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THE COMPUTATION OF THRESHOLDS
FOR SCHRODINGER OPERATORS

E. B. DAVIES

Abstract

The paper describes an approach to the computation of the zero en-
ergy thresholds for the appearance of negative energy eigenvalues of
Schrddinger operators.

1. Introduction
Let H be the self-adjoint operator
Hf .= —-Af +sVf

acting inL2(R"), whereV is a real-valued potential which vanisheg.sls— oco. Subject
to some local regularity assumptions &nit is known thatH has continuous spectrum
equal to[0, oo) together with possible negative eigenvalues of finite multiplicity which can
only accumulate at zero energy. Wi(x) = o(|x|2) at infinity andN > 3, thenH has
only a finite number of negative eigenvalues, andiff sufficiently small it has no negative
spectrum. We define the thresholds to be the valuasaviwhich the number of negative
eigenvalues, counted including multiplicities, changes areases. IV < 0 then the
number may only increase with) but we do not make this assumption. We refer1a, |
Chapter 7] andd] for general inequalites concerning the number of negative eigenvalue:
If N = 1,2 then one sometimes has a single negative eigenvalue for all sufficiently sme
values ofs, and the asymptotic expansion for this eigenvalue in the weak coupling limi
s — 0is known under suitable conditions &n[17, Chapter 7], [10].

Suppose that one has a method which is able to determine any negative eigenvalue
H to within a pre-determined errar > 0. Unfortunately, this does not provide a means
of computing the thresholds @f even approximately unless one has further information.
There is the possibility that when a new negative eigenvalue emerges, it remains extrem
small for a considerable interval of valuessobefore starting to decrease more rapidly.

As an example, suppose thédt= 3 and

Ve =—s (@+xD 2+ 8@+ 1xD 7).

For s = 0 this has finitely many negative eigenvalues for any 0, and thresholds exist.
On the other hand fo8 > 0, however small, the operator has infinitely many negative
eigenvalues accumulating at zero and it does not make sense to speak of thresholds; se
Theorem 8.5.5]. A direct numerical application of the Rayleigh—Ritz methdd tannot
distinguish between these two cases i 0 is sufficiently small, and so is bound to fail to
discover thresholds. The numerical determination of thresholds thus seems to be intracta
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The computation of thresholds for Schrédinger operators

and one has to adopt a strategy which makes use of the particular structure of the oper:
H.

In one dimension the zero energy thresholds may be determined numerically by a stu
of the Riccati equation. Although our methods work in one dimension, we do not advoca
them in this case for the above reason. There is, unfortunately, no analogous proced
in higher dimensions. The Rayleigh—Ritz (RR) and Temple—Lehmann (TL) inequalitie
provide standard methods of obtaining rigorous upper and lower bounds on the negat
eigenvalues of [7, Chapter 4], but TL becomes increasingly inaccurate for very small
negative eigenvalues, since it requires a substantial spectral gap above the eigenvalue b
considered if it is to yield an accurate lower bourid Theorem 4.6.3]. While one might
be content to accept the upper bounds produced by RR as accurate approximations to
thresholds, our concern in this paper is to provide an idea which can in principle provic
rigorous upper and lower bounds on the thresholds.

One method of computing the thresholds is by an application of the Lippmann—-Schwing
equation [17, Chapter 7]9], [11]. The last paper cited obtains detailed low-energy asymp-
totic expansions of the eigenvalues near thresholds, and shows that these depend sensit
upon the dimension. While potentially capable of providing an effective algorithm for the
computation of the thresholds, as currently developed it makes heavy use of the expli
formula for the Green function ak. An obvious problem in applying it wheH has vari-
able second-order coefficients, or actdf(2) for some unbounded regid, is that its
Green function cannot then be written down in closed form, and has an infinite singulari
along the diagonat = y. A numerical approach along these lines would therefore require
considerable thought.

The method which we investigate involves a procedure called ‘pre-conditioning’ in th
numerical literature. We modify certain ideas 6f py attaching the polynomial weights
used there to the operator rather than to the norms of the Banach spaces. We replace
operator of interest by one with more tractable spectral behaviour, but for which the numb
of negative eigenvalues is unchanged. By varying the relevant parameters one may obt
rigorous upper and lower bounds on the thresholds, provided that the potential is of sh
enough range.

We describe the method at an abstract level in the next section, without regard to
numerical implementation. It will be seen that it can be adapted to many other operato
but we have refrained from formulating it in the most general conceivable manner. In tf
later sections we discuss a method of carrying out the computations involved. This involv
using a particular class of test functions, which could have a finite element or wavel
basis. The two aspects of the paper are logically separate, and other numerical scheme:
implementing the ideas in Secti@may prove superior.

2. The pre-conditioning method

We define the operatdi initially on the dense domaiﬁc2 of twice continuously differ-
entiable functions with compact supportid(R") by

Hf (x) == =Af(x) 4+ Vs(x) f(x)

wheres € R andV; is a bounded real-valued measurable potential which vanishes suff
ciently rapidly asx| — oo and depends continuously enn the L°° norm. There is no
problem in incorporating local singularities Bfinto our formalism, but we avoid the extra
technicalities in the statements. The ca®des- 1,2 andN > 3 require slightly different
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treatments for well-known reasons; see [11].
We also use the symbal to refer to the self-adjoint operator associated with the closure
of the quadratic form

Q(f):==(Hf. [)

again initially defined onCCZ; see [4, Chapter 4] for an exposition of the theory of quadratic
forms. Actually, H is essentially self-adjoint on its initial domain, so this procedure is not
necessary, but all of our subsequent arguments are based on quadratic form method:
consequence of this is that all of our ideas can be extended to a self-adjoint operator of |
form

N

H'f(x) =~ Z ai {ai,j(x)i} + X () f(x) + Vs(x) f(x)
ij=1 Xi ax]'

where the second-order matrix coefficients are strictly elliptic in the sense(that: 1 for
all x e RV, andX is any non-negative locally bounded potential. One may also apply the
ideas to Schrédinger operators actinglif(2) subject to Dirichlet boundary conditions,
whereS2 is a suitable region iR .

Now leto > 1 be aC? function onR”", and letH denote the operator initially defined
onC? by

Hf :=0cH(of)

and also the self-adjoint operator associated with the closure of its quadrati@fdmour
applicationsg (x) diverges to+oo as|x| — oo. Note that DondQ) need not coincide with

{f € L?: of € Dom(Q)}, so some care is needed in applying quadratic form methods. |
is clear from its definition that we may write

I:I:I:IQ—I—WS

whereHp := —o Ao andW, := o2V, this identity is firstinterpreted in the quadratic form
sense orCC2 and then extended to the form closure. The key observation of this paper
that although these two operators are not unitarily equivalent (in general), their threshol
are equal.

Lemma 1. The numbers of negative eigenvaluestbfand H are equal, possibly both
infinite. If the number is finite then the thresholds for the two operators are the same.

Proof. SinceCC2 is a quadratic form core fal, the number of its negative eigenvalues is
equal to the supremum of the dimensions of all those finite-dimensional subs{pat€§
suchthatd|; < Ointhe sensethdtdf, ) < O for all non-zerof € L, by the variational
theorem; see [7, Theorem 4.5.2]. A similar statement appliegd.tBut the operator of
multiplication byo is a linear isomorphism ofcz, and so induces a dimension-preserving
mapping of the one family of subspaces onto the other. This leads immediately to the fi
statement of the lemma. The second statement is a direct consequence of the definitiol
thresholds. O

Assuming that/ has only finitely many negative eigenvalues, the advantage of studyin
H instead ofH is that although their thresholds are the same, the bottom of the essenti
spectrum off is positive under appropriate assumptionssoWe show in Sectio that
this enables us to obtain accurate enclosures on the eigenvaliiclokest to zero as
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approaches a threshold by the use of RR and TL, and hence to obtain an accurate enclo
of the threshold itself.

The following theorem provides the basic constraints on the choiee afid also a
condition onV for the number of negative eigenvalues i#fto be finite. The proof is
related to Birman—Schwinger type results [17, Chapter 7], which also provide quantitati
bounds on the number of negative eigenvalues.

Theorem 2. Suppose that
BL—PB)IVol? — (L-ploAo > c+ X

wherec is a positive constanf is a real constant and’ is a continuous function such that
lim |00 X(x) = 0. ThenHy > ¢I + X in the sense of quadratic forms. If also
lim W;(x)=0 (D)
|x]—00
thenX and W, are relatively compact with respect #y, and the essential spectrum Bf

is contained inc, o). In particular the number of negative eigenvaluestbbr of H is
finite.

Proof. The first statement of the theorem is an application6oflheorem 1.5.12], once
one checks thallpg > (¢ + X)¢ for the positiveC? function¢ (x) := o —#, which need
not lie in L2. Using equation (1) we next observe that

(H+il)t— (Hy— X +i1)~ L

is a compact operator by an application®flLemma 1.6.5] and a limiting argument to deal
with the fact that the potentials in question vanish at infinity instead of being of compac
support. Since the entire spectrumid§ — X lies in [¢, o), the second statement of the
theorem is then standard [7, Theorem 8.4.3]. O

Our first corollary is more general but much less detailed than corresponding resu
in [9, Section 3]. Whether the eigenfunctiopsdescribed below lie il .2(R") depends
sensitively on the dimensioN [9], [11]: typically the resonance eigenfunction associated
with the smallest threshold behaves lik¢?>— " as|x| — oo if N > 3.

Corollary 3. Under the conditions of the above theorem every threshaddassociated
with a resonance eigenfunctignof H which satisfies

/ o (x) 72| (x)[%dx < oo.
RN

Proof. By standard theorems from analytic perturbation theory, the spectrufi iof
(—o0, ¢) consists of isolated eigenvalues which depend analytically updime thresh-
olds of H therefore have to be eigenvalues in the usual sense of spectral thepiy. thie
L? eigenfunction offf associated with such a threshold then

(HY, f) =0
forall f € C2. Puttingg := o f, it follows that
(H(oy),8) =0
forallg € CCZ. If we put ¢ := o then we deduce th@d ¢ = 0 in the weak sense, and the
required conclusion follows. O
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Our applications of the above theorem are similar@oTheorem 1.5.14]; se&] for
related results on other variable coefficient elliptic operators.

Corollary 4. If N > 3and we pub (x) := (1+ |x|?)Y/2andg := N/2, then we have

We include the next corollary for completeness, although other methods are preferal
in one dimension.

Corollary 5. Let

d2
Hof(x) := —KJ;

acting in L2(0, oo) subject to Dirichlet boundary conditions @t If we puto (x) := 1+ x
andg := 1/2then we have

Ho > -1
in the sense of quadratic forms.
The proofs are both direct computations.

Lemma 6. Let N = 2 and leto be a positiveC? function such that (x) = r logr for all
x such thatr := |x| > 2. Then there exist¥ € C. such that

- 1
Hy>-1+X
0 ! +
in the sense of quadratic forms. The essential spectruby & contained if1/4, co) but
0is an eigenvalue ofly with L? eigenfunctiors 1.
Proof. If ¢ is a positive smooth function dR? such that
¢ (x) := r~tlog(r)~t/?

forall r := |x| > 2, then a direct calculation shows that

1
—oA(op)(x) = Z¢(X)
for |x| > 2. Therefore
—0A(o¢) = (% + X) ¢

whereX is a continuous function with support {m : |x| < 2}. The first conclusion of the
lemma follows as in Theorem 2.

It is elementary that —1 € L2, but the proof that it lies in the domain of the quadratic
form Qg associated withHy requires some work. Lef, € CZ°[0, oo) be a sequence of
functions such that & g, < 1, g,(r) =1ifr < landlim, g,(r) =1 forallr > 0.
Define f, € C2(R?) by

fa(®) 1= 0 (x) " Lgu(lx]).
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A direct calculation shows thdtf, — o ~1||» — 0 asn — oo and that
Qo =2n [ g, rfror
SinceQy is closed it follows that if we can choogg such that
nleoo /000 |g;l(r)|2rdr =0

then Qo(c—1) = 0 and the second statement of the lemma follows. Puttirg €' and
h,(s) := g,(€*) we have equivalently to construkt € C*°(R) such that 0< #,, < 1,
hy(s) = 1lifs < 0, h,(s) = O for large enough positive, lim,_, « h,(s) = 1 for all
s € Rand

o0
lim / k), (s)]?ds = 0.
n—-oo J_ o
We leave this as an exercise for the reader. O

The statements in the following theorem which refetare due to Klaus and Simon
[17, Remark 1, p. 93] and [11].

Corollary 7. If V; = sV whereV is not identically zero and
/ V(x)dx <0
RZ

thenH and henceH have at least one negative eigenvalue forsal# 0. The derivative of
the smallest negative eigenvaluefwith respect tos is equal to/z2 V ats = 0, while
the derivative of the negative eigenvaluefbfvith respect to is zero ats = 0, whatever
the value of the integral.

Proof. Let us first consider the case where the integral is negative (4 is the smallest
eigenvalue offf, then regular perturbation theory implies that it has the convergent powe
series expansion

il(s) =ais + a2s2 +...

abouts = 0, where

ay = ((O'ZV)G_]', o_l) = fz V(x)dx.

R
ando ~1, defined in Lemma 6, lies ih2. This establishes that (s) < 0 for smalls > 0 and
for largers the same follows by the concavity of the functibgn, which is a consequence
of its variational formulaT, Theorem 4.5.2]. For the second statement of the corollary se
[17, Remark 1, p. 93] and [11].

Now suppose that the integral vanishes. The functies 11(s) is concave and real-
analytic. It has zero derivative at= 0 and is not identically zero, because it diverges to
—o0 ass — oo. Thereforei1(s) < O foralls # 0. O

The following variation on Corollargt may be applicable in some cases.
Theorem 8. Let N > 3 and suppose that
Vo)l < a4+ |xH™
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forall s and allx € RY, wherea > 1. If we put
o(x) == 1+ [x|H)¥/?
then||W; |l < a and Hp has purely discrete spectrum. Moreover
Ho > (L+ x| (N — 2)/4
in the sense of quadratic forms, SpecHy) is contained ir((N — 2)2/4, co).

Proof. The second statement of the theorem is an applicatio, afffeorem 1.5.12] with
¢ (x) := (14 |x|®)~7 andy := (¢ — 1)/2+4 N /4. The compactness of the resolventhyf
follows as in [6, Corollary 1.6.7]. O

3. Discretisation

Throughout this section we assume that the hypotheses of Theébeerd Corollary
4 are satisfied; modified versions of the results hold under the assumptions of the la
results in SectioR. In order to implement the above ideas numerically, we pass to suitabl
finite-dimensional subspaces in which matrix computations may be performed. We do tt
in two stages. The first depends upon the choice of a small number of auxiliary functiol
@1, ..., ¢ and a small scale parameter- 0. The minimum regularity assumption is that
eachg, lies in the Sobolev spacWCl’z, where the subscript denotes compact support.
Particular choices ap, are discussed in the examples below.

For every(m, r) € ZV x {1, k} we put

bm.rn(x) = h~ N2 (x/h —m).
We then define the infinite matrices

Am,r;n,t = <I"~10¢m,r,h, ¢n,t.h>
Bs;m,r;n,t = <Wv¢m,r,h» ¢n,t,h)-
Sinceg, have compact support, the above matrices are both sparse: their coefficiet
vanish for large enough values|of —n|. This is very important for numerical computations
in dimensionsv > 2.

An examination of the definition o, ., - shows that it diverges t¢-oo as|m| — oo
and this proves that is not associated with a bounded operatofG@”" x {1, k}).

Theorem 9. Under certain generic assumptions ¢pfor r € {1, k} specified below, there
exist positive constantg and ¢; such that the two matrices, B, are associated with
self-adjoint operators ot?(ZV x {1, k}) which satisfy the inequalities
A > col
| Bs|l < c1.

Proof. We define the self-adjoint operataracting in/2(Z" x {1, k}) to be that associated
with the closure of the quadratic form

Qa(f) =Y Amrinafoifmr

m,r;n,t

defined initially on the set of functions of finite support.

https://doi.org/10.1112/51461157000000103 Published online by CddHnidge University Press


https://doi.org/10.1112/S1461157000000103

The computation of thresholds for Schrédinger operators

If J is the linear operator fronf(ZV x {1, k}) to L2(R") defined by
T =" fonr®mrn ()

then
112 ="Y" Conrifowrfus

m,r;n,t

where
Cmfn,r,t = (¢m,r,ha ¢n,t,h>
= / ¢r(x —m + n)gy(x)dx.

RN

Putting

£r©) = @ry N2 fy e

mezZN

forr e {1,k}and6 € T := (—n, 7)"V, one has
IIf1I? = fT > Cri(0)f(60) £1(0)d0
r,t

where

Cra®) = ) Crri€*.
kezN

The fact that|J £||2 > O for all # implies thatC (6) > 0 as a matrix for alp € T, and one
should generically expect that(6) is invertible for allg. Whether or not this is the case can
be checked explicitly as soon as the test functipnbave been selected; see the examples
below. Making this assumption, lgt, (0)}’;:1 be its eigenvalues written in increasing order

and repeated according to multiplicitydf) is invertible for allo € T then we may define
the positive constants andby by

bo := min p1(0)Y/?
0eT

b1 := maxug (0)Y/2.
6eT

It follows immediately that

0 <bollfllz < I/fll2 < ball fll2 < 00

forall0 # f e 2(ZN x {1, k}). ThusJ embedd? as a closed subspacef.
Making this regularity assumption o and hence o#, we now conclude from Corollary
4 that

(Af. f) = (N =221 fI1P/4 > (N = 2)%b5]1 £ 11?/4
which proves the first statement of the theorem with
co:= (N —2)%b3/4.
Similarly

[(Bs f, £)I < IWsllsollJ£113
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from which we deduce the second statement of the theorem with
c1 = || Wsloobf.
O
Itis clear from the proof of the above theorem that we have a loss of numerical contr
depending on the condition number of the multiplication oper&tdhat is, the size of
max{ (@) : 6 € T}
min{u1(0) :0 € T}~

This loss is reduced if the functiogs, ., have a very little overlap for different values of
m. However, this choice reduces the relationship between the spectral behavifyaod

the associated operatdr= J*HyJ oni2, as one sees by considering the extreme case ir
which ¢,, ., have disjoint supports for different valuesmf

condC) :=

Example 10. This example is related to the use of continuous compactly supported piec:
wise linear test functions. If we pét:= 1 and

) 1—x] if [x] <1
o) = { 0 otherwise
then a direct calculation shows that
2/3 ifm=n
<¢m,ha ¢n,h> = 1/6 if Im — n| =1
0 otherwise.
Therefore
C(0) =2/3+ 1/3cos(b)
and

condC) = 3.

Example 11. This example is related to the use of compactly supported piecewise cub
test functions whose values and first derivatives are continuous everywhere. ¥\Ve-pit
and

_ | @=D?@+2x) i x<1
P1(x) = { 0 otherwise
| Tx@—1xp? if x| <1
P2(x) == { 0 otherwise.
A routine calculation using Maple shows that
A S 26 _13igj
cop=| B s e, ]
30 Sin(@) — 10 COS(0)+ 15

from which one deduces that
cond () = 7.

The second stage in the discretisation involves choosing a finite-dimensional subspe
L of L?(RN). If we simply putL := Mg where

Mo :=lin{gy rpn : m € Sandr € {1, k}}
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for some finite subsest of 2V, the numerical results obtained will not be accurate unless we
take a very large set. The reason is that although threshold eigenfunctiors bé in L2,

they decrease rather slowly ag — oo. See Sectio for an amplification of this point.

It is therefore essential to adjoin I a few functions which allow one to approximate the
tails of the eigenfunctions. W (x) is very small forlx| > R then a threshold eigenfunction
satisfiesA(o¢) = 0 approximately fofx| > R as well as||¢||2 < co. Henceg can be
expanded approximately in a series, the first few terms of which are

N
¢ =alx" N+ gl TN 4
r=1

Generically, the first term dominates for laigé unless symmetry considerations force the
coefficienta to vanish [11]. We therefore chooge:= Mg & My where

My :=lin{yn, ..., ¥r}

and {1//,}521 is a small set of smootti? functions which are expected to give a good
approximation to the tails of a threshold eigenfunctionHifthas variable second-order
coefficients and/ decreases slowly at infinity, then the determination of suitgblenay
involve substantial effort.

We next orthogonalise the functiofls with respect to each other and with respect to
My to obtain functiong, which generate a subspat® for which one has an orthogonal
direct sum

L = My® M.

SinceRr is small this is not expensive.
We define the operataf : 12(S x {1,k}) & M> — L by

J(feg=0UfNeg
and observe that

If @ gl < I7(f & &)ll2 < max{by, 1}/ & gl2.

Therefore the conclusions of Theoréalso apply in this context, witf?(ZV x {1, k})
replaced by?(S x {1,k}) @ L.

Having chosen the subspakegthe restrictionC|; of any operator is defined to be the
operatorC|; : L — L such that

forall f, g € L. If h, ¢, andS are well enough chosen one may expect the threshplofs
(A 4 By)|1 to be close to the thresholdsof H. In some cases we can be more precise.

Lemma 12. If V; = sV < Othens), > s, for all n.

Proof. Foranys > s,, (A + sB)|. has at least negative eigenvalues. By the variational
theoremHy + s W also has at leagtnegative eigenvalues, and by Lemmadllhas at least
n negative eigenvalues. Henge< s. We now let sconverge ta,,. O

4. The matrix computation

In this section we assume, for simplicity, that the potential depends linearly kin
will be seen that the ideas can be adapted to the more general case. The task is to find
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eigenvalues (thresholds) of the problem
(A+sB)f =0

whenA, B are very large, sparse, self-adjoint matrices satisfying the conditions of Theore
9, andB may have both positive and negative eigenvalues. We assume more precisely tl
we are given explicit positive constargssuch that

col > A > col 2
1B < c1. (3)

As s increases, the computation becomes more expensive, both because the dimensio
L increases and because the size-oincreases. On the basis of the analysis in Section
2, we expect that foy # 0, the matrixA + s B has only a few eigenvalues in the interval
[co — Is| IB]l, co), and wish to find the values offor which it has a zero eigenvalue.

The method of determination of the thresholds which we describe below depends up
being able to compute particular eigenvalued ef s B and the corresponding eigenvectors
for values ofs close to the chosen threshold. Sindet sB will be a very large matrix
its eigenvalue closest ta < c¢p may be determined by inverse power iteration where
f — (A+sB — uI)~1fis calculated by the conjugate gradient methddGhapter 11].
SinceA and B are sparse, the steps in this iteration are cheap. Since there are only a f
eigenvalues less thap and they are typically well separated, the inverse power iteration
method is efficient. Other methods exig},[16], and one might consider using the subspace
version of inverse power iteration.

We first describe an idealised version of our method for finding the threshold vaiue of
for which the smallest eigenvalug(s) of A 4+ s B vanishes. Starting from a numberfor
which A + 11 B has a negative eigenvalue, [&tbe the normalised eigenvector associated
with A1(#1). Standard perturbation theory states that

A1(11) = (Bf1, f1).

Newton’s method suggests that we put

t2 :=t1 — A(t1)/(Bf1, f1)
or, equivalently, defing to be the real solution of

((A+12B) f1, f1) =0.

The variational theorem implies that+ 7, B has a non-positive eigenvalue, and we assume
that it is negative since otherwise the iteration can be terminated. Applying the same id
inductively yields a sequenag which converges rapidly to the solution bf(s) = 0 by
Newton’s method. The convergence of Newton’s method is guaranteed by the concavity
A1(s) as a function of. If one stops the computation when(z,) is close to zero, then
Theorem13 below gives an explicit estimate of the difference betgeand the zero of
A1(s).

The discussion above assumes that the smallest eigenvalue and eigenvéetqr>ére
computed exactly for each relevant vatué\Ve now describe how to implement the method
computationally. Starting from an initial vectgs and a numben, for which A + 1 B has
a negative eigenvalue, I¢i be a normalised vector such that

((A+1B)f1, f1) <0. 4)
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The vectorf; is constructed as an approximation to the eigenvectar-¢ft1 B associated
with its smallest eigenvalue, but it need not be an accurate approximation, and so may
determined fairly quickly. We now defing to be the solution of

((A+1B)f1, f1)=0 (%)

so the variational theorem implies that+ B has a non-positive eigenvalue. Note that
inequality (4) implies thatBf1, f1) < 0, so that the solutiory of (5) satisfieg, < r1. We
now repeat the procedure starting frginandr, and continue inductively. In principle, the
decreasing sequengemight converge to a value larger than the solutiongdf) = 0, but
this can be detected and the error at any stage controlled using Th&stestow.

The sequencg, of approximate eigenfunctions may be constructed within smaller sub
spaces thai, with great advantage. We know that the true zero energy eigenfunction lie
in L2(RV) and hence is localised in space. Instead of using a single subspmseciated
with a fairly large ses € Z" we may consider a sequence of smaller subspagessoci-
ated with an increasing sequence of subSgtand letf, be the solution of the appropriate
eigenvalue problem i, for eachn. The initial computations will then be cheaper because
the matrices involved are smaller, and only the final stages in the computation, which le
to the most accurate approximation to the zero energy eigenfunction, will be expensive.

Newton’s method can also be used to determine higher thresholds, even though the of
eigenvalues., (s) need not be concave functionssoforovided that one starts with a value
of 11 close enough to the relevant threshold. One can obtain an initial approximation to tt
positions of the thresholds by computing the number of negative eigenvaldes oB for
a range of values of. The Chebyshev iteration method provides a possible procedure fc
doing this [16].

Suppose that one expects that for a given valudloé matrixA +s B has a small number
k of negative eigenvalues, and wants to confirm this. Denote the actual number of negat
eigenvalues oft + s B by k’. Define the operatok by

Kf :=f (A+sB)f

ca+cals|
so that the spectrum & lies within[—1, 1] except fork” eigenvalues larger than 1. Now
take an initial linear subspadéy of dimensiork + 4 (or some such number) and define

M, == py(K)Mo
wherep, is thenth Chebyshev polynomial. The actual code uses the iterative formula

So i =2Kf_1— fu—2,

wherefp runs through a basis @fp and f1 := K fo. Generically, the subspadé, contains
very good approximations to the eigenvectorgbassociated with it&’ negative eigen-
values as: — oo. Hence if we restricK to M, it will have exactlyk’ eigenvalues larger
than 1 for all large enough. Note that we are only trying to determikg not the actual
magnitudes of the negative eigenvaluesiof s B, which are of no interest in the context
of this paper.

If all of the eigenvalues oK restricted toM,, are greater than 1 for large valuesmf
then this indicates that > k + 4, and we have to restart the algorithm with a larger value
of k.

The method is not rigorous because eigenvalués eéry close to zero will only become
visible by taking: extraordinarily large, so if we terminate the iteration at some preassigne
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value ofn we may not detectthose eigenvalues. However, we are only advocating this meth
as a way of getting an initial view of the likely location of the higher thresholds.

5. Obtaining enclosures on thresholds

Everything written so far leads to the construction of certain approximate solutions ¢
H f = 0 for values ofs which we expect to be close to the threshold#lobr equivalently
of H. The computations involved would presumably be done in double-precision floating
point arithmetic. In this section we describe how to obtain rigorous enclosures on the fir
threshold from this information. The computations of this section should be done in interv:
arithmetic. The following theorem reduces the problem of obtaining an accurate enclost
of 51 to that of obtaining an accurate enclosure.gfs) for a value ofs such that.1(s) is
very close to zero.

Theorem 13. Let

H = ~0 +sW
in the quadratic form sense, where
Ho = I:I(’)‘ >cl >0

and W is a self-adjoint relatively compact form perturbation Hf. Then the smallest
eigenvaluer1(s) of H is a concave, decreasing function for> 0. The threshold; of s
for which it vanishes is unique. 0f< A1(s) < € < c then

s<s1<s(1— e/c)fl.
On the other hand, i£§ < A1(s) < 0then
s(l+8/c)_1 <51 < 5.

It follows from the variational formula for the smallest eigenvalue that it is a concave
function of s, and from regular perturbation theory that it is analytic. The proofs of the
inequalities are elementary consequences of concavity.

Given the approximate eigenfunctighconstructed in the previous sections, we obtain
an upper bound ohy (s) easily using RR. The lower bound can only be obtained by mean:
of TL once we have crude lower bounds on some higher eigenvalués @fs in [8],

[13], [14], [15] this depends upon a homotopy with a comparison operator for which th
eigenvalues are known precisely, as described next.

GivenH and the rotationally invariant weight let Vo be arotationally invariant potential
such thatVp(x) < V(x) for all x € RY. We define

Wi (x) i= 0 (x)?[(1 — 1) Vo(x) + 1V (x)]

so thatW, is an increasing function af. We then putk; := Ho+ W, for0<r < 1.

SinceKj is rotationally invariant, its spectrum may be analysed independently in eac
angular momentum sector. This reduces one to the study of a sequence of half-line proble|
and we assume that accurate enclosures of the eigenvalues of such operators can be obt:
by a study of the solutions of the Riccati equation or some related methddhjs frequently
necessitates obtaining asymptotic control of the solutions of the differential equation
infinity, and solving an initial value problem for a range of parameters, which can be turne
into a rigorous procedure if one uses interval arithmetic [12].
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Once this has been achieved, it provides crude lower bounds on the eigenva{y by af
variational comparison theorem, and this enables one to obtain accurate and rigorous lo\
bounds on the eigenvalues &f, for some small enough > 0. An inductive procedure
leads to accurate enclosures on the eigenvaludg, ofor an increasing sequenceand
eventually forr, = 1. We refer to [8], [13], [14], [15] for the elaboration of this idea.

The extension of the method to higher thresholds cannot use Thd&esince higher
eigenvalues need not be concave functions.dflowever, one may proceed by applying
the intermediate value theorem after obtaining enclosures of the relevant eigenvalue at t
values ofs which straddle the threshold.

6. A numerical example

If HisanM x M self-adjoint matrix, the ease of computation of its smallest eigenvalue
A1 depends not only upon how well that is separated from the remainder of the spectrt
but also upon how easy it is to invert the matrix. We define the relative condition numbe
of H to be
AM — M
A2 — A1
The closer this is to 1, the cheaper is the computation;dfy any iterative method. In
particular, if H; depends continuously on a parametethen the ease of the computation
of a threshold at whichi1(s) = 0 depends upon the size of; (5) /A2(5).

The example which we consider in this section is a discretisation of the ordinary differ
ential operator

ren(H) =

Af(x) :=—f"(x) —s COS(JTx)eXp(—xZ/Z)f(x)

acting in L2(0, o0), but we consider it as a model in its own right. We determined the
eigenvalues of the various matrices using sparse matrix routines from Matlab, since t
example is only one-dimensional. The operatbon ?{1, oo} is defined with the aid of a
positive integek, representing the number of points per unit length, and is associated wit
the infinite matrix

H; := Hy — sV
where
2k2 ifm=n
HO,m,n = —kz if lm—n|=1
0 otherwise
and

Vin = 8m.n COS(Tn/ k)eXp(—n?/2k?).

This operator has continuous spectri@4k?], and may also have a finite number of
eigenvalues outside this interval.
In order to compute the first threshold we use the weight

on):=1+n/k.

Given the positive integel, representing the length of the interval, we defivg to be
the subspace of sequences with suppoftlinV} where N := bk. We let M2 be the one-
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dimensional subspace spanned by the sequence

0 fl<n<N
A4+n/k)~t ifn>N+1

so thatu approximates the tail of any threshold eigenfunction afdis orthogonal to
Mo. If h = 20 andb = 10 the restriction ofd to L := Mg @ M, has a zero energy
threshold fors ~ 4.2558517176, this value being essentially independentfof b > 10
(seeAppendix A).

The relative condition number @i as defined above is rather large4 135x 10° even
for h = 20 andb = 10, and it increases rapidly with This emphasises the importance
of obtaining a good tail expansion to reduce the size of th& ¢&t, N} in this example)
and hence the cost of the computation. If one does not include the veicttine subspace
L, the results obtained are very inaccurate:#fet 10 one gets ~ 4.56997 and even for
b = 100 one only gets ~ 4.28473 (sed\ppendix B).

u(n) = {

Appendix A. Computation of threshold with ‘tail’ test function

The Maple program to find the eigenvalues of the modified opef@fd7 when the
coupling constant is set at the value for which there is a zero energy threshold is availal
to subscribers to the journal at:
http://www.Ims.ac.uk/jcm/2/Ims99003/appendix-a/.

Appendix B. Computation of threshold with sharp cut-off on test functions

The Maple program to find values offor which one has zero energy thresholds for a
self-adjoint operator with a coupling constarns available to subscribers to the journal at:
http://www.Ims.ac.uk/jcm/2/Ims99003/appendix-b/.
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