irreducible,
V' is irreducible as a representation of the inertia / of G. By Schur’s lemma,
Homg(V, V) contains the unit representation with multiplicity one (as a representa-
tion of 7). Then by Lemma 5.7, Hom(M, M) is a direct sum of irreducible objects
and contains exactly one unit object. Now the assertion follows from Lemma 5.15.
The case where M and M’ are not isomorphic can be proven in the same way. [J

LEMMA 7.6. Let P and P be geometrically irreducible objects. Let U and U’ be
indecomposable unipotent objects in MCY(Rg/K). Then for i = 0,1, we have

min(rankU, rankU’), if P' >~ P,

dimg Exty(P® U, P ® U) = herwi
s otnerwise.

Proof. Suppose that P is not isomorphic to P’. We first consider the case that
U = 1. By Theorem 4.1, there is a unique indecomposable unipotent submodule U
of U. We may suppose by induction on the rank of U that ExtiV(P® U, P)=0.
Then the assertion easily follows from the next long exact sequence and Lemma 7.5.

0 — Homy(P, P') - Homy(P ® U, P') - Homy(P ® U;, P)
— Exty(P, P)) — Exty(P ® U, P') — Exty(P ® U, P') — 0.
The case that U’ £ 1 follows from the case that U = 1 and induction on the rank of
U' in a similar way.

Next suppose that P = P'. Since PY¥ @ P~1@ Q for some direct sum Q of
nontrivial irreducible étale objects, the assertion on Ext’ follows from next calcu-
lation and Lemma 4.6.

Hom(PQ U, P U)
~Hom(1,PY @ PR UY ® U)
~Hom(1,A® Q)@ U’ ® U)
~ Hom(1,U” @ U)
~ Hom(U, U').

Then the assertion on Ext! follows from the above long exact sequence and induc-
tion on the ranks of U and U'. O

LEMMA 7.7. Let (M,V) be a quasi-unipotent object in MC(Rg/K). Then for some
finite extension K' of K, M ® K' is special.
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Proof. Replacing K by a finite extension, we can assume that M ®x L is inde-
composable for any finite extension L of K. We shall show that, for some finite
extension K’ of K, M ®k K has the form P ® U with a geometrically irreducible étale
object P and an indecomposable unipotent object U in MC(R g /K’'). Let F be a finite
separable extension of the residue field £ of Rx such that M ®x, Rk(F) is unipotent.
Then R(F) is isomorphic to K”(u)T for some finite extension K” of K. Let K’ be a
finite extension of K” satisfying (3) such that the regular representation of Gal(F/FE)
decomposes to representations which are irreducible over the algebraic closure of K'.
Replacing K by K', we can assume that every irreducible subobject of M is geome-
trically irreducible.

We use induction on the rank of M. Let P be an irreducible subobject of M and
M = M/P. We will show that M’ is indecomposable, in which case the assertion of
Lemma 7.7 follows immediately from the induction hypothesis and Lemma 7.6. In
fact, if M’ is decomposable, we can write M' = @,_, M (/| > 1) with indecompo-
sable components M. By the induction hypothesis, each M) can be written in the
form P; ® U’ with an irreducible object P; and an indecomposable unipotent object
U,. If P;is not isomorphic to P, by Lemma 7.6, Homy(M}, M) is isomorphic to
Homy(M}, M’) and, hence, M becomes a direct summand of M. Thus all P’s are
isomorphic to P. Let M; be the inverse image in M of M; C M'. Then M; is a
nontrivial extension of M= P® U, by P and, hence, can be written in the form
P ® U; for some indecomposable unipotent object U; by Lemma 7.6. Consider the
exact sequence

0 — Homy(P, P) — Homy(P, M) — Homy(P, ®M}) — Exty(P, P).

By Lemma 7.6, dimg Hom(P, M) > 1 since |I| > 1 and, hence, there isa map P - M
whose projection to some M’ does not vanish. Then there exists an injection from
P@® P — M;. This contradicts Lemma 7.6. ]

THEOREM 7.8. Every quasi-unipotent object in MC(Rg/K) is special.

Proof. Let (M, V) be a quasi-unipotent object in MC(Rg/K). We can assume that
M is indecomposable. We use induction on the rank of M. Let Q be an irreducible
subobject of M. By Proposition 7.4, Q is étale. Let N = M/Q. By the induction
hypothesis and the same argument as in the proof of Lemma 7.7, we can see that
N >~ Q ® U, for some indecomposable unipotent object U;. By Lemma 7.7, there is a
finite étale Galois extension K’ of K such that Q' = O ® K’ decomposes to @, P;
with geometrically irreducible étale objects P;’s in MC(Rx /K'). Then we can find a
subset S of G = Gal(K'/K) such that Q' = @, s 0(P'). Here P’ denotes one of P;’s.
Let M' =M ® K and U} = U; ® K, then we have a short exact sequence

0— PoP)—> M- Pa(P)e U, — 0. (16)
geS geS
By the assumption that M is indecomposable, (16) does not split. Therefore, if we

decompose M’ into a direct sum @je./ D; of indecomposable subobjects D), at least
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one of D} is isomorphic to P’® U’ with an indecomposable unipotent object U’ of
rank rank(U;)+ 1. Denote it by D’. We can assume that P C D'. Let S=
{o1,...,05). We shall prove that Y ; , 0(D') C M is actually a direct sum @;_,
ci(D’). Suppose it is not and take the minimum number 2 <i<s such that
g (DN @;% a/(D’') # 0. Because D' is indecomposable, o;(F) is contained in every
nontrivial subobject of ¢;(D’) and, hence, ¢;,(P') N ;;i o;/(D’) # 0. Then by the cano-
nical isomorphisms
i1

Homy (o,(P), P a/(D")
=l

i—1
~ @ Homy(¢,(P'),,(D"))

=1

~ .

[

1
Homv(ai(P/), O'j(P/))7
=1

we see that ¢;,(P)N @j’;i o/(P’) # 0, which contradicts the definition of S. Thus

D,cs0(D) C M. Comparing the ranks of both sides, we see P, go(D) =M
and hence
M=@eP)®U ~Q' ®U.
geS
The assertion follows by Galois descent. O

COROLLARY 7.9. If an object M in MC(R/K) is a successive extension of étale
objects, then it is special.

COROLLARY 7.10. Let (M,V) be a quasi-unipotent module with connection over
Rk Then there exists a ¢"-structure on M for some n € 7.
Proof. The assertion follows from Theorem 7.8 and Lemma 4.3.

PROPOSITION 7.11. Let Q and Q' be objects of MC*(Rk/K) and let U and U’ be
objects of MC"™ (R/K). Then we have

Homy(Q, Q') ® Homy(U, U') ~ Homy(Q ® U, Q' ® U').

Proof. Extending scalars, we are reduced to the case that Q and Q' are geome-
trically irreducible. Then the assertion follows from the calculation in the proof of
Lemma 7.6. ]

COROLLARY 7.12. Let (M,V,¢,) be a quasi-unipotent ¢"-V-module over Rg. By

Lemma 7.7, for some finite extension K of K, we can decompose M ® K into
@D,c; Pi ® U; as V-module over Ry with geometrically irreducible étale objects P; and
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unipotent objects U; such that P; is not isomorphic to P; for any i # j. Then, for some
positive integer m, there exist ¢""-structures ¢,,,; on Pi and ¢y, ; on U; such that
((pn)m = @ qo;nn,i ® gogm,i'

Proof. As in Remark 4.5, there is one-to-one correspondence between the set of
¢@"-structures on (P,V) and the set of automorphisms of (P,V) if at least one
@"-structure exists. By Proposition 7.11, we have

HOI‘HV(@PiQ@ Ui;@Pj® Uy
iel jel
~ @Homv(Pi ® U,', Pj ® U;)
ijel
~ @5 Homy(P;, P;) ® Homy(U;, U)).
iel
and hence any automorphism of (M, V) has the form @ g; ® h; with automorphisms
g; of P; and h; of U;. Note that each Homy(P;, P;) is one-dimensional vector space
over K. On the other hand, if we take as m a number such that all P; have ¢"-
structures, then M = @ P; ® U, has a ¢""-structure of the form @ y,,,; ® ¥, ; with
@""-structures ¥, . on P; and Yy, on U This means that any ¢""-structure on
(M, V) has the form (g oV, roni) ® (hio lpmn ;) and hence the assertion is clear. []

We denote the weak completion of Og[r~!] by A" Then AT isa subring of A and
we have

{Zaz

i<0

a; € K, |ailp’ — 0,(i > —00) forsomep<l}

where j: A}( = Speck[t™'] — P}( is an inclusion map. We define a differential module
with log pole at ~! =0 by

~ dt
0= AT

COROLLARY 7.13. Let M be a quasi- umpotent module with connection over Rg.
Then there exists a free submodule M over AK such that M ® ”T Ry~ M and that
VIM)c M®Q it

Proof. By Theorem 7.8, there is a decomposition on M into P, , Q; ® U; with
Q; € Ob MC®(Rg/K) and U; € Ob MC"™(Rx/K). By Theorem 4.1, there is a basis e
of U; such that Ve = eC ® dt/t with C € M(n;; K). Here n; is a rank of U;. Thus there
are sub- AK -modules U; of U; such that V(U;) C U; ® Q e We can equip each Q; with
finite unit-root ¢"-structure ¢, ; for some positive 1nteger’<n By Galois descent, we can
assume that I,» C k. Let F be a finite Galois extension of the residue field £ of Rk
such that every (Q;, V, ¢, ;) ® Rx(F) is trivial. Let £’ be the maximal tamely ramified
extension of Ein Fand k' the residue field of F. Then E ~ k'((#~")) for some Nth root
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' of t and F'is a Galois extension of £ such that its Galois group is a a p-group. By [19],
there is a finite étale Galois covering By of A’ = k'[¢~"] such that By ® E ~F. Let
Ok be the integer ring of an unramified finite extension K’ of K with reSidue field &’
and A" a weakly completion of Og[f~']. Here we denote an Nth root of t € AT also
by ¢'. Since (Z/T, 7) is a Henselian couple, there exists a finite étale covering B of A'f
unique up to isomorphism such that B ®o, k >~ ~ By. Since B' is integrally closed in

=8"® gt AT and B is finite étale Galois over A with Galois group G = Gal(F/E),
B‘Jr is also ﬁmte Galois over A" with the same Ga101s group. Let BK = B" @0, K and
Vi = Vzen(Q)) for each i. Then we define sub AK-module Q, of Q; by

0: = (V; ®x, Bp°.
Let Q = =Q . ® i B'. It is easy to see that d: AK - Q i naturally extends to

A
d: By 51 B % Q . 4nd hence Q, has a connection V: Q, — Q, ® QKNT which is compatible
with that of "0:. Then M = @ 0; ® U; satisfies the condition: A O

Remark 7.14. 1f we choose frobenius structure ¢ of A" so that o(A") c A", we can
also equip M with ¢,-structure which commutes with connection.

7.3. KATZ CORRESPONDENCE FOR QUASI-UNIPOTENT OBJECTS
THEOREM 7.15. The inverse image functors
MC*(4}/K) — MCH(Rg/K),
MCF?(4}/K) — MCF}"(Rg/K)

are equivalences of categories.
Proof. The inverse image functor

MC*® (A} /K) - MCP(Rx/K)

is an equivalence of categories by Corollary 4.2, Corollary 5.12, Lemma 7.11, and
the analogous statement for MCSP(AL/ K) of Lemma 7.11, which can be proven in
the same way.

Then the equivalence of the first functor in (7.15) follows from Theorem 7.8. The
case of the second is proven by the same argument as in the proof of
Corollary 4.7. O

We call the quasi-inverse functor

MC®(Rx/K) — MCP(A},/K)
the canonical extension.
We denote the category of finite-dimensional K-vector spaces by Vectg.

COROLLARY 7.16. For any rational point a € X = Spec(A’ ® k) (cf. Section 5.1),
the composite

fiber at a

MC(Rg/K) — MCP(Al/K) =25 Vectg
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is a K-valued fiber functor on MCI(Rg/K), and hence MCY"(Rk/K) is a neutral
Tannakian category [12].

By (7.15), we also have the next functor.

MCF3(R/K) = MCFP(A/K) "% 6 — Veoty .
Here ¢"-Vectg is the category of finite-dimensional K-vector spaces with injective
¢"-linear morphisms.

8. Swan Conductor and Irregularity

Let the notation and the assumption be as in the previous section.

8.1. BREAKS AND BREAK DECOMPOSITIONS

First we define breaks for the quasi-unipotent local overconvergent isocrystals. Let
M be an object in MC%(Rg/K). By Theorem 7.8, M has a decomposition into a
direct sum P,.; O; ® U; with irreducible étale objects Q; and indecomposable unipo-
tent objects U;. By Jordan—Holder theory and Krull-Remak—Schmidt theory, the
isomorphism classes of Q;® U;’s and Qs are intrinsic invariants of M. By
Corollary 5.9, each Q; has at least one finite unit-root ¢”-structure. By the lemma
below, we can define the breaks of M as those of Q;.

LEMMA 8.1. Let (Q, V) be an object in MC*(Rx/K) and let yy be any finite unit-root
@"-structure on (Q,V). Then the breaks of V = Vg, .(Q,V,V¥) is independent of the
choice of .

Proof. We begin by remarking that the breaks do not change by finite extension of
K and an unramified extension of the residue field £ of Rk, [21, Chap. 1]. Let y,
(resp. ¥,) be a finite unit-root ¢"-structure (resp. ¢™-structure) on (Q,V) and put
Vi=Vren(Q, V., ;) for i = 1,2. Replacing m,n by those common multiple, we can
assume that m = n. We can also assume that the residue field of K contains I.. Take
a finite extension F of the residue field E of Rk as in Section 5.2. Then we have
isomorphisms g;: O g, Rk(F) — V; ®k, Rx(F) compatible with actions of
G = Gal(F/E) and connections. Extending scalars, we can assume that the residue
field of F is same with that of E. Put g = g, o g;'!. Taking kernels of connection, we
have an isomorphism gly e, x: Vi ®k, K — V2> ®k, K which is compatible with
Galois actions. Thus the breaks of V] coincide with those of 7. O

We say that M is purely of break x if either M = 0 or if all the breaks of M are
equal to x.

LEMMA 8.2. Let M be an object in MCY(Rg/K), then M has a unique direct-sum
decomposition M = @ . , M(x) into subobjects M(x) in MCY"(Rg/K), indexed by
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real numbers x = 0, such that M(x) is purely of break x. Moreover, this decomposition
is compatible with finite scalar extensions.

Proof. By Theorem 7.8, M has a decomposition into €, Q; ® U; with étale
irreducible objects Q; and unipotent objects U;. For some finite extension K’ of K
satisfying (3), Q; ® K' decomposes into the direct sum @/e s Pij of geometrically
irreducible objects P;;. It is easy to see that P;; ~ P;; for any j,j € J, and hence
the breaks of the corresponding representation is pure (cf. [21, Chap. 1]).
Thus taking the tensor product of the break decomposition of the individual Q;
and U;, we can see that M has a decomposition @, M(x) of the desired sort. Since
breaks do not change after a finite scalar extension, the decomposition also does not
change.

Next we show uniqueness. After extending scalars, we can assume that any
irreducible subobjects are geometrically irreducible. Each M(x) has a decomposi-
tion into €, 1, Pi ® U; with irreducible objects P; and unipotent objects U;. Let
P, M'(x) be another decomposition of M such that M’(x) has purely of break x.
It suffices to show that M’(x) C M(x) for any x. We show that any indecompo-
sable subobject D' of M'(x) is contained in M(x). Let P’ be an irreducible sub-
object of D'. If X' # x, M(x") has no irreducible subobject isomorphic to P’, and
hence

Homy (D', M) = @) Homy(D', P; ® Uy)

iely

by Lemma 7.6. This implies that D’ C M(x). O

DEFINITION 8.3. We call the decomposition M = @ M(x) of the above lemma
the break-decomposition of M. We define the Swan conductor of M as
> xdim M(x) and denote it by sw(M).

It follows from the Hasse-Arf theorem and the next lemma that sw(M) is a non-

negative integer. Cf. [26, IV, §3], [27, III, §19] and [21, 1.9].
By definition and [21, Chap. 1], we have the following lemmas.

LEMMA 8.4. Let
0O->M—->M-—->M —0

be a short exact sequence of quasi-unipotent modules with connections over R, then we
have sw(M) = sw(M') + sw(M") and

(breaks of M) = (breaks of M") U (breaks of M").

LEMMA 8.5. Let M and N be quasi-unipotent modules with connections over Rg and
M =@ M(x) and N = @ N(x) their break-decompositions. Then,
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M(x) ® N(y) C (M ® N)(sup(x,))) if x # y,
M(x)® N(x) C ) (M@ N)),

ysx

Hom(M(x), N(y)) € Hom(M, N)(sup(x,y)) if x # y,
Hom(M(x), N(x)) C ) Hom(M, N)(»),

y<x
and if we denote the dual of M by M,
MY (x) = M(x)".

We denote by MC(< »(Rk/K) the full subcategory of MCY¥(Rk/K) of objects all
whose breaks are <x. Similarly we denote by MCq”Y)(RK/K) the full subcategory
of MC¥(Rk/K) of objects all of whose breaks are <x. By the above lemmas, both
MC?;‘X>(RK/ K) and MC?;"\,)(RK/ K) are stable by tensor product, internal hom, and
subquotient.

8.2. RELATION WITH THE CHRISTOL-MEBKHOUT THEORY

When k is a finite field, Christol and Mebkhout defined the filtration with respect to
irregularity and proved an index formula [5, 6].

Our decomposition and Swan conductor are compatible with their filtration and
irregularity. More precisely, we have the next theorem.

THEOREM 8.6. Let M be an object in MCY(Rg/K). Then the Swan conductor of M
coincides with the irregularity of M in the sense of Christol and Mebkhout [5, Def. 8.3-8].
Proof. This is an immediate consequence of Tsuzuki’s theorem [29], but we give
another proof usmg the canonical extension.
Let M and .AK be as in Corollary 7.13. Note that M is free AK—module since .AK is
principal ideal domain. (By [14], .AK is noetherian and the same argument as in the
proof of [10, 6.1] shows that it is a Bezout ring.) We denote the index of M by

2(M) = dimKer(V: M - M ® Q ) — dim Cok(V: M- MQ® Q ).
K K

Then —y(M) coincides with the irregularity of M. Cf. [5, Def. 8.2-9]. They use pro-
jection operators to define the generalized index, but it coincides with the index
above because V(M) C M ® Qﬁ' We regard MT = M ® o AJ,Q as an overconvergent
isocrystal on Gy and denote the’alternating sum of the dirffiensions of the rigid coho-
mology groups ng(Um,MT) by 7(M"). Since index and Swan conductor are both
additive, we can reduce the assertion to the case where M is irreducible and hence
finite étale. Therefore we can assume that MT = D i ,(V) for some integer n and
V € Repy (m(A > *)) with some ¢"-structure.
We ﬁrst prove that

2(M) = y(M"). (17)
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We denote the composition

M—V>M® QAT id®Res M
K

(resp. MT—V>MT ® Q deRes

M)
](
by V(). Then the index of V(9): M — M (resp. V(9): M — M) is of course equal
to y(m (resp. 7(M™)). Let N be the cokernel of M — M*.If we denote by y(N) the
index of the induced endomorphism on N from V(9): Mt — M, we have y(M) =
$x(MT) + %(N), and hence 1t suffices to show that y(N) =0. Let Mo = MT Q@ R,-1.
The cokernel of A}{ — Al 18 isomorphic to the K-vector space

Hj_, ={Za,t € K[t ]‘2> 1, |a|/1’—>0(l—>oo)}
i>0

Let r be the rank of M and fix an isomorphism )" R, >~ M. y(N) can be regarded
as the generalized index y(V(0), HL) of Christol and Mebkhout [5, Def. 8.2-9] and
hence it does not depend on the choice of basis (see remark following Definition
8.2-7 of loc. cit.). Since V' is tamely ramified at oo, (M, V) is trivialized by tensoring
R,-1(F) for some tamely ramified extension F of the residue field E of R,-:. After
extending scalars, we can assume that F = E(¢'/') for some integer / prime to p
and that k contains the /th root of unity. Then we can prove y(N) = 0 by direct cal-
culation (cf. [24, Lemma 5.3]).

Next let U be a special Galois covering of G, with Galois group G which tri-
vializes ¥ and B' the corresponding Galois extension of A'. We denote
BL = B ® K. We claim that

Hijo (G, MY) = (Hi,(U/K) @k, V)°. (18)
Indeed, H/, o(Gom, o, M) (resp. Hl (U/K)) are cohomology groups of a complex

Mt = M}r( ®AI QAI (resp. BE — B; ®Az QAE).
Since the dual VY of V is projective K,[G]-module, the functor from K,[G]-vector
space to K,-vector space

P> (V ®x, P)° = Homg, (V" P)

is an exact functor. Since MT = (V ®x, BNC, the assertion is clear.
Let H . (U/K) be compact support rigid cohomology groups of U. We denote the

c,rig

alternating sum of the trace of the action of ¢ of G on Hng(U/K) (resp. H. rlg(U/K)) by

tr(o : H,(U/K)) —Z( 1)'tr(e : Hi;,(U/K)),

(resp. tr(o : Hf ;,(U/K)) —Z( 1)'tr(o : He 4(U/K)))-

i=0
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By Poincar¢ duality [10, 9.5],

tr(o : H’r"ig(U/K)) =tr(c : H;rig(U/K)). (19)

On the other hand, by the fact that crystalline cohomology is a Weil cohomology [16]
and by the comparison theory of rigid cohomology and crystalline cohomology
[3, Prop. 1.9], we can show the Weil formula:

tr(o : Hy ;,(U/K)) = —swo(0). (20)

in the same way as in [17] (cf. [18]). Here swy is a Swan character at 0. By (19) and
(20), we have

22:(—1)1' dim HY, (G, MT) = —isto(a)tr(a V) = —sw(}).

S 614
Here sw(}’) denotes the Swan conductor of V' as an representation of
Gal(k((1))**P/k((r))) via natural injection Gal(k((2))*** /k((7))) = 71 (G m, *). By defini-
tion, it is nothing other than sw(M). Thus, by (17) and (18), we have y(M) =
—sw(M). This completes the proof. O

Remark 8.7. Richard Crew proved the same result in case that M is étale [9].

COROLLARY 8.8. If'we denote the filtration of Christol and Mebkhout by M-, as in
[5], we have M, = @Dy M(x).

Proof. We first remark that for any subobject N C M, we have M-, NN = N,
since (—)., is an exact functor [S, Prop. 6.3-1]. Therefore, if M =P M;, then
M., = @(Mi)>~,» and it suffices to show the assertion in case that M = M(x). Since
Gr,M(x) is pure with respect to both the break filtration defined above and the
Christol-Mebkhout filtration, it coincides with M(x) if y = x by Theorem 8.6,
[5, Prop. 8.3-1] and [6, Prop. 2.1-2], and hence it is 0 if y # x. This proves the
assertion. OJ

8.3. DIFFERENTIAL GALOIS GROUPS

We fix a K-rational point a € G, and denote by w the fiber functor defined in
Corollary 7.16.
We denote

W= W(Rg/K) = Aut®(w).

This is an analogue of local Galois group of a local field of positive characteristic.
We also define as in [20, 2.5] the upper numbering filtration W® = W(R/K)™
(resp. W& = W(Rg/K)* 1) to be the kernel of the fully faithful homomorphism

W — Aut®(w|Mc:1<“>\,)(RK/K))

(resp. W — Aut®(a)|MC(ql; \»>(R’</K)))'
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Then, for 0 < x < y, we have

W o WO 5 w5 et 5 ) 5 g,

We can regard W/ W) as the regular singular part of W.

For an object M = (M, V) of MC(Rk/K), we denote by (M) the full subcategory
of MC(Rk/K) whose objects are all the subquotient of all finite direct sums of the
objects M®" ® (M")®" for all n,m >0, i.e., the smallest rigid tensor subcategory
of MC(Rg/K) containing M. If M is quasi-unipotent, (M) is a neutral Tannakian
category. We denote the group scheme Aut®(w|(M)) by DGal(M).

Let K be a finite extension of K, then there exists a fiber functor wyx from
MC¥(R}/K'). We denote Aut®(wx|(M ® K')) by DGal(M ® K'), then there is a
natural closed immersion DGal(M ®g K') — DGal(M) @k K'.

PROPOSITION 8.9. For a finite extension K of K, we have

DGal(M ®x K') ~ DGal(M) ® K.

Proof. The proof is almost same as Gabber’s proof of [20, (1.3.2), (2.4.15)].
Cf. [8, 2.1]. ]

We denote I = I(Rg/K) = AUt®(w|MCe‘(RK/K))' By Proposition 7.11, we have
MC®™(Rg/K) ~ MC*(Rx/K) ® MC™(Rk/K)
and hence
w=1IxG,
(cf. [11, 5.13] and [11, 6.21]).

CONJECTURE 8.10. Let E be as in Section 2.1 and P the constant pro-algebraic
group associated with pro-p-part of Gal(E*P/E). Then there is an exact sequence of
pro-algebraic groups

l>P—>1— li_n},uN—>1.

PN
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