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Abstract. Let k be a field and X ¼ Specðk½t; t�1�Þ. Katz proved that a differential equations
with coefficients in kððt�1ÞÞ is uniquely extended to a special algebraic differential equation
on X when k is of characteristic 0. He also proved that a finite extension of kððt�1ÞÞ is uniquely
extended to a special covering of X when k is of any characteristic. These theorems are called

canonical extension or Katz correspondence. We shall prove a p-adic analogue of canonical
extension for quasi-unipotent overconvergent isocrystals. As a consequence, we can show that
the local index of a quasi-unipotent overconvergent is equal to its Swan conductor.

Mathematics Subject Classifications (2000). 11S15, 12H25, 14F30.
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1. Introduction

Let Gm;C ¼ SpecC½t; t�1�. Then the inclusion i: SpecCððtÞÞ ,!Gm;C induces an

inverse image functor i �:MCðGm;C=CÞ !MCðCððtÞÞ=CÞ from the category of

locally free OGm
-module with connection to the category of CððtÞÞ-vector space with

connection. In [20, (2.4.10)], Katz proved that this functor induces an equivalence

between the full subcategory of the special objects [loc. cit. (2.4.9)] in

MCðGm;C=CÞ and MCðCððtÞÞ=CÞ. On the other hand, in [19, 1.4.1], Katz also proved

its ‘covering version’. To be precise, let k be a field of characteristic p > 0. Then he

proved that the inverse image functor from the category of the special finite étale

covering of Gm;k to the category of finite étale coverings of Spec kððtÞÞ is an equiva-

lence of categories.

The purpose of this paper is to study p-adic analogue of these theorems. Let k be a

field of characteristic p > 0 and consider the inclusion i: Spec kððtÞÞ ,!Gm;k. We shall

prove the equivalence between the category of special overconvergent isocrystals

(cf. [2]) on Gm;k and the category of ‘local’ overconvergent isocrystals

(Theorem 7.15.). This result is a generalization of the covering version and the ana-

logue of differential equation version of Katz correspondence.
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As an application, we can give another proof of a theorem of Tsuzuki on the

equality of the irregularity and the Swan conductor (Theorem 8.6), cf. [24, 29].

Moreover, the existence of canonical extension implies that the category of local

quasi-unipotent overconvergent isocrystals has a fiber functor and, hence, it is a neu-

tral Tannakian category.

We only treat the case of quasi-unipotent overconvergent isocrystals in this paper,

but it seems to the author that there should be Katz correspondence for a larger cate-

gory. For example, Garnier has shown that the analogous theorem holds for all the

overconvergent isocrystals of rank one [15]. On the other hand, Richard Crew con-

jectured that that every local overconvergent F-isocrystal is quasi-unipotent, and

recently Yves André [1] and Zoghman Mebkhout have announced proofs of this

conjecture independently.

Now we explain the contents of this paper. In the first section, we review the basic

properties of the Robba ring, which plays the role of a local field at a closed point of

a usual algebraic curve in the context of this paper. (It is called local algebra in

Crew’s paper [10, 4].) We also define some terminology for modules with connection.

In Section 3 we review the theory of overconvergent isocrystals in our case. In Sec-

tion 4 and Section 5 we study unipotent objects and étale objects. In Section 6 we

define special objects. In Section 7 we prove a local decomposition theorem for

quasi-unipotent overconvergent isocrystals, which corresponds to a theorem of

Levelt [23]. As a consequence, we get the Katz correspondence. In Section 8 we

define the breaks and break-decomposition for a quasi-unipotent overconvergent

isocrystal. Then we show the equality of the irregularity defined by Christol and

Mebkhout and the swan conductor. As a result, the ramification filtration is compa-

tible with the filtration defined by Christol and Mebkhout [5, 6] (Corollary 8.8.). Let

us mention that R. Crew has also given the proof of the above theorem using the

canonical extension independently [9].

2. The Robba Ring

In this section, we review the basic properties of the Robba ring (local algebra in

Crew’s terminology) and prove some lemmas, cf. [5], [10, 4.5], [30, 2].

2.1. DEFINITION

Let k be a perfect field of characteristic p > 0. Let K be a complete discrete valuation

field of characteristic 0 with residue field k and OK its ring of integers. We denote by

j j the (multiplicative) valuation of K normalized so that jpj ¼ p�1.

For an interval I in the set ½0;1� of nonnegative extended real numbers, we denote

by AðIÞ the K-algebra of formal Laurent series in the variable t convergent for any

number x of the completion of the algebraic closure of K such that jxj 2 I.

When I is closed, then AðIÞ have obvious topologies. When I is open or half-open, we

give AðIÞ the inverse limit topology arising from the equation
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AðIÞ ¼
\

J�I;Jclosed

AðJ Þ:

Then we define Robba ring RK;t to be lim
�!
l<1

Að½l; 1ÞÞ and regard it as topological K-

algebra given the inductive limit topology. We observe that

RK;t ¼
X1
n¼�1

ant
n

����� an 2 K;
0 < 8r < 1; janjrn ! 0 ðn ! 1Þ;
0 < 9l < 1; janjl

n
! 0 ðn ! �1Þ

8<:
9=;:

We often denote RK;t by RK, R or Rt if confusion does not occur.

We define subrings Khtiy and OKhti
y of RK;t by

Khtiy ¼
X1
n¼�1

ant
n

����� an 2 K;
9C > 0; 8n > 0; janj < C;
0 < 9l < 1; janjl

n
! 0 ðn ! �1Þ

8<:
9=;;

OKhti
y ¼

X1
n¼�1

ant
n

����� an 2 OK;
9C > 0; 8n > 0; janj < C;
0 < 9l < 1; janjl

n
! 0 ðn ! �1Þ

8<:
9=;:

Then Khtiy is a Henselian discrete valuation field with the ring of integers OKhti
y

with respect to the Gauss norm [24, 2]. We define the residue field of RK;t to be that

of OKhti
y. We call K the coefficient field of RK;t.

Let l be a positive number such that l < 1. For l < r4 1 and

f ¼
P1

n¼�1 ant
n 2 Að½l; 1ÞÞ, we define j f jr ¼ supn2Z janjr

n. Note that it is possible

that j f j1 ¼ 1. If r < 1, it is a non-Archimedean valuation of Að½l; 1ÞÞ.

LEMMA 2.1. Khtiy is algebraically closed in RK;t.

Proof. First note that f 2 Khtiy if and only if lim supr!1� j f jr < 1. Suppose that

x 2 RK;t is algebraic over Khti
y. Then there exist ui 2 Khtiy ð14 i4 nÞ such that

xn þ u1x
n�1 þ � � � þ un ¼ 0: ð1Þ

We can choose 0 < l < 1 so that u1; . . . ; un, and x are all belong to Að½l; 1ÞÞ. Since
lim supr!1� juijr is bounded for all 14 i4 n, if lim supr!1� jxjr ¼ 1, there exists

l < r < 1 such that jxjr is larger than any juijr and 1. Then we have

jxn þ u1x
n�1 þ � � � þ un�1xjr > junjr, which contradicts (1). Therefore lim supr!1�

jxjr < 1 and hence x belongs to Khtiy. &

Let E be the residue field of OKhti
y and F a finite separable extension of E. Since

Khtiy is Henselian, there exists a finite étale extension OF of OKhti
y with residue field

F. Let F be the field of fractions of OF and K0 an unramified extension of K whose

residue field is that of F. Then, by [24, 3.4], F ’ K0huiy.
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LEMMA 2.2. F �
Khtiy

RK;t ’ RK0;u.

Proof. It is obvious that K0htiy �
Khtiy

RK;t ’ RK0;t. If we replace Khti
y by K0htiy,

we can assume that K0 ¼ K. Then as in [24, 3.4], there exists bi 2 tOK½½t�� such that

um þ b1u
m�1 þ � � � þ bm ¼ 0;

where m is the degree of F over E. Then the assertion is clear from the previous

lemma. &

We denote F �
Khtiy

RK;t by RK;tðF Þ or RKðF Þ, RðF Þ if confusion does not occur.

2.2. FROBENIUS STRUCTURE

Let j be a Frobenius endomorphism of K. We denote by Kn the subfield of K con-

sisting of the elements fixed by jn. We assume that

K1 contains a uniformizer of K: ð2Þ

Then, if K0 is the maximal absolutely unramified subfield of K, we have

K1 �Qp
K0 ’ K. Let K0 be a finite extension of K and K0

0 the maximal absolutely

unramified subfield of K0. Suppose that K0 satisfies the condition that

there exists a subfield L of K0 totally ramified over K1

which contains a uniformizer of K0:
ð3Þ

For such an extension K0, we extend the Frobenius endomorphism j so that its

action on L is trivial. We denote the Frobenius on K0 also by j. Note that for
any finite extension K0 of K, there exists a finite extension of K00 of K0 which satisfies

the condition (3) ([7, 1.8], [30, 2.4.1]).

Let j be a lifting to OKhti
y of the Frobenius endomorphism x 7! xp of the residue

field E. In the rest of this paper, we always assume that the restriction of j to K satis-
fies the above condition. We shall show that j extend uniquely to the continuous

endomorphism of RK.

LEMMA 2.3. Let f fig
1
i¼0 be a sequence of elements of Að½l; 1ÞÞ. If limi!1 jfijr ¼ 0 for

any r 2 ½l; 1Þ, then
P

i fi converges to an element of Að½l; 1ÞÞ.
Proof. Since Að½l; 1ÞÞ is complete ([5, 2.1], [10, 4.2]), it is clear. &

By Lemma 2.3, we can define a map j: RK ! RK by

j
X
n2Z

ant
n

 !
¼
X
n2Z

jðanÞjðtÞ
n:

LEMMA 2.4. Let p be a uniformizer of K and q ¼ pn. Let f ¼
P

ant
n 2 RK;t. Then

there exists an r0 < 1 such that, for any r such that r0 < r < 1, jjnð f Þjr4 j f jrq .
Proof. Since we can write jnðtÞ ¼ utq þ hðtÞ with a unit u of OK and hðtÞ 2

pOKhti
y, jjnðtÞjr ¼ rq for r close enough to 1. Then jjnð f Þjr 4 supi jj

nðaiÞjjjnðtÞjir 4
supi jaijr

qi ¼ j f jrq . &
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LEMMA 2.5. j:RK ! RK is continuous.

Proof. As an fundamental system of neighborhoods of 0 of Að½l; 1ÞÞ, we can take
Ue;I ¼ f f j k f kr < e for 8r 2 Ig for closed interval I � ½l; 1Þ and e > 0. By Lemma 2.4,

there exists an r0 such that for any f 2 A½l; 1Þ, jjð f Þjr4 j f jrp for any r such that

r0 < r < 1. Then if f 2 Ue;½r1;r2�, jð f Þ 2 Ue;½rp
1
;rp
2
� and, hence, j: A½l; 1Þ ! A½lp; 1Þ is

continuous. Taking inductive limit, we can see that j: RK ! RK is continuous,

because lim
�!
l

A½l; 1Þ is also the topological inductive limit [10, 4.2]. &

Since Khtiy is dense in RK and RK is separated, j is the unique continuous endo-

morphism of RK extending j on Khtiy. We call such an endomorphism a Frobenius

of RK.

Let j be a Frobenius of RK;t and F a finite separable extension of E. Let OF be a

finite étale extension of OKhti
y with residue field F and F its field of fractions. Since

OKhti
y is Henselian, a Frobenius endomorphism of Khtiy extends uniquely to that of

F . Thus we can uniquely extend j to RK;tðFÞ ¼ F �
Khtiy

RK;t so that jða� bÞ ¼

jðaÞ � jðbÞ. This homomorphism is also a Frobenius endomorphism of RK0;u.

2.3. CONNECTION AND FROBENIUS

We denote by MCðRK=KÞ the category of projective RK-modules M of finite type

with K-connection H: M ! M� ORK
. Here ORK

is defined to be RK dt=t.

With the obvious notions of tensor product and internal hom, MCðRK=KÞ is a

rigid Abelian K-linear tensor category [12].

PROPOSITION 2.6 (R. Crew [10, 6.1]). If ðM;HÞ is an object ofMCðRK=KÞ, then M

is a free RK-module.

For an object ðM;HÞ in MCðRK=KÞ, we define its cohomology groups by

H0
HðMÞ ¼ KerH; H1

HðMÞ ¼ CokH:

A jn-structure jn on ðM;HÞ is a jn-linear map jn:M ! M which commutes with

H such that its linearization

Fn ¼ id�
jn
jn: RK �

jn
M ! M

is an isomorphism of RK-modules. We say a triple ðM;H;jnÞ is a j
n-H-module over

RK if ðM;HÞ is an object in MCðRK=KÞ and jn is a jn-structure on it. A morphism

f : ðM;H;jnÞ ! ðM0;H0;j0
nÞ of j

n-H-modules is an RK-linear map which commutes

with connections and jn-structures. We denote the category of jn-H-modules by
MCFnðRK=KÞ. Then MCFnðRK=KÞ is also a rigid Abelian Kn-linear tensor category.

If confusion does not occur, we often denote an object of MCFnðRK=KÞ by M

instead of ðM;H;jnÞ for simplicity. Let K
0 be a finite extension of K which satisfies

the condition (3). We extend the Frobenius endomorphism j to K0 as described in

the paragraph following condition (3) and denote also by j. Let M0 ¼ M�K K0.
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Then H0 ¼ HK � id and jn � jn define a connection and a jn-structure onM0 respec-

tively, so there is a natural functor MCFnðRK=KÞ !MCFnðRK0=K0Þ.

LEMMA 2.7. Let j be a Frobenius of RK. Let @ ¼ t d=dt and mnðtÞ ¼ @jnðtÞ=

jnðtÞ ¼
P

i cit
i. Then c0 ¼ q ¼ pn and jmnjr ! jmnj14 jpj when r ! 1�. Here p is a

uniformizer of K.

Proof. Let jnðtÞ ¼
P

bit
i, then bq is a unit and bi � 0ðmodpÞ if i 6¼ q. Therefore

mn ¼
qþ

P
i6¼q i

bi
bq
ti�q

1þ
P

i6¼q
bi
bq
ti�q

¼
qþ q

P
i 6¼q q

bi
bq
ti�q þ

P
i6¼qði� qÞ bibq t

i�q

1þ
P

i6¼q
bi
bq
ti�q

:

If we put gðtÞ ¼
P

i 6¼qðbi=bqÞt
i�q, then gðtÞ 2 pOKhti

y and

mn ¼
qð1þ gÞ þ @g

1þ g
¼ qþ ð@gÞ

X1
m¼0

ð�1Þmgm

 !
:

Since

ð@gÞgm ¼
1

mþ 1
@ðgmþ1Þ

has no constant term, the assertion is clear. &

PROPOSITION 2.8. Let o 2 OR. If jnðoÞ ¼ o, then o ¼ 0.

Proof. For simplicity we assume that n ¼ 1, but we can prove the general case in

the same way. Let us write

o ¼
X
i2Z

bit
i dt

t
¼ g

dt

t
:

If jðoÞ ¼ o, then g ¼ jðgÞm with m ¼ @jðtÞ=jðtÞ. We will show that g ¼ 0. By

Lemma 2.7, there exist r0 < 1 and 0 < C < 1 such that g 2 Að½r0; 1ÞÞ and jmjr < C

for any r such that r0 < r < 1. It is easy to see that for any such r, there exists an

integer i such that jgjr ¼ jbijr
i.

Suppose that g 6¼ 0. Then the integer i is bounded, for any fixed r. We denote the

maximum of such i by i1ðrÞ and the minimum by i0ðrÞ. First we consider the case that

there exists an r such that i1 ¼ i1ðr
pÞ5 0. Since i1ðr

0Þ5 i1ðrÞ if r
0 > r, we can assume

that jjðgÞjr 4 jgjrp by Lemma 2.4. Then

jjðgÞjr4 jgjrp ¼ jbi1 jr
pi1 4 jbi1 jr

i1 4 jgjr

and, hence, jgjr ¼ jmjðgÞjr < Cjgjr, a contradiction.

Next assume that i ¼ i1ðrÞ < 0 for any r. Let r0 be a real number such that the

assertion of Lemma 2.4 holds for n ¼ 1. Put i0 ¼ i0ðr
pÞ for r such that r0 < rp < 1.

Since i0ðr0Þ4 i0ðr
pÞ,

rðp�1Þi0ðr0Þ 5 rðp�1Þi0 ¼
jbi0 jr

pi0

jbi0 jr
i0

5
jbi0 jr

pi0

jgjr
¼

jgjrp

jgjr
:
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Thus if we choose r so that rðp�1Þi0ðr0Þ < 1=C, we have jgjrp 4 jgjr=C and, hence,

jgjr ¼ jmjðgÞjr 4 jmjrjgjrp < Cð1=CÞjgjr ¼ jgjr;

a contradiction. &

COROLLARY 2.9. Rjn¼1
K :¼ f f 2 RK j jnð f Þ ¼ f g ¼ Kn (cf. Section 2.2).

Proof. Let f 2 Rjn¼1
K . Since d � j ¼ j � d, df satisfies the assumption of

Proposition 2.8 and, hence, df ¼ 0. Therefore f 2 K and the assertion is clear. &

3. Overconvergent Isocrystals

We briefly review the overconvergent isocrystals in our case. Let k and K be as in

Section 2. Let X ¼ Gm;k ¼ Spec k½t; t�1� � �X ¼ P
1
k, and take those formally smooth

liftings X ¼ SpfOKft; t
�1g � �X ¼ P̂

1
OK
. For a smooth formal scheme Y over OK, we

denote its Raynaud generic fiber by YK.

We denote the category of overconvergent isocrystals (resp. overconvergent F-iso-

crystals) on X [2, (2.3.6), (2.5.1)] by IsocyðX=KÞ (resp. F-IsocyðX=KÞ). Let Ay be the

weak completion of A ¼ OK½t; t
�1� and O

Ay
the differential module of Ay in the sense

of Monsky–Washnitzer [25, Th. 4.2], [31, (2.3)]. Then we have

A
y
K :¼ Ay � K ’ lim

�!
V

GðV;O �XK
Þ

’
X1
n¼�1

ant
n

���� an 2 K; janjl
jnj

! 0 ðjnj ! 1Þ

for some l > 1

( )
;

O
A
y
K

:¼ O
Ay

� K ’ lim
�!
V

GðV;OVÞ;

where �X ½ is the tube of X in �XK and V runs through a cofinal set of strict neighbor-

hoods of �X ½ in �XK, cf. [2, §1.1, §1.2]). We denote by MCðA
y
K=KÞ (resp. MC

y
ðA

y
K=KÞ)

the category of A
y
K-module projective of finite type with integral connection

H: M ! M� O
A
y
K

(resp. the full subcategory of MCðA
y
K=KÞ of objects with connec-

tion whose Taylor series converges on a strict neighborhood of the diagonal in
�XK � �XK (cf. [2, (2.5.2)])). Since A

y
K is a Noetherian ring [14], Isoc

yðX=KÞ is equiva-

lent to MCy
ðA

y
K=KÞ.

PROPOSITION 3.1. If ðM;HÞ is an object ofMCðAy
K=KÞ, then M is a free A

y
K-module.

Proof. Proof is almost same with that of [10, 6.1]. &

Let j be a lifting of Frobenius of A0 ¼ Ay � k. We denote by MCFnðA
y
K=KÞ the

category of A
y
K-modules projective of finite type M with an integrable connection

H and ajn-linear endomorphismjn ofMwhich commutes withH and its linearization

Fn: ðjn�M;jn�HÞ ! ðM;HÞ:

is an isomorphism of A
y
K-modules.
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THEOREM 3.2 (P. Berthelot [2, (2.5.7)]). If ðM;H;jnÞ is an object ofMCFnðA
y
K=KÞ,

then Taylor series of H converges on a strict neighborhood of the diagonal in �XK � �XK.

Proof. In [2, (2.5.7)], only the case where n ¼ 1 is proven, but the same proof is

available for any n5 2. &

Thus, there is a forgetful functor from MCFnðA
y
K=KÞ to MC

y
ðA

y
K=KÞ.

COROLLARY 3.3. (P. Berthelot [2, (2.5.1)]). There exists an equivalence of cate-

gories between F-IsocyðX=KÞ and MCF1ðA
y
K=KÞ.

MCðA
y
K=KÞ and MC

y
ðA

y
K=KÞ (resp. MCFnðA

y
K=KÞ for n5 1) are rigid Abelian ten-

sor categories over K (resp. Kn).

The inductive limit

lim
�!
V

GðV\�0½;O �XK
Þ;

where V runs through the set of strict neighborhoods of � �X n f0g½ in �XK, is isomorphic

to a Robba ringRK over K. (�0½ and � �X n f0g½ denote the tubes of 0 and X in �XK, cf. [2,

§1.1, §1.2]).

In the rest of this paper we fix a parameter t of X , then we have a canonical injec-
tion A

y
K ,!RK. We also fix a Frobenius j of RK such that jðAy

KÞ � A
y
K. Then we

have canonical functors

MCðA
y
K=KÞ !MCðRK=KÞ;

MCFnðA
y
K=KÞ !MCFnðRK=KÞ:

We denote ðM;H;jnÞ (resp. ðM;HÞ) simply by M if confusion does not occur.

4. Unipotent Objects

In this section, we study unipotent objects. R denotes either RK or A
y
K.

Let ðM;HÞ be a free R-module of finite rank with connection. We say ðM;HÞ is uni-
potent if it is a successive extension of the trivial object ðR; dÞ by itself. We denote by

MCuniðR=KÞ the full subcategory of MCðR=KÞ of unipotent objects. The next theo-

rem is classical (cf. [20, (2.4.3)]).

THEOREM 4.1. The functor ðV0;N Þ 7! ðV0 �K R;HN Þ, where the connection HN is

defined as HN ðv� 1Þ ¼ N v� dt=t, induces an equivalence of the category of finite-

dimensional K-vector space with a nilpotent endomorphism and MCuniðR=KÞ.

Proof. Let @ ¼ td=dt and R0 ¼
�P

i2Z ait
i 2 R

�� a0 ¼ 0
�
. Then @ : R0 ! R0 is

bijective. We denote Hðtd=dtÞ also by @. Then,

ðM;HÞ 7!
[
n>0

Ker @n; @

 !
gives an inverse functor. &
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COROLLARY 4.2. The functor ðM;HÞ 7! ðM�
A
y
K

RK;H� 1Þ induces an equivalence

of categories between MCuniðA
y
K=KÞ and MC

uni
ðRK=KÞ.

LEMMA 4.3. If ðM;HÞ is unipotent, then there exists a j-structure on ðM;HÞ.?

Proof. By Theorem 4.1, we are reduced to the case of ðV0 �RK;HN Þ where V0 is a

K-vector space of dimension r and the representation matrix of N is given by

N ¼

0 1 0
. .
. . .

.

0 1
0 0

0BB@
1CCA:

for some basis vvv ¼ ðv1; . . . ; vrÞ of V0. Let R0 be as in the proof of Theorem 4.1 and I

the inverse operator of @: R0 ! R0. Let m ¼
P

i2Z cit
i ¼ @ðjðtÞÞ=jðtÞ. By Lemma 2.7,

the constant term of m is p. We put m0 ¼ m� p 2 R0.
Consider j-linear morphism j1 on ðM;HÞ determined by j1ðvvv� 1Þ ¼ ðvvv� 1ÞA

with

A ¼

f0 f1 f2 f3 . . .

pf0 pf1 pf2
. .
.

p2f0 p2f1
. .
.

. .
. . .

.

0 . .
.

0BBBBBBB@

1CCCCCCCA: ð4Þ

Then the condition that H and the above j-linear morphism commute is equivalent

to @A ¼ �NAþ mAjðNÞ. This means that fi ði ¼ 1; 2; . . . ; r� 1Þ satisfy the following

equations:

@f0 ¼ 0; @fi ¼ m0fi�1 ði ¼ 1; 2; . . . ; r� 1Þ: ð5Þ

We show that we can define gi 2 R for i ¼ 1; 2; . . . ; r� 1 inductively by

g1 ¼ m0; gi ¼ m0Iðgi�1Þ ði5 2Þ:

and that gi 2 R0. Then for any n-tuple a0; . . . ; ar�1 of elements of K,

fi ¼ a0IðgiÞ þ � � � þ ai�1Iðg1Þ þ ai satisfy (5), and, if a0 6¼ 0, j1 is a j-structure.
The existence of gi is trivial if i ¼ 1. Assume that gi is well-defined for

14 i4 j� 1 and belong to R0. Then the existence of gj is evident. Since @
�
Iðm0Þ

jþ1
�
¼

ðjþ 1ÞIðm0Þ
jm0 ¼ ðjþ 1ÞIðm0Þ

jg1, Iðm0Þ
jg1 2 R0. For i < j and m > 0, we also have

@ðIðm0Þ
mIðgiÞÞ ¼ mm0Iðm0Þ

m�1IðgiÞ þ Iðm0Þ
mgi

¼ mIðm0Þ
m�1giþ1 þ Iðm0Þ

mgi:

This implies that, if Iðm0Þ
mgi 2 R0, then Iðm0Þ

m�1giþ1 2 R0. It follows immediately

from these observations that gj 2 R0. &

?B. Chiarellotto, B. Le Stum and E. Pons have also shown this result, cf. [4, 5.2.2].
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COROLLARY 4.4. We can regard naturally MCuniðA
y
K=KÞ as a full subcategory of

MCy
ðA

y
K=KÞ.

Proof. It follows immediately from Lemma 4.3 and Theorem 3.2. &

Remark 4.5. IfM is indecomposable, it is also easy to see by direct calculation that

the matrices of above form give the all-Frobenius structures, but there is a better way

to see this.

In general, let ðP;H;cnÞ be a j
n-H-module over R and c0

n another j
n-structure on

ðP;HÞ. We denote those linearizations by Cn and C0
n. Then C0

n �C
�1
n gives an

automorphism of ðP;HÞ. Conversely, for any automorphism of f of ðP;HÞ, f �Cn

is a jn-structure on ðP;HÞ. Thus we have one-to-one correspondence between the
set of jn-structures on ðP;HÞ and the set of automorphisms of ðP;HÞ if at least
one jn-structure exists.

By the lemma below dimHomHðM;MÞ ¼ n. Then for ða0; . . . ; an�1Þ running

through Kn, the above matrices (4) give all the jn-linear morphisms on ðM;HÞ.

LEMMA 4.6. Let U1 and U2 be indecomposable unipotent R-modules with connection.

Then dimHomHðU1;U2Þ ¼ minðrankU1; rankU2Þ.

Proof. This follows easily by direct calculation. &

COROLLARY 4.7. The inverse image functor

MCFunin ðA
y
K=KÞ !MCFunin ðRK=KÞ

is an equivalence of categories.

Proof. Let ðM;HÞ be an object in MCuniðRK=KÞ. By Corollary 4.2, there exists a

sub-A
y
K-module with connection ðMy;HyÞ in MCuniðA

y
K=KÞ whose inverse image is

ðM;HÞ. It is sufficient to show that every jn-structure jn of ðM;HÞ extends to
ðMy;HyÞ. As in Remark 4.4, jn-structures onM (resp.My) correspond to horizontal

automorphisms of M (resp. My). Since the natural map

HomHðM
y;MyÞ ! HomHðM;MÞ

is isomorphism by Corollary 4.2, the assertion is clear. &

5. Étale Objects

In this section, we study étale objects. We use the same notation as in Section 3.

5.1. GLOBAL CASE

Let ðM;H;jnÞ be an object in MCFnðA
y
K=KÞ. We say ðM;H;jnÞ is unit-root if there

exists a sub-Ay-module L of M projective of finite type such that

ðiÞ M ’ A
y
K �

Ay
L;

ðiiÞ jnðLÞ � L;

ðiiiÞ Fn ¼ id� jn : A
y�jn

L ! L is an isomorphism

of Ay-modules:

ð6Þ
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We say that a finite étale covering U ! X ¼ SpecðAy �OK
kÞ is special if it is tame at

0 and if its geometric monodromy group has a unique p-Sylow subgroup (cf. [19,

1.3.1]). Let U ! X be a special Galois covering. Since ðAy; ðpÞÞ is a Henselian couple
[24, 2.2], there exists a finite étale Galois extension By of Ay such that

SpecðBy �OK
kÞ ’ U uniquely up to isomorphisms.

We denote by RepspKn

�
p1ðX; �Þ

�
the full subcategory of the category of finite-dimen-

sional continuous representations of p1ðX; �Þ over Kn consisting of objects such that

p1ðX; �Þ acts through a finite quotient corresponding to some special Galois covering
of X. Let V be an object in RepspKn

ðp1ðX; �ÞÞ and B y a finite étale Galois extension of

Ay which corresponds to a special Galois covering U ! X such that p1ðX; �Þ acts on
V through GalðBy=AyÞ. Let B

y
K ¼ B y �OK

K. We define

D
A
y
K
;n
ðVÞ ¼ ðV�Kn

B
y
KÞ

p1ðX;�Þ;

where s 2 p1ðX; �Þ acts on V�Kn
B
y
K by s� s. Note that it does not depend on the

choice of By. We endow D
A
y
K

ðVÞ with jn-structure jn ¼ id� jn. Here jn on the

right-hand side is Frobenius of A
y
K uniquely extended to B

y
K.

LEMMA 5.1. There exists a unique connection H on M ¼ D
A
y
K
;n
ðVÞ which commutes

with jn. Moreover, ðM;H;jnÞ is a unit-root object in MCFnðA
y
K=KÞ.

Proof. By Galois descent [22, 5.1], M is projective A
y
K-module of finite type (and

hence free by Proposition 3.1) and

M�
A
y
K

B
y
K ’ V�Kn

B
y
K: ð7Þ

The existence and the uniqueness of the connection that commutes with jn follows

from a similar argument as in [13, A.2.2.4] and Proposition 2.8. We remark that the

connection naturally extended toM�
A
y
K

B
y
K ’ V�Kn

B
y
K is given by Hðx� 1Þ ¼ 0 for

x 2 V.

Let OKn
be the integer ring of Kn and V a OKn

-lattice of V. Replacing V by the sum
of its translates by the action of p1ðX; �Þ, we can assume that V is stable by p1ðX; �Þ.
Then L ¼ ðV �OKn

ByÞ
p1ðX ;�Þ satisfies the three conditions of (6). &

We say an object ðM;H;jnÞ (resp. ðM;HÞ) in MCFnðA
y
K=KÞ (resp. MC

y
ðA

y
K=KÞ) is

special unit-root (resp. special étale) if it comes from a representation of the Galois

group of a special Galois covering of X in the above way (resp. if there exists a

jn-structure jn on ðM;HÞ for some n such that ðM;H;jnÞ is special unit-root). We

denote the full subcategory of MCFnðA
y
K=KÞ (resp. MC

y
ðA

y
K=KÞ) of special unit-root

(resp. special étale) objects by MCFspurn ðA
y
K=KÞ (resp. MC

se
ðA

y
K=KÞ). By Lemma 5.1,

we can regard D
A
y
K
;n
as a functor from RepspKn

ðp1ðX; �ÞÞ to MCFspurn ðA
y
K=KÞ.

We say an object ðM;H;jnÞ in MCFnðA
y
K=KÞ is special étale if ðM;HÞ is special

étale as an object in MCy
ðA

y
K=KÞ. We denote the full subcategory of MCFnðA

y
K=KÞ

of special étale objects by MCFsen ðA
y
K=KÞ.
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Let ðM;H;jnÞ be an object in MCF
spur
n ðA

y
K=KÞ. Let V be a finite representation of

p1ðX; �Þ over Kn such thatM ’ D
A
y
K
;n
ðVÞ in MCFnðA

y
K=KÞ. Take a special covering U

of X such that p1ðX; �Þ acts on V through GalðU=XÞ and let By be the finite étale

extension of Ay corresponding to U ! X. We choose U so that WðFpnÞ � By. Here

WðFpnÞ is a Witt ring with residue field Fpn . Let B
y
K ¼ By � K. Then we define

V
A
y
K
;n
ðMÞ ¼ ðM�

A
y
K

B
y
KÞ

jn¼1 :¼ fx 2 M�
A
y
K

B
y
K j jnðxÞ ¼ xg:

Here jn acts on M�
A
y
K

B
y
K by jn � jn. V

A
y
K
;n
ðMÞ does not depend on the choice of

By. We endow V
A
y
K
;n
ðMÞ with an action of p1ðX; �Þ by id� s for s 2 p1ðX; �Þ. Thus

we can define a functor V
A
y
K
;n
from MCFspurn ðA

y
K=KÞ to Rep

sp
Kn
ðp1ðX; �ÞÞ.

LEMMA 5.2. If Fpn � k, V
A
y
K
;n
is a quasi-inverse of D

A
y
K
;n
and, hence,

D
A
y
K
;n
: MCFspurn ðA

y
K=KÞ ! RepspKn

�
p1ðX; �Þ

�
is an equivalence of categories.

Proof. Suppose that M is isomorphic to D
A
y
K
;n
ðVÞ for some object V in

RepspKn
ðp1ðX; �ÞÞ. Let By be as in the definition of D

A
y
K
;n
. Then

V
A
y
K
;n
ðMÞ ’ ððV�Kn

B
y
KÞ

p1ðX;�Þ �
A
y
K

B
y
KÞ

jn¼1

’ ðV�Kn
B
y
KÞ

jn¼1

’V�Kn
ðB

y
KÞ

jn¼1:

Thus we only have to show that B
y
K

jn¼1
¼ fx 2 B

y
K j jnðxÞ ¼ xg ¼ Kn. If x 2 B

y
K

jn¼1
,

then dx ¼ djnðxÞ ¼ jnðdxÞ. This implies dx ¼ 0. In fact, we can assume that x 2 By

and in this case it follows from a similar argument as in [13, A.2.2.4], by embedding x

in the completion of By with respect to the p-adic topology. As a result, x belongs to

the maximal unramified extension K0 of K in B
y
K. Since Fpn � k, K0

n ¼ Kn. &

5.2. LOCAL CASE

We say an object ðM;HÞ in MCðRK=KÞ is étale if there exists a finite separable exten-

sion F of the residue field E of RK such that ðM�RK
RKðF Þ;H�RKðF ÞÞ is trivial in

MCðRKðFÞ=KFÞ. Here KF is the algebraic closure of K in RðFÞ.

We say an object ðM;H;jnÞ in MCFnðRK=KÞ is unit-root if there exists a free sub-

OKhti
y-module L of M such that

ðiÞ M ’ L�OKhti
y RK;

ðiiÞ jnðLÞ � L;

ðiiiÞ 1� jn : OKhti
y�jn

L ! L is an isomorphism

of OKhti
y-modules,

ð8Þ
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We denote by MCetðRK=KÞ (resp. MCFurn ðRK=KÞ) the full subcategory of

MCðRK=KÞ (resp. MCFnðRK=KÞ) of étale (resp. unit-root) objects.

We say an object ðM;H;jnÞ in MCFnðRK=KÞ is étale if ðM;HÞ is étale as an object
in MCðRK=KÞ. We denote by MCF

et
n ðRK=KÞ the full subcategory of MCFnðRK=KÞ

of étale objects.

LEMMA 5.3. If ðM;HÞ 2MCðRK=KÞ is étale, then ðM;HÞ has a unit-root jn-

structure for sufficiently large n.

Proof. It suffices to show that ðM;HÞ has a unit-root jn-structure for some n. Let F

be a finite Galois extension of E trivializing ðM;HÞ and G ¼ GalðF=EÞ. Let V1 be the

kernel of H�RðFÞ onM�RðFÞ. Then V1 is stable under the action of G and it is a

representation ofG overKF. By the theorem of Brauer [27, Theorem 24], ifKn for some

n has amth primitive root of unity for sufficiently largem, V1 has a Kn-lattice V which

is stable under the action of G. ThenM ’ ðV�Kn
RðF ÞÞ

G and the assertion is clear.

In general, there exists a finite Abelian extension K0 of K such that M� K0 has a

unit-root jn-structure jn for some n. Then jn commutes with the action of GalðK
0=

KÞ and, by Galois descent, M itself has a unit-root jn-structure. &

Let E be the residue field of RK and G ¼ GalðE sep=EÞ. We denote by RepfinKn
ðGÞ the

category of finite-dimensional continuous representations of G on which G acts

through finite quotients. For an object V in RepfinKn
ðGÞ, take a finite Galois extension

F of E such that G acts on V through GalðF=EÞ. We define

DRK;nðVÞ ¼
�
V�Kn

RKðF Þ
�G
: ðcf. Section 2.1Þ

Here s 2 G acts on V�RKðF Þ by s� s. We endow DRK;nðVÞ with jn-structure jn

by id� jn. It is obvious that DRK;nðVÞ is independent of the choice of F.

LEMMA 5.4. There exists a unique connection H on M ¼ DRK;nðVÞ which commutes

with jn. Moreover, ðM;H;jnÞ is a unit-root object in MCFnðRK=KÞ.

Proof. Let F be as in the definition ofDRK;n. As in the proof of Lemma 5.1, we have

DRK;nðVÞ �RK
RKðFÞ ’ V�Kn

RKðFÞ ð9Þ

and the assertion follows from Lemma 2.2 and Proposition 2.8. We remark that the

connection naturally extended to DRK;nðVÞ �RK
RKðFÞ ’ V�Kn

RKðFÞ is given by

Hðx� 1Þ ¼ 0 for x� 1 2 V�RKðFÞ. &

We say an object ðM;H;jnÞ in MCF
ur
n ðRK=KÞ is finite unit-root if it is isomorphic

to DRK;nðVÞ for some object V in RepfinKn
ðGÞ. We denote the full subcategory of

MCFurn ðRK=KÞ of finite unit-root objects by MCF
fur
n ðRK=KÞ. By Lemma 5.4, we

can regard DRK;n as a functor from RepfinKn
ðGÞ to MCFfurn ðRK=KÞ.

LEMMA 5.5. Let M;N be objects in MCFfurn ðRK=KÞ. If an endomorphism of

RK-modules from M to N commutes with jn-structures, then it also commutes with

connections.
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Proof.We reduce to the case thatM is ðRK; d;jnÞ. Then the set of endomorphisms

fromRK to N that commutes with jn-structures is isomorphic to fx 2 N j jnðxÞ ¼ xg

and we only have to show that it is annihilated by the connection H on N. By

Corollary 2.9 and Lemma 5.4, we have Njn¼1 � N�RK
RKðFÞ

jn¼1 ¼

ðV�Kn
RKðFÞÞ

jn¼1 ¼ V�Kn
K0
n. Then the assertion is clear from the last remark in

the proof of Lemma 5.4. &

Remark 5.6. It is easy to see that Lemma 5.5 does not hold without assumption

that jn-structures are unit-root.

Let ðM;H;jnÞ be an object in MCF
fur
n ðRK=KÞ. By definition, there exists an object

V in RepfinKn
ðGÞ such that M ’ DRK;nðVÞ. Take a finite Galois extension F of E such

that G acts on V through GalðF=EÞ and that the residue field contains Fpn . We define

VRK;nðMÞ ¼ ðM�RK
RKðFÞÞ

jn¼1 :¼ fx 2 M�RK
RKðFÞ j jnðxÞ ¼ xg:

Here jn acts on M�RK
RKðFÞ by jn � jn. We endow VRK;nðMÞ with Galois action

by id� s for s 2 G. Obviously VRK;nðMÞ is independent of the choice of F.

LEMMA 5.7. If Fpn � k, VRK;n is a quasi-inverse functor of DRK;n and hence

DRK;n : Rep
fin
Kn
ðGÞ !MCFfurn ðRK=KÞ

is an equivalence of categories.

Proof. We can prove the assertion in a similar way as in the proof of Lemma 5.2

by Corollary 2.9. &

In general, the functor DRK;n can be defined for finite-dimensional representations

of G over Kn such that the inertia I acts through a finite quotient. We call such a

representation with finite monodromy.

We briefly review the construction of the functor by Tsuzuki [28, 4] with our nota-

tion. Let E ¼ Khtiy and denote byOE its ring of integersOKhti
y. For a finite separable

extension of F of the residue field E of OE , we denote a finite étale extension of OE
with residue field F byOF and its field of fractions by F . Let K0 be the coefficient field

of RKðF Þ (cf. Section 2.1) and let �F be the image of F �K0 cKur in K1 �Zp
WðEalgÞ.

Here cKur is the completion of the maximal unramified extension of K, Ealg is an alge-

braic closure of E and WðEalgÞ is a Witt ring with residue field EE. We define

~E ¼ lim
�!
F=E

�F ;

where F runs through all finite separable extensions over E. LetG ¼ GalðE sep=EÞ. For

a representationV ofGwith finite monodromy overKn, we define the functorDRK;n by

DRK;nðVÞ ¼ ðV�Kn
~EÞG �E RK: ð10Þ

It is easy to see that, if V is an object of RepfinKn
ðGÞ, then the above functor is compa-

tible with the functor already defined.
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The next theorem means that any overconvergent F-isocrystal has finite mono-

dromy.

THEOREM 5.8 (N. Tsuzuki [28, 4.2.6]). Any object inMCFurn ðRK=KÞ comes from a

representation of G with finite monodromy.

COROLLARY 5.9. Any object inMCetðRK=KÞ is isomorphic to the image under the

forgetful functor of an object in MCFfurn ðRK=KÞ for some n.

Proof. Let ðM;HÞ be an object in MCetðR=KÞ. By Lemma 5.3, there is a

jn-structure jn on ðM;HÞ such that ðM;H;jnÞ is an object of MCF
ur
n ðR=KÞ. ThenM

can be written as DR;nðVÞ with a representation V with finite monodromy by

Theorem5.8.Weuse the samenotation as in the paragraph followingLemma5.7. Since

Kn is locally compact, the action of the inertia I ofG is trivialized by some finite Galois

extension F of E. Let H ¼ GalðEsep=FÞ. Since I \H acts trivially on V, we obtain

ðV�Kn
dKurÞ

H
�K0 dKur ’ V�Kn

dKur ð11Þ

(cf. [13, A.1.2.4], [28, 4.2.2]). Thus if we put �V ¼ ðV�Kn
cKurÞ

H, then

M ¼ ðV�Kn
eEÞG �E R

’ ðV�Kn
dKur �K0 F Þ

G
�E RÞ

’ ð �V�K0 dKur �K0 F Þ
G
�E R

’ ð �V�K0 �F Þ
G
�E R

’ ð �V�K0 F Þ
G=H

�E R:

By (11), �V is a K0-vector space of dimension equal to r ¼ dimKn
V. We fix an iso-

morphism �V ’
Lr K0 and define a Frobenius action j0

n on
�V so that it is compatible

with the action
L

jn on the right-hand side of the above isomorphism. Then j0
n

extends to the jn-structure of ðM;HÞ by (12) and ðM;H;j0
nÞ is an object of

MCFfurn ðRK=KÞ. &

5.3. KATZ CORRESPONDENCE FOR ÉTALE OBJECTS

By [19, 1.4.7], and Lemma 5.2, Lemma 5.7 above, we have the next proposition.

PROPOSITION 5.10. If Fpn � k, the inverse image functor

MCFspurn ðA
y
K=KÞ !MCFfurn ðRK=KÞ

is an equivalence of categories.

The forgetful functors

MCFspurn ðA
y
K=KÞ !MCseðA

y
K=KÞ;

MCFfurn ðRK=KÞ !MCetðRK=KÞ

are faithful but not full if Kn!=
K. However, we have the next lemma.
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LEMMA 5.11. Let M and N be objects in MCFspurn ðA
y
K=KÞ (resp. MCF

fur
n ðRK=KÞ).

Then for some finite unramified extension K0 of K, we have

Hom
MCFspurn ðA

y
K0
=K0Þ

ðM0;N0Þ �K0
n
K0 ’ Hom

MCseðA
y
K0
=K0Þ

ðM0;N0Þ

ðresp: HomMCFfurn ðRK0=K
0Þ
ðM0;N0Þ �K0

n
K0 ’ HomMCetðRK0=K

0ÞðM
0;N0ÞÞ:

Here M0 ¼ M�K K0 and N0 ¼ N�K K0.

Proof.We only give the proof of the case of RK. The case of A
y
K can be proven in

the same way.

It suffices to prove in the case that M is 1 ¼ ðRK; d;jnÞ. Let ðN;H;jnÞ 2

MCFfurn ðRK=KÞ and let V be an object in RepfinKn
ðGÞ such that N ’ DRK;nðVÞ. Take a

finite Galois extension F of E such that G acts on V through GalðF=EÞ and that the

residue field contains Fpn . Then we have HomMCFfurn ðRK=KÞ
ð1;NÞ ’ Njn¼1 by

Lemma 5.5.

Let K0 be the coefficient field of RKðFÞ (cf. Lemma 2.2). We denote

fx 2 L j Hx ¼ 0g by LH for module with connection ðL;HÞ. Then we have

HomMCetðRK=KÞ
ð1;NÞ ’ ððV�Kn

RKðFÞÞ
G
Þ
H

¼ ððV�Kn
RKðFÞÞ

H
Þ
G

¼ ðV�Kn
K0Þ

G:

On the other hand, by Lemma 5.5

HomMCFfurðRK=KÞ
ð1;NÞ ’ ððV�Kn

RKðFÞÞ
G
Þ
jn¼1

¼ ððV�Kn
RKðFÞÞ

jn¼1Þ
G

¼ ðV�Kn
K0
nÞ
G:

After extending scalars, we can assume that K0 ¼ K. Then the assertion is clear. &

COROLLARY 5.12. The inverse image functor

i :MCseðAy
K=KÞ !MCetðRK=KÞ

is an equivalence of categories.

Proof. For any positive integer n, we have a diagram
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Here i0 is also an inverse image functor. By Proposition 5.10, if Fpn � k, i0 is an
equivalence of categories. Since any object in MCetðRK=KÞ is an image by forgetful

functor of an object in MCFfurn ðRK=KÞ for sufficiently large n by Corollary 5.9, i is
essentially surjective. We show that i is fully faithful. Let us denote MCetðRK=KÞ

(resp. MCseðA
y
K=KÞ) by CK and let M;N be objects in CK. Then it is easy to see that

HomCKðM;NÞ � K0 ’ HomCK0 ðM� K0;N� K0Þ. On account of this, the full faithful-

ness follows from Lemma 5.11. &

COROLLARY 5.13. The inverse image functor

MCFsen ðA
y
K=KÞ !MCFetn ðRK=KÞ

is an equivalence of categories.

Proof. It follows from the same argument as in the proof of Corollary 4.7. &

5.4. SCALAR EXTENSION

Let L ¼ bKnr be the completion of the maximal unramified extension of K. We call an

object ðM;H;jnÞ in MCFnðRKÞ geometrically irreducible if M�RK
RL0 is irreducible

(i.e. it has no proper subobject) in MCFnðRL0=L0Þ for any finite extension L0 of L. We

call an object ðM;HÞ in MCðRKÞ is geometrically irreducible ifM�K K0 is irreducible

in MCðRK0 Þ for any finite extension K0 of K satisfying (3). We call objects ðM;H;jnÞ

and ðM0;H0;j0
nÞ in MCFnðRKÞ are geometrically isomorphic if ðM;H;jnÞ �RK

RL0 and

ðM0;H0;j0
nÞ �RK

RL0 are isomorphic in MCFnðRL0=L0Þ for any finite extension L0 of L

satisfying (3). The next lemma shows that, in MCðRK=KÞ, ‘geometrically isomorphic’

means isomorphic.

LEMMA 5.14. Let M and N be objects inMCðRK=KÞ, and let L be a finite extension

field of K. Then there exists an isomorphism M ’ N inMCðRK=KÞ if and only if there

exists an isomorphism M�K L ’ N�K L in MCðRL=LÞ.

Proof. If M ’ N, it is obvious that M� L ’ N� L. We show the converse.

Suppose that M� L ’ N� L. We use a similar argument as in [20, (4.1.2)]. Let

r ¼ rankðMÞ ¼ rankðNÞ and consider a commutative diagram

HomHðM;NÞ �!
det

HomHð
VrM;

VrNÞ

# #

HomHðM� L;N� LÞ �!
det�L

HomHð
VrM� L;

VrN� LÞ:

Since

HomH

^r
M;

^r
N

� �
� L ’ HomH

^r
M� L;

^r
N� L

� �
’ L;

we have HomHð
VrM;

VrNÞ ’ K, and a horizontal map f: M ! N is isomorphism if

and only if detð f Þ is a nonzero element of this K-vector space. We fix a basis

ðf1; . . . ; fmÞ of HomHðM;NÞ over K. Then det is a polynomial function on the

finite-dimensional K-vector space HomHðM;NÞ. Since
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HomHðM;NÞ � L ’ HomHðM� L;N� LÞ

ðf1; . . . ; fmÞ also gives a basis of HomHðM� L;N� LÞ and for this basis det�L is

represented by the same polynomial. Because K is infinite, if det vanishes identically

on HomHðM;NÞ then it also vanishes on HomHðM� L;N� LÞ. &

LEMMA 5.15. Let ðM;H;jnÞ be a geometrically irreducible finite unit-root jn-H-
module over RK. Then for i ¼ 0; 1 we have

Hi
HðMÞ ’

K; if M is the trivial object;

0; otherwise:

(

Proof. If i ¼ 0, the assertion is clear. Consider the case i ¼ 1. Since

Hi
HðM�K LÞ ’ Hi

HðMÞ �K L

for any finite extension L over K (we regardM�K L as an object in MCðRL=LÞ), we

can assume that Fpn � k. Let F be a finite Galois extension of the residue field E of

RK such that GalðE
sep=EÞ acts on V ¼ VRK;nðMÞ through GalðF=EÞ. Replacing n by a

multiple and K by a finite extension, we can assume that the regular representation

W ¼ Kn½GalðF=EÞ� of GalðF=EÞ decomposes as a direct sum
Lr

i¼0 Vi of representa-

tions such that Vi �Kn
Kalg
n are all irreducible and that the coefficient field (Section

2.1) of RKðFÞ is also K. Under these condition, DRK;nðWÞ ’
Lr

i¼0Mi with

Mi ¼ DRK;nðViÞ and M is isomorphic to some Mi. Let V0 be a unit representation.

Since H1
HðDRK;nðWÞÞ ’ H1

HðRKðFÞÞ ’ K, we have
Lr

i¼0 H
1
HðMiÞ ’ K. Since

H1
HðM0Þ ’ K, H1

HðMiÞ are all 0 for 14 i4 r. This proves the assertion. &

6. Special Objects

Combining the results of the last two sections, we can define the notion of special

objects and get the equivalence.

DEFINITION 6.1. An object M in MCy
ðA

y
K=KÞ is called special if it is a finite

direct sum of objects of the form P�U where P is special étale and U is uni-

potent (cf. Corollary 4.4). We call an object ðM;H;jnÞ in MCFnðA
y
K=KÞ special if

ðM;HÞ is special as an object in MCy
ðA

y
K=KÞ. We denote the full subcategory of

MCy
ðA

y
K=KÞ (resp. MCFnðA

y
K=KÞ) of special objects by MCspðA

y
K=KÞ (resp.

MCFspn ðA
y
K=KÞ).

DEFINITION 6.2. An object M in MCðRK=KÞ is called special if it is a finite

direct sum of objects of the form P�U where P is étale and U is unipotent. We

call an object ðM;H;jnÞ in MCFnðRK=KÞ special if ðM;HÞ is special as an object in
MCðRK=KÞ. We denote the full subcategory of MCðRK=KÞ of special objects by

MCspðRK=KÞ.
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7. Quasi-Unipotent Objects

In this section, we shall show that locally all the quasi-unipotent objects are special.

This result is an analogue of the theorem of Levelt [23] for quasi-unipotent overcon-

vergent isocrystals (cf. [20, II]).

7.1. DEFINITION

First we recall the definition of quasi-unipotence.

DEFINITION 7.1. We say an object ðM;HÞ in MCðRK=KÞ is quasi-unipotent if

there exists a finite separable extension F of the residue field of RK such that

ðM�RK
RKðFÞ;H�RKðFÞÞ is unipotent in MCðRKðFÞ=KFÞ. Here KF is the algebraic

closure of K inRðFÞ. We say an object ðM;H;jnÞ in MCFnðRK=KÞ is quasi-unipotent

if ðM;HÞ is quasi-unipotent as an object in MCðRK=KÞ. We denote the full sub-

category of MCðRK=KÞ (resp. MCFnðRK=KÞ) of quasi-unipotent objects by

MCquðRK=KÞ (resp. MCF
qu
n ðRK=KÞ).

7.2. LOCAL DECOMPOSITION THEOREM

It is obvious that the special objects in MCðRK=KÞ are quasi-unipotent. We will

show that the converse is also true. We denote the identity matrix of degree m by

Im. We denote by Nm;n a nilpotent matrix of size mn

0 Im 0
0 Im

. .
. . .

.

0 Im
0 0

0BBBBB@

1CCCCCA:

LEMMA 7.2. Let F be a finite separable extension of E. By Lemma 2:2, there is a

finite extension K0 of K and u 2 RKðFÞ such that RKðFÞ ’ RK0;u. Let @ ¼ td=dt. We

extend the operation of @ to RKðFÞ by

@x ¼ t
du

dt

dx

du
:

Suppose that Q ¼ ðqijÞ 2 Mðm2n2;m1n1;RKðFÞÞ satisfies the differential equation

@Q ¼ QNm1;n1 �Nm2;n2Q:

If n15 n2, then Q can be written in the form
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Q ¼

Q1 Q2 � � � Qn2

0
. .
. . .

.
g

. .
.

Q2

0 Q1

0BBBB@
1CCCCA; Qi 2 Mðm2;m1;K

0Þ:

Proof. We begin by observing that ‘log t’ does not appear in any ‘algebraic’

extension of RK. To be precise, if f 2 RKðFÞ and @f 2 K0, then f 2 K0 and @f ¼ 0.

Replacing K by K0, we can assume that K0 ¼ K. Then by [24, (3.4.1)] t can be written

in the form

t ¼ usða0 þ a1uþ � � �Þ; a0 2 OK½½t��
�; ai 2 OK½½t�� for i > 0:

Here s is the degree of F over E. Let gðuÞ ¼
P

i>0 ðai=a0Þ u
i, then

1

t
@ut ¼

sð1þ gÞ þ @ug

1þ g
¼ sþ @ug

X
j5 0

ð�gÞj

 !
:

Here @u ¼ u d=du. Therefore, if @f ¼ c 2 K, then

@u f ¼
c

t
@ut ¼ c

 
sþ @ug

 X
j5 0

ð�gÞj

!!
:

Since ð@ugÞg
j ¼ 1=ðjþ 1Þ@ug

jþ1 has no constant term, c must be 0 and the assertion is

clear.

Now we prove the lemma. Let us write Q ¼ ðQi;jÞ with

Qi;j 2 Mðm2;m1;RKðFÞÞ:

By the assumption, we have

@Qi;1 ¼ �Qiþ1;1;

@Qi;j ¼ Qi;j�1 �Qiþ1;j ð14 i4 n1 � 1; 24 j4 nÞ; ð13Þ

@Qn2;1 ¼ 0;

@Qn2;j ¼ Qn2;j�1 ð24 j4 n1Þ: ð14Þ

By (14) and the observation above, we see Qn2;j ¼ 0 ð14 j < n1Þ and Qn2;n1 2 K0.

Similarly we can prove that

Qn2�k;j ¼ 0 ð14 j < n1 � kÞ;

Qn2�k;j 2 K0 ðn1 � k4 j4 n2Þ
ð15Þ

for 14 k < n2 by induction on k using (13). &
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We denote by
Lr

i¼1Nmi;ni the nilpotent matrix

Nm1;n1 0
Nm2;n2

. .
.

0 Nmr;nr

0BBB@
1CCCA:

COROLLARY 7.3. Let N ¼
Lr

i¼1Nmi;ni with n1 > n2 > � � � > nr and n ¼
P

i nimi.

Suppose that Q ¼ ðqijÞ 2 Mðn;RKðFÞÞ satisfies a differential equation

@Q ¼ QN�NQ:

Then qij ¼ 0 for ði; jÞ such that m1 < i, 14 j4m1.

PROPOSITION 7.4. Suppose ðM;HÞ is a quasi-unipotent object inMCðRK=KÞ. If M

is irreducible, then M is étale.

Proof. Let ðM;HÞ be a quasi-unipotent RK-module over RK of rank n. Let F be a

finite Galois extension of E such that M0 ¼ M�RKðFÞ is unipotent. We denote its

Galois group by G. Then there exists a basis f ¼ ðf1; . . . ; fnÞ of M
0 such that

Hf ¼ fN�
dt

t
; with N ¼

Mr
i¼1

Nmi;ni ; n1 > n2 > � � � > nr:

For s 2 G, let sð f Þ ¼ fQs with Qs 2 RKðFÞ. Since s and H commute, we have

@Qs ¼ QsN�NQs:

By Corollary 7.3, we have qij ¼ 0 for ði; jÞ such that m1 < i and 14 j4m1. LetM
0
1 be

a sub-RKðFÞ-module generated by f1; . . . ; fm1
, thenM0

1 is stable under the action of G

and the connection H. By Galois descent, there exists H-module M1 over RK such

that M0
1 ¼ M1 �RK

RKðFÞ. Therefore if M is irreducible, n1 ¼ 0. This implies

N ¼ 0, i.e., M is étale. &

For objects M, M0 in MCðRK=KÞ, we define

ExtiHðM;M0Þ ¼ Hi
HðHomðM;M0ÞÞ:

We also denote Ext0HðM;M0Þ by HomHðM;M0Þ. Then HomHðM;M0Þ is isomorphic to

HomMCðRK=KÞðM;M0Þ and Ext1HðM;M0Þ is isomorphic to the group of classes of

extensions of M0 by M in MCðRK=KÞ.

LEMMA 7.5. Let ðM;HÞ and ðM0;HÞ be quasi-unipotent geometrically irreducible

H-modules over RK. Then for i ¼ 0; 1,

ExtiHðM;M0Þ ¼
K; if M is isomorphic to M0;

0; otherwise:

(
Proof. Suppose that M is isomorphic to M0. We can assume that M0 ¼ M. By

Proposition 7.4, M is étale. Therefore we are able to equip M with finite unit-root
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jn-structure for some n. We can replace K by a finite extension of K so that Fpn � k.

Let V ¼ VRK;nðMÞ. Then by Lemma 5.7, V is an irreducible representation of

G ¼ GalðEsep=EÞ such that G acts on V through a finite quotient. Here E is the residue

field ofRK (cf. 2.1). Moreover, by the assumption thatM is geometrically irreducible,

V is irreducible as a representation of the inertia I of G. By Schur’s lemma,

HomKðV;VÞ contains the unit representation with multiplicity one (as a representa-

tion of I). Then by Lemma 5.7, HomðM;MÞ is a direct sum of irreducible objects

and contains exactly one unit object. Now the assertion follows from Lemma 5.15.

The case where M andM0 are not isomorphic can be proven in the same way. &

LEMMA 7.6. Let P and P0 be geometrically irreducible objects. Let U and U0 be

indecomposable unipotent objects in MCquðRK=KÞ. Then for i ¼ 0; 1, we have

dimK Ext
i
HðP�U;P0 �U0Þ ¼

minðrankU; rankU0Þ; if P0 ’ P;

0; otherwise:

(

Proof. Suppose that P is not isomorphic to P0. We first consider the case that

U0 ¼ 1. By Theorem 4.1, there is a unique indecomposable unipotent submodule U1

of U. We may suppose by induction on the rank of U that ExtiHðP�U1;P
0Þ ¼ 0.

Then the assertion easily follows from the next long exact sequence and Lemma 7.5.

0! HomHðP;P
0Þ ! HomHðP�U;P0Þ ! HomHðP�U1;P

0Þ

! Ext1HðP;P
0Þ ! Ext1HðP�U;P0Þ ! Ext1HðP�U1;P

0Þ ! 0:

The case that U0 6’ 1 follows from the case that U0 ¼ 1 and induction on the rank of

U0 in a similar way.

Next suppose that P ¼ P0. Since P_ � P ’ 1$Q for some direct sum Q of

nontrivial irreducible étale objects, the assertion on Ext0 follows from next calcu-

lation and Lemma 4.6.

HomðP�U;P�U0Þ

’ Homð1;P_ � P�U_ �U0Þ

’ Homð1; ð1$QÞ �U_ �U0Þ

’ Homð1;U_ �U0Þ

’ HomðU;U0Þ:

Then the assertion on Ext1 follows from the above long exact sequence and induc-

tion on the ranks of U and U0. &

LEMMA 7.7. Let ðM;HÞ be a quasi-unipotent object in MCðRK=KÞ. Then for some

finite extension K0 of K, M� K0 is special.
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Proof. Replacing K by a finite extension, we can assume that M�K L is inde-

composable for any finite extension L of K. We shall show that, for some finite

extension K0 of K,M�K K0 has the form P�U with a geometrically irreducible étale

object P and an indecomposable unipotent object U in MCðRK0=K0Þ. Let F be a finite

separable extension of the residue field E of RK such thatM�RK
RKðFÞ is unipotent.

Then RKðFÞ is isomorphic to K00huiy for some finite extension K00 of K. Let K0 be a

finite extension of K00 satisfying (3) such that the regular representation of GalðF=EÞ

decomposes to representations which are irreducible over the algebraic closure of K0.

Replacing K by K0, we can assume that every irreducible subobject of M is geome-

trically irreducible.

We use induction on the rank of M. Let P be an irreducible subobject of M and

M0 ¼ M=P. We will show that M0 is indecomposable, in which case the assertion of

Lemma 7.7 follows immediately from the induction hypothesis and Lemma 7.6. In

fact, if M0 is decomposable, we can write M0 ¼
L

i2I M
0
i (jIj > 1) with indecompo-

sable components M0
i. By the induction hypothesis, each M0

i can be written in the

form P0
i �U0

i with an irreducible object P
0
i and an indecomposable unipotent object

U0
i. If P

0
i is not isomorphic to P, by Lemma 7.6, HomHðM

0
i;MÞ is isomorphic to

HomHðM
0
i;M

0Þ and, hence, M0
i becomes a direct summand of M. Thus all P0

i’s are

isomorphic to P. Let Mi be the inverse image in M of M0
i � M0. Then Mi is a

nontrivial extension of M0
i ¼ P�U0

i by P and, hence, can be written in the form

P�Ui for some indecomposable unipotent object Ui by Lemma 7.6. Consider the

exact sequence

0! HomHðP;PÞ ! HomHðP;MÞ ! HomHðP;$M0
iÞ ! Ext1HðP;PÞ:

By Lemma 7.6, dimKHomðP;MÞ > 1 since jIj > 1 and, hence, there is a map P ! M

whose projection to some M0
i does not vanish. Then there exists an injection from

P$ P ! Mi. This contradicts Lemma 7.6. &

THEOREM 7.8. Every quasi-unipotent object in MCðRK=KÞ is special.

Proof. Let ðM;HÞ be a quasi-unipotent object in MCðRK=KÞ. We can assume that

M is indecomposable. We use induction on the rank of M. Let Q be an irreducible

subobject of M. By Proposition 7.4, Q is étale. Let N ¼ M=Q. By the induction

hypothesis and the same argument as in the proof of Lemma 7.7, we can see that

N ’ Q�U1 for some indecomposable unipotent object U1. By Lemma 7.7, there is a

finite étale Galois extension K0 of K such that Q0 ¼ Q� K0 decomposes to
L

i2I P
0
i

with geometrically irreducible étale objects P0
i’s in MCðRK0=K0Þ. Then we can find a

subset S of G ¼ GalðK0=KÞ such that Q0 ¼
L

s2S sðP
0Þ. Here P0 denotes one of P0

i’s.

Let M0 ¼ M� K0 and U0
1 ¼ U1 � K0, then we have a short exact sequence

0!
M
s2S

sðP0Þ ! M0 !
M
s2S

sðP0Þ �U0
1 ! 0: ð16Þ

By the assumption that M is indecomposable, (16) does not split. Therefore, if we

decompose M0 into a direct sum
L

j2J D
0
j of indecomposable subobjects D

0
j, at least
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one of D0
j is isomorphic to P0 �U0 with an indecomposable unipotent object U0 of

rank rankðU1Þ þ 1. Denote it by D0. We can assume that P0 � D0. Let S ¼

fs1; . . . ; ssg. We shall prove that
Ps

i¼1 siðD
0Þ � M0 is actually a direct sum

Ls
i¼1

siðD0Þ. Suppose it is not and take the minimum number 24 i4 s such that

siðD0Þ \
Li�1

j¼1 sjðD
0Þ 6¼ 0. Because D0 is indecomposable, siðP0Þ is contained in every

nontrivial subobject of siðD0Þ and, hence, siðP0Þ \
Li�1

j¼1 sjðD
0Þ 6¼ 0. Then by the cano-

nical isomorphisms

HomHðsiðP0Þ;
Mi�1
j¼1

sjðD0ÞÞ

’
Mi�1
j¼1

HomHðsiðP0Þ; sjðD0ÞÞ

’
Mi�1
j¼1

HomHðsiðP0Þ; sjðP0ÞÞ;

we see that siðP0Þ \
Li�1

j¼1 sjðP
0Þ 6¼ 0, which contradicts the definition of S. ThusL

s2S sðD
0Þ � M0. Comparing the ranks of both sides, we see

L
s2S sðD

0Þ ¼ M0

and hence

M0 ’
M
s2S

sðP0Þ �U0 ’ Q0 �U0:

The assertion follows by Galois descent. &

COROLLARY 7.9. If an object M in MCðRK=KÞ is a successive extension of étale

objects, then it is special.

COROLLARY 7.10. Let ðM;HÞ be a quasi-unipotent module with connection over

RK;t. Then there exists a jn-structure on M for some n 2 Z.

Proof. The assertion follows from Theorem 7.8 and Lemma 4.3.

PROPOSITION 7.11. Let Q and Q0 be objects of MCetðRK=KÞ and let U and U0 be

objects of MCuniðRK=KÞ. Then we have

HomHðQ;Q0Þ �HomHðU;U0Þ ’ HomHðQ�U;Q0 �U0Þ:

Proof. Extending scalars, we are reduced to the case that Q and Q0 are geome-

trically irreducible. Then the assertion follows from the calculation in the proof of

Lemma 7.6. &

COROLLARY 7.12. Let ðM;H;jnÞ be a quasi-unipotent jn-H-module over RK. By

Lemma 7.7, for some finite extension K0 of K, we can decompose M� K0 intoL
i2I Pi �Ui as H-module over RK0 with geometrically irreducible étale objects Pi and
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unipotent objects Ui such that Pi is not isomorphic to Pj for any i 6¼ j. Then, for some

positive integer m, there exist jmn-structures j0
mn;i on Pi and j00

mn;i on Ui such that

ðjnÞ
m
¼

L
j0
mn;i � j00

mn;i.

Proof. As in Remark 4.5, there is one-to-one correspondence between the set of

jn-structures on ðP;HÞ and the set of automorphisms of ðP;HÞ if at least one
jn-structure exists. By Proposition 7.11, we have

HomHð
M
i2I

Pi �Ui;
M
j2I

Pj �UjÞ

’
M
i;j2I

HomHðPi �Ui;Pj �UjÞ

’
M
i2I

HomHðPi;PiÞ �HomHðUi;UiÞ:

and hence any automorphism of ðM;HÞ has the form
L

gi � hi with automorphisms

gi of Pi and hi of Ui. Note that each HomHðPi;PiÞ is one-dimensional vector space

over K. On the other hand, if we take as m a number such that all Pi have jn-

structures, thenM ¼
L

Pi �Ui has a jmn-structure of the form
L

c0
mn;i � c00

mn;i with

jmn-structures c0
mn;i on Pi and c00

mn;i on Ui. This means that any jmn-structure on

ðM;HÞ has the form
L

ðg � c0
mn;iÞ � ðhi � c

00
mn;iÞ and hence the assertion is clear. &

We denote the weak completion of OK½t
�1� by ~Ay. Then ~Ay is a subring of Ay and

we have

~Ay
K : ¼ ~Ay

� K ¼ GðP̂1
K; j

yO
P̂
1
K
Þ

¼

�X
i4 0

ait
i ai 2 K; jaijri ! 0; ði ! �1Þ for some r < 1

 ����
where j: A

1
k ¼ Spec k½t�1� ! P

1
k is an inclusion map. We define a differential module

with log pole at t�1 ¼ 0 by

O
~Ay
K

¼ ~Ay
K

dt

t
:

COROLLARY 7.13. Let M be a quasi-unipotent module with connection over RK.

Then there exists a free submodule ~M over ~Ay
K such that ~M�

~Ay
K

RK ’ M and that

Hð ~MÞ � ~M� O
~Ay
K

.

Proof. By Theorem 7.8, there is a decomposition on M into
L

i2I Qi �Ui with

Qi 2 ObMC
et
ðRK=KÞ and Ui 2 ObMC

uni
ðRK=KÞ. By Theorem 4.1, there is a basis e

of Ui such that He ¼ eC� dt=t with C 2 Mðni;KÞ. Here ni is a rank of Ui. Thus there

are sub- ~Ay
K-modules

fUi ofUi such that HðfUiÞ � fUi � O
~Ay
K

. We can equip eachQi with

finite unit-root jn-structure jn;i for some positive integer n. By Galois descent, we can

assume that Fpn � k. Let F be a finite Galois extension of the residue field E of RK

such that every ðQi;H;jn;iÞ �RKðFÞ is trivial. Let E
0 be the maximal tamely ramified

extension of E in F and k0 the residue field of F. Then E ’ k0ððt0�1ÞÞ for some Nth root

KATZ CORRESPONDENCE 25

https://doi.org/10.1023/A:1020233201909 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020233201909


t0 of t and F is a Galois extension of E0 such that its Galois group is a p-group. By [19],

there is a finite étale Galois covering eB0 of eA0
0 ¼ k0½t0�1� such that eB0 �eA0

0

E0 ’ F. Let

OK0 be the integer ring of an unramified finite extension K0 of K with residue field k0

and eA0y a weakly completion of OK0 ½t0�1�. Here we denote an Nth root of t 2 Ay also

by t0. Since ð eA0y; pÞ is a Henselian couple, there exists a finite étale covering ~By of eA0y

unique up to isomorphism such that ~By
�OK

k ’ eB0. Since ~By is integrally closed in

By ¼ ~By
� ~Ay A

y andBy is finite étale Galois overAy withGalois groupG ¼ GalðF=EÞ,
~By is also finite Galois over ~Ay with the same Galois group. Let ~By

K ¼ ~By
�OK

K and

Vi ¼ VRK;nðQiÞ for each i. Then we define sub ~Ay
K-module

fQi of Qi byeQi ¼ ðVi �Kn
~By
KÞ

G:

Let O
~By
K

¼ O
~Ay
K

� ~Ay
~By. It is easy to see that d: ~Ay

K ! O
~Ay
K

naturally extends to

d: ~By
K ! O

~By
K

and hencefQi has a connection H: fQi ! fQi � O
~Ay
K

which is compatible

with that of Qi. Then ~M ¼
LfQi �fUi satisfies the condition. &

Remark 7.14. If we choose frobenius structure j of Ay so that jð ~Ay
Þ � ~Ay, we can

also equip ~M with jn-structure which commutes with connection.

7.3. KATZ CORRESPONDENCE FOR QUASI-UNIPOTENT OBJECTS

THEOREM 7.15. The inverse image functors

MCspðA
y
K=KÞ !MCquðRK=KÞ;

MCFspn ðA
y
K=KÞ !MCFqun ðRK=KÞ

are equivalences of categories.

Proof. The inverse image functor

MCspðA
y
K=KÞ !MCspðRK=KÞ

is an equivalence of categories by Corollary 4.2, Corollary 5.12, Lemma 7.11, and

the analogous statement for MCspðA
y
K=KÞ of Lemma 7.11, which can be proven in

the same way.

Then the equivalence of the first functor in (7.15) follows from Theorem 7.8. The

case of the second is proven by the same argument as in the proof of

Corollary 4.7. &

We call the quasi-inverse functor

MCquðRK=KÞ !MCspðA
y
K=KÞ

the canonical extension.

We denote the category of finite-dimensional K-vector spaces by VectK.

COROLLARY 7.16. For any rational point a 2 X ¼ SpecðAy � kÞ (cf. Section 5.1),

the composite

MCquðRK=KÞ !MCspðA
y
K=K Þ !

fiber at a
VectK
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is a K-valued fiber functor on MCquðRK=KÞ, and hence MCquðRK=KÞ is a neutral

Tannakian category [12].

By (7.15), we also have the next functor.

MCFqun ðRK=KÞ !MCFspn ðA
y
K=K Þ !

fiber at a
j
n
�VectK :

Here jn-VectK is the category of finite-dimensional K-vector spaces with injective

jn-linear morphisms.

8. Swan Conductor and Irregularity

Let the notation and the assumption be as in the previous section.

8.1. BREAKS AND BREAK DECOMPOSITIONS

First we define breaks for the quasi-unipotent local overconvergent isocrystals. Let

M be an object in MCquðRK=KÞ. By Theorem 7.8, M has a decomposition into a

direct sum
L

i2I Qi �Ui with irreducible étale objects Qi and indecomposable unipo-

tent objects Ui. By Jordan–H �older theory and Krull–Remak–Schmidt theory, the

isomorphism classes of Qi �Ui’s and Qi’s are intrinsic invariants of M. By

Corollary 5.9, each Qi has at least one finite unit-root jn-structure. By the lemma

below, we can define the breaks of M as those of Qi.

LEMMA 8.1. Let ðQ;HÞ be an object inMCetðRK=KÞ and let c be any finite unit-root

jn-structure on ðQ;HÞ. Then the breaks of V ¼ VRK;nðQ;H;cÞ is independent of the
choice of c.

Proof.We begin by remarking that the breaks do not change by finite extension of

K and an unramified extension of the residue field E of RK;t [21, Chap. 1]. Let c1
(resp. c2) be a finite unit-root j

n-structure (resp. jm-structure) on ðQ;HÞ and put
Vi ¼ VRK;nðQ;H;ciÞ for i ¼ 1; 2. Replacing m; n by those common multiple, we can

assume that m ¼ n. We can also assume that the residue field of K contains Fpn . Take

a finite extension F of the residue field E of RK as in Section 5.2. Then we have

isomorphisms gi: Q�RK
RKðFÞ ! Vi �Kn

RKðFÞ compatible with actions of

G ¼ GalðF=EÞ and connections. Extending scalars, we can assume that the residue

field of F is same with that of E. Put g ¼ g2 � g
�1
1 . Taking kernels of connection, we

have an isomorphism gjV1�KnK
: V1 �Kn

K ! V2 �Kn
K which is compatible with

Galois actions. Thus the breaks of V1 coincide with those of V2. &

We say that M is purely of break x if either M ¼ 0 or if all the breaks of M are

equal to x.

LEMMA 8.2. Let M be an object in MCquðRK=KÞ, then M has a unique direct-sum

decomposition M ¼
L

x5 0MðxÞ into subobjects MðxÞ in MCquðRK=KÞ, indexed by

KATZ CORRESPONDENCE 27

https://doi.org/10.1023/A:1020233201909 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020233201909


real numbers x5 0, such that MðxÞ is purely of break x. Moreover, this decomposition

is compatible with finite scalar extensions.

Proof. By Theorem 7.8, M has a decomposition into
L

i2I Qi �Ui with étale

irreducible objects Qi and unipotent objects Ui. For some finite extension K0 of K

satisfying (3), Qi � K0 decomposes into the direct sum
L

j2J Pi;j of geometrically

irreducible objects Pi;j. It is easy to see that Pi;j ’ Pi;j0 for any j; j0 2 J, and hence

the breaks of the corresponding representation is pure (cf. [21, Chap. 1]).

Thus taking the tensor product of the break decomposition of the individual Qi

and Ui, we can see that M has a decomposition
L

x MðxÞ of the desired sort. Since

breaks do not change after a finite scalar extension, the decomposition also does not

change.

Next we show uniqueness. After extending scalars, we can assume that any

irreducible subobjects are geometrically irreducible. Each MðxÞ has a decomposi-

tion into
L

i2Ix
Pi �Ui with irreducible objects Pi and unipotent objects Ui. LetL

x M
0ðxÞ be another decomposition of M such that M0ðxÞ has purely of break x.

It suffices to show that M0ðxÞ � MðxÞ for any x. We show that any indecompo-

sable subobject D0 of M0ðxÞ is contained in MðxÞ. Let P0 be an irreducible sub-

object of D0. If x0 6¼ x, Mðx0Þ has no irreducible subobject isomorphic to P0, and

hence

HomHðD
0;MÞ ¼

M
i2Ix

HomHðD
0;Pi �UiÞ

by Lemma 7.6. This implies that D0 � MðxÞ. &

DEFINITION 8.3. We call the decomposition M ¼
L

MðxÞ of the above lemma

the break-decomposition of M. We define the Swan conductor of M asP
x xdimMðxÞ and denote it by swðMÞ.

It follows from the Hasse-Arf theorem and the next lemma that swðMÞ is a non-

negative integer. Cf. [26, IV, §3], [27, III, §19] and [21, 1.9].

By definition and [21, Chap. 1], we have the following lemmas.

LEMMA 8.4. Let

0! M0 ! M ! M00 ! 0

be a short exact sequence of quasi-unipotent modules with connections overRK, then we

have swðMÞ ¼ swðM0Þ þ swðM00Þ and

ðbreaks of MÞ ¼ ðbreaks of M0Þ [ ðbreaks of M00Þ:

LEMMA 8.5. Let M and N be quasi-unipotent modules with connections over RK and

M ¼
L

MðxÞ and N ¼
L

NðxÞ their break-decompositions. Then,
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MðxÞ �NðyÞ � ðM�NÞðsupðx; yÞÞ if x 6¼ y;

MðxÞ �NðxÞ �
X
y4 x

ðM�NÞðyÞ;

HomðMðxÞ;NðyÞÞ � HomðM;NÞðsupðx; yÞÞ if x 6¼ y;

HomðMðxÞ;NðxÞÞ �
X
y4x

HomðM;NÞðyÞ;

and if we denote the dual of M by M_;

M_ðxÞ ¼ MðxÞ_:

We denote by MCqu
ð4xÞðRK=KÞ the full subcategory of MC

qu
ðRK=KÞ of objects all

whose breaks are 4x. Similarly we denote by MCqu
ð<xÞðRK=KÞ the full subcategory

of MCquðRK=KÞ of objects all of whose breaks are <x. By the above lemmas, both

MCqu
ð4xÞðRK=KÞ and MC

qu
ð<xÞðRK=KÞ are stable by tensor product, internal hom, and

subquotient.

8.2. RELATION WITH THE CHRISTOL–MEBKHOUT THEORY

When k is a finite field, Christol and Mebkhout defined the filtration with respect to

irregularity and proved an index formula [5, 6].

Our decomposition and Swan conductor are compatible with their filtration and

irregularity. More precisely, we have the next theorem.

THEOREM 8.6. Let M be an object inMCquðRK=KÞ. Then the Swan conductor of M

coincides with the irregularity ofM in the sense of Christol andMebkhout [5, Def. 8.3-8].

Proof. This is an immediate consequence of Tsuzuki’s theorem [29], but we give

another proof using the canonical extension.

Let ~M and ~Ay
K be as in Corollary 7.13. Note that

~M is free ~Ay
K-module since

~Ay
K is

principal ideal domain. (By [14], ~Ay
K is noetherian and the same argument as in the

proof of [10, 6.1] shows that it is a Bezout ring.) We denote the index of ~M by

wð ~MÞ ¼ dimKerðH: ~M ! ~M� O
~Ay
K

Þ � dimCokðH: ~M ! ~M� O
~Ay
K

Þ:

Then �wð ~MÞ coincides with the irregularity of M. Cf. [5, Def. 8.2-9]. They use pro-

jection operators to define the generalized index, but it coincides with the index

above because Hð ~MÞ � ~M� O
~Ay
K

. We regardMy ¼ ~M�
~Ay
K

A
y
K as an overconvergent

isocrystal on Gk and denote the alternating sum of the dimensions of the rigid coho-

mology groups Hi
rigðGm;M

yÞ by wðMyÞ. Since index and Swan conductor are both

additive, we can reduce the assertion to the case where M is irreducible and hence

finite étale. Therefore we can assume that My ¼ D
Ay;n

ðVÞ for some integer n and

V 2 RepspKn
ðp1ðA

y

k; �ÞÞ with some j
n-structure.

We first prove that

wð ~MÞ ¼ wðMyÞ: ð17Þ
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We denote the composition

~M!
H ~M� O

~Ay
K

!
id�Res ~M

ðresp: My!
H
My � O

~Ay
K

!
id�Res

MyÞ

by Hð@Þ. Then the index of Hð@Þ: ~M ! ~M (resp. Hð@Þ:My ! My) is of course equal

to wð ~MÞ (resp. wðMyÞ). Let N be the cokernel of ~M ! My. If we denote by wðNÞ the

index of the induced endomorphism on N from Hð@Þ: My ! My, we have wð ~MÞ ¼

wðMyÞ þ wðNÞ, and hence it suffices to show that wðNÞ ¼ 0. Let M1 ¼ My �Rt�1 .

The cokernel of ~Ay
K ! A

y
K is isomorphic to the K-vector space

Hy

t�1
¼

nX
i>0

ait
i 2 K½½t��

��� l > 1; jaijl
i
! 0 ði ! 1Þ

o
:

Let r be the rank ofM and fix an isomorphism
LrRt�1 ’ M1. wðNÞ can be regarded

as the generalized index wðHð@Þ;Hy

t�1
Þ of Christol and Mebkhout [5, Def. 8.2-9] and

hence it does not depend on the choice of basis (see remark following Definition

8.2-7 of loc. cit.). Since V is tamely ramified at1, ðM1;HÞ is trivialized by tensoring
Rt�1 ðFÞ for some tamely ramified extension F of the residue field E of Rt�1 . After

extending scalars, we can assume that F ¼ Eðt1=lÞ for some integer l prime to p

and that k contains the lth root of unity. Then we can prove wðNÞ ¼ 0 by direct cal-

culation (cf. [24, Lemma 5.3]).

Next let U be a special Galois covering of Gm;k with Galois group G which tri-

vializes V and By the corresponding Galois extension of Ay. We denote

B
y
K ¼ By � K. We claim that

Hi
rigðGm;k;M

yÞ ¼ ðHi
rigðU=KÞ �Kn

VÞG: ð18Þ

Indeed, Hi
rigðGm;k;M

yÞ (resp. Hi
rigðU=KÞ) are cohomology groups of a complex

My ! M
y
K �

A
y
K

O
A
y
K

ðresp: By
K ! B

y
K �

A
y
K

O
A
y
K

Þ:

Since the dual V_ of V is projective Kn½G�-module, the functor from Kn½G�-vector

space to Kn-vector space

P 7! ðV�Kn
PÞG ¼ HomKn½G�ðV

_;PÞ

is an exact functor. Since My ¼ ðV�Kn
ByÞ

G, the assertion is clear.

Let Hi
c;rigðU=KÞ be compact support rigid cohomology groups of U. We denote the

alternating sum of the trace of the action of s ofG on Hi
rigðU=KÞ (resp. Hi

c;rigðU=KÞ) by

trðs : H�
rigðU=KÞÞ :¼

X2
i¼0

ð�1Þitrðs : Hi
rigðU=KÞÞ;

ðresp. trðs : H�
c;rigðU=KÞÞ :¼

X2
i¼0

ð�1Þitrðs : Hi
c;rigðU=KÞÞÞ:
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By Poincaré duality [10, 9.5],

trðs : H�
rigðU=KÞÞ ¼ trðs : H�

c;rigðU=KÞÞ: ð19Þ

On the other hand, by the fact that crystalline cohomology is a Weil cohomology [16]

and by the comparison theory of rigid cohomology and crystalline cohomology

[3, Prop. 1.9], we can show the Weil formula:

trðs : H�
c;rigðU=KÞÞ ¼ �sw0ðsÞ: ð20Þ

in the same way as in [17] (cf. [18]). Here sw0 is a Swan character at 0. By (19) and

(20), we haveX2
i¼0

ð�1Þi dimHi
rigðGm;k;M

yÞ ¼ �
1

jGj

X
s

sw0ðsÞtrðs : VÞ ¼ �swðVÞ:

Here swðV Þ denotes the Swan conductor of V as an representation of

GalðkððtÞÞsep=kððtÞÞÞ via natural injection GalðkððtÞÞsep=kððtÞÞÞ ,! p1ðGk;m; �Þ. By defini-

tion, it is nothing other than swðMÞ. Thus, by (17) and (18), we have wð ~MÞ ¼

�swðMÞ. This completes the proof. &

Remark 8.7. Richard Crew proved the same result in case that M is étale [9].

COROLLARY 8.8. If we denote the filtration of Christol and Mebkhout by M>g as in

[5], we have M>g ¼
L

x>gMðxÞ.

Proof. We first remark that for any subobject N � M, we have M>g \N ¼ N>g

since ð�Þ>g is an exact functor [5, Prop. 6.3-1]. Therefore, if M ¼
L

Mi, then

M>g ¼
L

ðMiÞ>g, and it suffices to show the assertion in case that M ¼ MðxÞ. Since

GrgMðxÞ is pure with respect to both the break filtration defined above and the

Christol–Mebkhout filtration, it coincides with MðxÞ if g ¼ x by Theorem 8.6,

[5, Prop. 8.3-1] and [6, Prop. 2.1-2], and hence it is 0 if g 6¼ x. This proves the

assertion. &

8.3. DIFFERENTIAL GALOIS GROUPS

We fix a K-rational point a 2 Gm and denote by o the fiber functor defined in

Corollary 7.16.

We denote

W ¼ WðRK=KÞ ¼ Aut�ðoÞ:

This is an analogue of local Galois group of a local field of positive characteristic.

We also define as in [20, 2.5] the upper numbering filtration WðxÞ ¼ WðRK=KÞ
ðxÞ

(resp. WðxþÞ ¼ WðRK=KÞ
ðxþÞ) to be the kernel of the fully faithful homomorphism

W ! Aut�ðojMCqu
ð<xÞ

ðRK=KÞÞ

ðresp. W ! Aut�ðojMCqu
ð4 xÞ

ðRK=KÞÞÞ:
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Then, for 0 < x < y, we have

W & W ð0þÞ & WðxÞ & WðxþÞ & WðyÞ & WðyþÞ:

We can regard W=Wð0þÞ as the regular singular part of W.

For an object M ¼ ðM;HÞ of MCðRK=KÞ, we denote by hMi the full subcategory

of MCðRK=KÞ whose objects are all the subquotient of all finite direct sums of the

objects M�n � ðM_Þ
�m for all n;m5 0, i.e., the smallest rigid tensor subcategory

of MCðRK=KÞ containing M. If M is quasi-unipotent, hMi is a neutral Tannakian

category. We denote the group scheme Aut�ðojhMiÞ by DGalðMÞ.

Let K0 be a finite extension of K, then there exists a fiber functor oK0 from

MCquðR0
K=K

0Þ. We denote Aut�ðoK0 jhM� K0iÞ by DGalðM� K0Þ, then there is a

natural closed immersion DGalðM�K K0Þ ,! DGalðMÞ �K K0.

PROPOSITION 8.9. For a finite extension K0 of K, we have

DGalðM�K K0Þ ’ DGalðMÞ �K K0:

Proof. The proof is almost same as Gabber’s proof of [20, (1.3.2), (2.4.15)].

Cf. [8, 2.1]. &

We denote I ¼ IðRK=KÞ ¼ Aut�ðojMCetðRK=KÞ
Þ. By Proposition 7.11, we have

MCquðRK=KÞ ’MCetðRK=KÞ �MCuniðRK=KÞ

and hence

W ¼ I� Ga

(cf. [11, 5.13] and [11, 6.21]).

CONJECTURE 8.10. Let E be as in Section 2:1 and P the constant pro-algebraic

group associated with pro-p-part of GalðEsep=EÞ. Then there is an exact sequence of

pro-algebraic groups

1! P ! I ! lim
�!
pN

mN ! 1:
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curve, Ann. Sci. École Norm. Sup. (4) 31 (1998), 717–763.
11. Deligne, P.: Catégories tannakiennes, In: The Grothendieck Festschrift, Volume II, Progr.

Math. 87, Birkh�auser, Basel, 1990, pp. 111–194.
12. Deligne, P. and Milne, J.: Tannakian categories, In: Hodge Cycles, Motives, and Shimura

Varieties, Lecture Notes in Math. 900, Springer, New York, 1982, pp. 101–228.
13. Fontaine, J.-M.: Représentations p-adiques des corps locaux, In: The Grothendieck Fes-

tschrift, Volume II, Progr. Math., Birkh�auser, Basel, 1990, pp. 249–309.

14. Fulton, W.: A note on weakly complete algebras, Bull. Amer. Math. Soc. 75 (1969),
591–593.

15. Garnier, L.: Correspondence de Katz et irrégularité des isocristaux surconvergents de
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