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THE COMPUTATION OF THRESHOLDS
FOR SCHRÖDINGER OPERATORS

E. B. DAVIES

Abstract

The paper describes an approach to the computation of the zero en-
ergy thresholds for the appearance of negative energy eigenvalues of
Schrödinger operators.

1. Introduction

LetH be the self-adjoint operator

Hf := −1f + sVf

acting inL2(RN), whereV is a real-valued potential which vanishes as|x| → ∞. Subject
to some local regularity assumptions onV it is known thatH has continuous spectrum
equal to[0,∞) together with possible negative eigenvalues of finite multiplicity which can
only accumulate at zero energy. IfV (x) = o(|x|−2) at infinity andN > 3, thenH has
only a finite number of negative eigenvalues, and ifs is sufficiently small it has no negative
spectrum. We define the thresholds to be the values ofs at which the number of negative
eigenvalues, counted including multiplicities, changes ass increases. IfV 6 0 then the
number may only increase withs, but we do not make this assumption. We refer to [17,
Chapter 7] and [3] for general inequalites concerning the number of negative eigenvalues.
If N = 1,2 then one sometimes has a single negative eigenvalue for all sufficiently small
values ofs, and the asymptotic expansion for this eigenvalue in the weak coupling limit
s → 0 is known under suitable conditions onV [17, Chapter 7], [10].

Suppose that one has a method which is able to determine any negative eigenvalue of
H to within a pre-determined errorε > 0. Unfortunately, this does not provide a means
of computing the thresholds ofH even approximately unless one has further information.
There is the possibility that when a new negative eigenvalue emerges, it remains extremely
small for a considerable interval of values ofs, before starting to decrease more rapidly.

As an example, suppose thatN = 3 and

V (x) = −s
(
(1 + |x|)−3 + δ(1 + |x|)−1

)
.

For δ = 0 this has finitely many negative eigenvalues for anys > 0, and thresholds exist.
On the other hand forδ > 0, however small, the operator has infinitely many negative
eigenvalues accumulating at zero and it does not make sense to speak of thresholds; see [7,
Theorem 8.5.5]. A direct numerical application of the Rayleigh–Ritz method toH cannot
distinguish between these two cases ifδ > 0 is sufficiently small, and so is bound to fail to
discover thresholds. The numerical determination of thresholds thus seems to be intractable,
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The computation of thresholds for Schrödinger operators

and one has to adopt a strategy which makes use of the particular structure of the operator
H .

In one dimension the zero energy thresholds may be determined numerically by a study
of the Riccati equation. Although our methods work in one dimension, we do not advocate
them in this case for the above reason. There is, unfortunately, no analogous procedure
in higher dimensions. The Rayleigh–Ritz (RR) and Temple–Lehmann (TL) inequalities
provide standard methods of obtaining rigorous upper and lower bounds on the negative
eigenvalues ofH [7, Chapter 4], but TL becomes increasingly inaccurate for very small
negative eigenvalues, since it requires a substantial spectral gap above the eigenvalue being
considered if it is to yield an accurate lower bound [7, Theorem 4.6.3]. While one might
be content to accept the upper bounds produced by RR as accurate approximations to the
thresholds, our concern in this paper is to provide an idea which can in principle provide
rigorous upper and lower bounds on the thresholds.

One method of computing the thresholds is by an application of the Lippmann–Schwinger
equation [17, Chapter 7], [9], [11]. The last paper cited obtains detailed low-energy asymp-
totic expansions of the eigenvalues near thresholds, and shows that these depend sensitively
upon the dimension. While potentially capable of providing an effective algorithm for the
computation of the thresholds, as currently developed it makes heavy use of the explicit
formula for the Green function of1. An obvious problem in applying it whenH has vari-
able second-order coefficients, or acts inL2(�) for some unbounded region�, is that its
Green function cannot then be written down in closed form, and has an infinite singularity
along the diagonalx = y. A numerical approach along these lines would therefore require
considerable thought.

The method which we investigate involves a procedure called ‘pre-conditioning’ in the
numerical literature. We modify certain ideas of [9] by attaching the polynomial weights
used there to the operator rather than to the norms of the Banach spaces. We replace the
operator of interest by one with more tractable spectral behaviour, but for which the number
of negative eigenvalues is unchanged. By varying the relevant parameters one may obtain
rigorous upper and lower bounds on the thresholds, provided that the potential is of short
enough range.

We describe the method at an abstract level in the next section, without regard to its
numerical implementation. It will be seen that it can be adapted to many other operators,
but we have refrained from formulating it in the most general conceivable manner. In the
later sections we discuss a method of carrying out the computations involved. This involves
using a particular class of test functions, which could have a finite element or wavelet
basis. The two aspects of the paper are logically separate, and other numerical schemes for
implementing the ideas in Section2 may prove superior.

2. The pre-conditioning method

We define the operatorH initially on the dense domainC2
c of twice continuously differ-

entiable functions with compact support inL2(RN) by

Hf (x) := −1f (x)+ Vs(x)f (x)

wheres ∈ R andVs is a bounded real-valued measurable potential which vanishes suffi-
ciently rapidly as|x| → ∞ and depends continuously ons in theL∞ norm. There is no
problem in incorporating local singularities ofV into our formalism, but we avoid the extra
technicalities in the statements. The casesN = 1,2 andN > 3 require slightly different
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The computation of thresholds for Schrödinger operators

treatments for well-known reasons; see [11].
We also use the symbolH to refer to the self-adjoint operator associated with the closure

of the quadratic form

Q(f ) := 〈Hf, f 〉
again initially defined onC2

c ; see [4, Chapter 4] for an exposition of the theory of quadratic
forms. Actually,H is essentially self-adjoint on its initial domain, so this procedure is not
necessary, but all of our subsequent arguments are based on quadratic form methods. A
consequence of this is that all of our ideas can be extended to a self-adjoint operator of the
form

H ′f (x) := −
N∑

i,j=1

∂

∂xi

{
ai,j (x)

∂f

∂xj

}
+X(x)f (x)+ Vs(x)f (x)

where the second-order matrix coefficients are strictly elliptic in the sense thata(x) > I for
all x ∈ RN , andX is any non-negative locally bounded potential. One may also apply the
ideas to Schrödinger operators acting inL2(�) subject to Dirichlet boundary conditions,
where� is a suitable region inRN .

Now letσ > 1 be aC2 function onRN , and letH̃ denote the operator initially defined
onC2

c by

H̃f := σH(σf )

and also the self-adjoint operator associated with the closure of its quadratic formQ̃. In our
applications,σ(x) diverges to+∞ as|x| → ∞. Note that Dom(Q̃) need not coincide with
{f ∈ L2 : σf ∈ Dom(Q)}, so some care is needed in applying quadratic form methods. It
is clear from its definition that we may write

H̃ = H̃0 +Ws

whereH̃0 := −σ1σ andWs := σ 2Vs ; this identity is first interpreted in the quadratic form
sense onC2

c and then extended to the form closure. The key observation of this paper is
that although these two operators are not unitarily equivalent (in general), their thresholds
are equal.

Lemma 1. The numbers of negative eigenvalues ofH and H̃ are equal, possibly both
infinite. If the number is finite then the thresholds for the two operators are the same.

Proof. SinceC2
c is a quadratic form core forH , the number of its negative eigenvalues is

equal to the supremum of the dimensions of all those finite-dimensional subspacesL of C2
c

such thatH |L < 0 in the sense that〈Hf, f 〉 < 0 for all non-zerof ∈ L, by the variational
theorem; see [7, Theorem 4.5.2]. A similar statement applies toH̃ . But the operator of
multiplication byσ is a linear isomorphism ofC2

c , and so induces a dimension-preserving
mapping of the one family of subspaces onto the other. This leads immediately to the first
statement of the lemma. The second statement is a direct consequence of the definition of
thresholds.

Assuming thatH has only finitely many negative eigenvalues, the advantage of studying
H̃ instead ofH is that although their thresholds are the same, the bottom of the essential
spectrum ofH̃ is positive under appropriate assumptions onσ . We show in Section5 that
this enables us to obtain accurate enclosures on the eigenvalue ofH̃ closest to zero ass
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The computation of thresholds for Schrödinger operators

approaches a threshold by the use of RR and TL, and hence to obtain an accurate enclosure
of the threshold itself.

The following theorem provides the basic constraints on the choice ofσ and also a
condition onV for the number of negative eigenvalues ofH to be finite. The proof is
related to Birman–Schwinger type results [17, Chapter 7], which also provide quantitative
bounds on the number of negative eigenvalues.

Theorem 2. Suppose that

β(1 − β)|∇σ |2 − (1 − β)σ1σ > c +X

wherec is a positive constant,β is a real constant andX is a continuous function such that
lim |x|→∞X(x) = 0. ThenH̃0 > cI +X in the sense of quadratic forms. If also

lim|x|→∞Ws(x) = 0 (1)

thenX andWs are relatively compact with respect tõH0, and the essential spectrum ofH̃
is contained in[c,∞). In particular the number of negative eigenvalues ofH or of H̃ is
finite.

Proof. The first statement of the theorem is an application of [6, Theorem 1.5.12], once
one checks that̃H0φ > (c + X)φ for the positiveC2 functionφ(x) := σ−β , which need
not lie inL2. Using equation (1) we next observe that

(H̃ + i1)−1 − (H̃0 −X + i1)−1

is a compact operator by an application of [6, Lemma 1.6.5] and a limiting argument to deal
with the fact that the potentials in question vanish at infinity instead of being of compact
support. Since the entire spectrum ofH̃0 − X lies in [c,∞), the second statement of the
theorem is then standard [7, Theorem 8.4.3].

Our first corollary is more general but much less detailed than corresponding results
in [9, Section 3]. Whether the eigenfunctionsφ described below lie inL2(RN) depends
sensitively on the dimensionN [9], [11]: typically the resonance eigenfunction associated
with the smallest threshold behaves like|x|2−N as|x| → ∞ if N > 3.

Corollary 3. Under the conditions of the above theorem every thresholds is associated
with a resonance eigenfunctionφ ofH which satisfies∫

RN
σ (x)−2|φ(x)|2dx < ∞.

Proof. By standard theorems from analytic perturbation theory, the spectrum ofH̃ in
(−∞, c) consists of isolated eigenvalues which depend analytically upons. The thresh-
olds ofH̃ therefore have to be eigenvalues in the usual sense of spectral theory. Ifψ is the
L2 eigenfunction ofH̃ associated with such a threshold then

〈H̃ψ, f 〉 = 0

for all f ∈ C2
c . Puttingg := σf , it follows that

〈H(σψ), g〉 = 0

for all g ∈ C2
c . If we put φ := σψ then we deduce thatHφ = 0 in the weak sense, and the

required conclusion follows.
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Our applications of the above theorem are similar to [6, Theorem 1.5.14]; see [5] for
related results on other variable coefficient elliptic operators.

Corollary 4. If N > 3 and we putσ(x) := (1 + |x|2)1/2 andβ := N/2, then we have

H̃0 > (N − 2)2

4
I

in the sense of quadratic forms.

We include the next corollary for completeness, although other methods are preferable
in one dimension.

Corollary 5. Let

H0f (x) := −d2f

dx2

acting inL2(0,∞) subject to Dirichlet boundary conditions at0. If we putσ(x) := 1 + x

andβ := 1/2 then we have

H̃0 > 1

4
I

in the sense of quadratic forms.

The proofs are both direct computations.

Lemma 6. LetN = 2 and letσ be a positiveC2 function such thatσ(x) = r logr for all
x such thatr := |x| > 2. Then there existsX ∈ Cc such that

H̃0 > 1

4
I +X

in the sense of quadratic forms. The essential spectrum ofH̃0 is contained in[1/4,∞) but
0 is an eigenvalue of̃H0 withL2 eigenfunctionσ−1.

Proof. If φ is a positive smooth function onR2 such that

φ(x) := r−1 log(r)−1/2

for all r := |x| > 2, then a direct calculation shows that

−σ1(σφ)(x) = 1

4
φ(x)

for |x| > 2. Therefore

−σ1(σφ) =
(

1

4
+X

)
φ

whereX is a continuous function with support in{x : |x| 6 2}. The first conclusion of the
lemma follows as in Theorem 2.

It is elementary thatσ−1 ∈ L2, but the proof that it lies in the domain of the quadratic
form Q̃0 associated withH̃0 requires some work. Letgn ∈ C∞

c [0,∞) be a sequence of
functions such that 06 gn 6 1, gn(r) = 1 if r 6 1 and limn→∞ gn(r) = 1 for all r > 0.
Definefn ∈ C2

c (R
2) by

fn(x) := σ(x)−1gn(|x|).
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A direct calculation shows that‖fn − σ−1‖2 → 0 asn → ∞ and that

Q̃0(fn) = 2π
∫ ∞

0
|g′
n(r)|2rdr.

SinceQ̃0 is closed it follows that if we can choosegn such that

lim
n→∞

∫ ∞

0
|g′
n(r)|2rdr = 0

thenQ̃0(σ
−1) = 0 and the second statement of the lemma follows. Puttingr = es and

hn(s) := gn(es) we have equivalently to constructhn ∈ C∞(R) such that 06 hn 6 1,
hn(s) = 1 if s 6 0, hn(s) = 0 for large enough positives, limn→∞ hn(s) = 1 for all
s ∈ R and

lim
n→∞

∫ ∞

−∞
|h′
n(s)|2ds = 0.

We leave this as an exercise for the reader.

The statements in the following theorem which refer toH are due to Klaus and Simon
[17, Remark 1, p. 93] and [11].

Corollary 7. If Vs = sV whereV is not identically zero and∫
R2
V (x)dx 6 0

thenH̃ and henceH have at least one negative eigenvalue for alls > 0. The derivative of
the smallest negative eigenvalue ofH̃ with respect tos is equal to

∫
R2 V at s = 0, while

the derivative of the negative eigenvalue ofH with respect tos is zero ats = 0, whatever
the value of the integral.

Proof. Let us first consider the case where the integral is negative. Ifλ̃1(s) is the smallest
eigenvalue ofH̃ , then regular perturbation theory implies that it has the convergent power
series expansion

λ̃1(s) = a1s + a2s
2 + . . .

abouts = 0, where

a1 = 〈(σ 2V )σ−1, σ−1〉 =
∫

R2
V (x)dx.

andσ−1, defined in Lemma 6, lies inL2. This establishes thatλ̃1(s) < 0 for smalls > 0 and
for largers the same follows by the concavity of the functionλ̃1, which is a consequence
of its variational formula [7, Theorem 4.5.2]. For the second statement of the corollary see
[17, Remark 1, p. 93] and [11].

Now suppose that the integral vanishes. The functions → λ̃1(s) is concave and real-
analytic. It has zero derivative ats = 0 and is not identically zero, because it diverges to
−∞ ass → ∞. Thereforẽλ1(s) < 0 for all s 6= 0.

The following variation on Corollary4 may be applicable in some cases.

Theorem 8. LetN > 3 and suppose that

|Vs(x)| 6 a(1 + |x|2)−α
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for all s and allx ∈ RN , whereα > 1. If we put

σ(x) := (1 + |x|2)α/2
then‖Ws‖∞ 6 a andH̃0 has purely discrete spectrum. Moreover

H̃0 > (1 + |x|2)α−1(N − 2)2/4

in the sense of quadratic forms, soSpec(H̃0) is contained in[(N − 2)2/4,∞).

Proof. The second statement of the theorem is an application of [6, Theorem 1.5.12] with
φ(x) := (1+ |x|2)−γ andγ := (α− 1)/2+N/4. The compactness of the resolvent ofH̃0
follows as in [6, Corollary 1.6.7].

3. Discretisation

Throughout this section we assume that the hypotheses of Theorem2 and Corollary
4 are satisfied; modified versions of the results hold under the assumptions of the later
results in Section2. In order to implement the above ideas numerically, we pass to suitable
finite-dimensional subspaces in which matrix computations may be performed. We do this
in two stages. The first depends upon the choice of a small number of auxiliary functions
φ1, . . . , φk and a small scale parameterh > 0. The minimum regularity assumption is that
eachφr lies in the Sobolev spaceW1,2

c , where the subscriptc denotes compact support.
Particular choices ofφr are discussed in the examples below.

For every(m, r) ∈ ZN × {1, k} we put

φm,r,h(x) = h−N/2φr(x/h−m).

We then define the infinite matrices

Am,r;n,t = 〈H̃0φm,r,h, φn,t,h〉
Bs;m,r;n,t = 〈Wsφm,r,h, φn,t,h〉.

Sinceφr have compact support, the above matrices are both sparse: their coefficients
vanish for large enough values of|m−n|. This is very important for numerical computations
in dimensionsN > 2.

An examination of the definition ofAm,r;m,r shows that it diverges to+∞ as|m| → ∞
and this proves thatA is not associated with a bounded operator onl2(ZN × {1, k}).
Theorem 9. Under certain generic assumptions onφr for r ∈ {1, k} specified below, there
exist positive constantsc0 and c1 such that the two matricesA,Bs are associated with
self-adjoint operators onl2(ZN × {1, k}) which satisfy the inequalities

A > c0I

‖Bs‖ 6 c1.

Proof. We define the self-adjoint operatorA acting inl2(ZN ×{1, k}) to be that associated
with the closure of the quadratic form

QA(f ) :=
∑
m,r;n,t

Am,r;n,tfn,tfm,r

defined initially on the set of functionsf of finite support.

145https://doi.org/10.1112/S1461157000000103 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000103


The computation of thresholds for Schrödinger operators

If J is the linear operator froml2(ZN × {1, k}) toL2(RN) defined by

Jf (x) :=
∑
m,r

fm,rφm,r,h(x)

then

‖Jf ‖2 =
∑
m,r;n,t

Cm−n,r,t fm,rfn,t

where

Cm−n,r,t := 〈φm,r,h, φn,t,h〉
=

∫
RN
φr(x −m+ n)φt (x)dx.

Putting

f̂r (θ) := (2π)−N/2
∑
m∈ZN

fm,re
−im·θ

for r ∈ {1, k} andθ ∈ T := (−π, π)N , one has

‖Jf ‖2 =
∫
T

∑
r,t

Ĉr,t (θ)f̂r (θ)f̂t (θ)dθ

where

Ĉr,t (θ) =
∑
k∈ZN

Ck,r,te
ik·θ .

The fact that‖Jf ‖2 > 0 for all f implies thatĈ(θ) > 0 as a matrix for allθ ∈ T , and one
should generically expect thatĈ(θ) is invertible for allθ . Whether or not this is the case can
be checked explicitly as soon as the test functionsφr have been selected; see the examples
below. Making this assumption, let{µr(θ)}kr=1 be its eigenvalues written in increasing order
and repeated according to multiplicity. IfĈ(θ) is invertible for allθ ∈ T then we may define
the positive constantsb0 andb1 by

b0 := min
θ∈T µ1(θ)

1/2

b1 := max
θ∈T µk(θ)

1/2.

It follows immediately that

0< b0‖f ‖2 6 ‖Jf ‖2 6 b1‖f ‖2 < ∞
for all 0 6= f ∈ l2(ZN × {1, k}). ThusJ embedsl2 as a closed subspace ofL2.

Making this regularity assumption onJ , and hence onφ, we now conclude from Corollary
4 that

〈Af, f 〉 > (N − 2)2‖Jf ‖2/4 > (N − 2)2b2
0‖f ‖2/4

which proves the first statement of the theorem with

c0 := (N − 2)2b2
0/4.

Similarly

|〈Bsf, f 〉| 6 ‖Ws‖∞‖Jf ‖2
2
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from which we deduce the second statement of the theorem with

c1 := ‖Ws‖∞b2
1.

It is clear from the proof of the above theorem that we have a loss of numerical control
depending on the condition number of the multiplication operatorĈ; that is, the size of

cond(Ĉ) := max{µk(θ) : θ ∈ T }
min{µ1(θ) : θ ∈ T } .

This loss is reduced if the functionsφm,r,h have a very little overlap for different values of
m. However, this choice reduces the relationship between the spectral behaviour ofH̃0 and
the associated operatorA = J ∗H̃0J on l2, as one sees by considering the extreme case in
whichφm,r,h have disjoint supports for different values ofm.

Example 10. This example is related to the use of continuous compactly supported piece-
wise linear test functions. If we putk := 1 and

φ(x) :=
{

1 − |x| if |x| 6 1
0 otherwise

then a direct calculation shows that

〈φm,h, φn,h〉 =



2/3 if m = n

1/6 if |m− n| = 1
0 otherwise.

Therefore

Ĉ(θ) = 2/3 + 1/3 cos(θ)

and

cond(Ĉ) = 3.

Example 11. This example is related to the use of compactly supported piecewise cubic
test functions whose values and first derivatives are continuous everywhere. We putk := 2
and

φ1(x) :=
{
(1 − |x|)2(1 + 2|x|) if |x| 6 1
0 otherwise

φ2(x) :=
{

7x(1 − |x|)2 if |x| 6 1
0 otherwise.

A routine calculation using Maple shows that

Ĉ(θ) =
[ 9

35 cos(θ)+ 26
35 −13i

30 sin(θ)
13i
30 sin(θ) − 7

10 cos(θ)+ 14
15

]

from which one deduces that

cond(Ĉ) = 7.

The second stage in the discretisation involves choosing a finite-dimensional subspace
L of L2(RN). If we simply putL := M0 where

M0 := lin{φm,r,h : m ∈ S andr ∈ {1, k}}
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for some finite subsetS of ZN , the numerical results obtained will not be accurate unless we
take a very large setS. The reason is that although threshold eigenfunctions ofH̃ lie in L2,
they decrease rather slowly as|x| → ∞. See Section6 for an amplification of this point.
It is therefore essential to adjoin toL0 a few functions which allow one to approximate the
tails of the eigenfunctions. IfVs(x) is very small for|x| > R then a threshold eigenfunction
satisfies1(σφ) = 0 approximately for|x| > R as well as‖φ‖2 < ∞. Henceφ can be
expanded approximately in a series, the first few terms of which are

φ(x) = α|x|1−N +
N∑
r=1

βrxr |x|−1−N + · · · .

Generically, the first term dominates for large|x| unless symmetry considerations force the
coefficientα to vanish [11]. We therefore chooseL := M0 ⊕M1 where

M1 := lin{ψ1, . . . , ψR}
and {ψr}Rr=1 is a small set of smoothL2 functions which are expected to give a good
approximation to the tails of a threshold eigenfunction. IfH has variable second-order
coefficients andV decreases slowly at infinity, then the determination of suitableψr may
involve substantial effort.

We next orthogonalise the functionsψr with respect to each other and with respect to
M0 to obtain functionsξr which generate a subspaceM2 for which one has an orthogonal
direct sum

L = M0 ⊕M2.

SinceR is small this is not expensive.
We define the operator̃J : l2(S × {1, k})⊕M2 → L by

J̃ (f ⊕ g) = (Jf )⊕ g

and observe that

‖f ⊕ g‖2 6 ‖J̃ (f ⊕ g)‖2 6 max{b1, 1}‖f ⊕ g‖2.

Therefore the conclusions of Theorem9 also apply in this context, withl2(ZN × {1, k})
replaced byl2(S × {1, k})⊕ L2.

Having chosen the subspaceL, the restrictionC|L of any operatorC is defined to be the
operatorC|L : L → L such that

〈C|Lf, g〉 = 〈Cf, g〉
for all f, g ∈ L. If h, φr andS are well enough chosen one may expect the thresholdss′n of
(A+ Bs)|L to be close to the thresholdssn of H . In some cases we can be more precise.

Lemma 12. If Vs = sV 6 0 thens′n > sn for all n.

Proof. For anys > s′n, (A+ sB)|L has at leastn negative eigenvalues. By the variational
theoremH̃0 + sW also has at leastn negative eigenvalues, and by Lemma 1,H has at least
n negative eigenvalues. Hencesn 6 s. We now let sconverge tos′n.

4. The matrix computation

In this section we assume, for simplicity, that the potential depends linearly ons. It
will be seen that the ideas can be adapted to the more general case. The task is to find the
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eigenvalues (thresholds) of the problem

(A+ sB)f = 0

whenA,B are very large, sparse, self-adjoint matrices satisfying the conditions of Theorem
9, andB may have both positive and negative eigenvalues. We assume more precisely that
we are given explicit positive constantsci such that

c2I > A > c0I (2)

‖B‖ 6 c1. (3)

As s increases, the computation becomes more expensive, both because the dimension of
L increases and because the size ofc2 increases. On the basis of the analysis in Section
2, we expect that fors 6= 0, the matrixA + sB has only a few eigenvalues in the interval
[c0 − |s| ‖B‖, c0), and wish to find the values ofs for which it has a zero eigenvalue.

The method of determination of the thresholds which we describe below depends upon
being able to compute particular eigenvalues ofA+ sB and the corresponding eigenvectors
for values ofs close to the chosen threshold. SinceA + sB will be a very large matrix
its eigenvalue closest toµ < c0 may be determined by inverse power iteration where
f → (A+ sB − µI)−1f is calculated by the conjugate gradient method [2, Chapter 11].
SinceA andB are sparse, the steps in this iteration are cheap. Since there are only a few
eigenvalues less thanc0 and they are typically well separated, the inverse power iteration
method is efficient. Other methods exist [2], [16], and one might consider using the subspace
version of inverse power iteration.

We first describe an idealised version of our method for finding the threshold value ofs

for which the smallest eigenvalueλ1(s) of A+ sB vanishes. Starting from a numbert1 for
whichA+ t1B has a negative eigenvalue, letf1 be the normalised eigenvector associated
with λ1(t1). Standard perturbation theory states that

λ′
1(t1) = 〈Bf1, f1〉.

Newton’s method suggests that we put

t2 := t1 − λ1(t1)/〈Bf1, f1〉
or, equivalently, definet2 to be the real solution of

〈(A+ t2B)f1, f1〉 = 0.

The variational theorem implies thatA+ t2B has a non-positive eigenvalue, and we assume
that it is negative since otherwise the iteration can be terminated. Applying the same idea
inductively yields a sequencetn which converges rapidly to the solution ofλ1(s) = 0 by
Newton’s method. The convergence of Newton’s method is guaranteed by the concavity of
λ1(s) as a function ofs. If one stops the computation whenλ1(tn) is close to zero, then
Theorem13 below gives an explicit estimate of the difference beteentn and the zero of
λ1(s).

The discussion above assumes that the smallest eigenvalue and eigenvector ofA+tiB are
computed exactly for each relevant valueti . We now describe how to implement the method
computationally. Starting from an initial vectorf0 and a numbert1 for whichA+ t1B has
a negative eigenvalue, letf1 be a normalised vector such that

〈(A+ t1B)f1, f1〉 < 0. (4)

149https://doi.org/10.1112/S1461157000000103 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000103


The computation of thresholds for Schrödinger operators

The vectorf1 is constructed as an approximation to the eigenvector ofA+ t1B associated
with its smallest eigenvalue, but it need not be an accurate approximation, and so may be
determined fairly quickly. We now definet2 to be the solution of

〈(A+ t2B)f1, f1〉 = 0 (5)

so the variational theorem implies thatA + t2B has a non-positive eigenvalue. Note that
inequality (4) implies that〈Bf1, f1〉 < 0, so that the solutiont2 of (5) satisfiest2 < t1. We
now repeat the procedure starting fromf1 andt2 and continue inductively. In principle, the
decreasing sequencetn might converge to a value larger than the solution ofλ1(s) = 0, but
this can be detected and the error at any stage controlled using Theorem13below.

The sequencefn of approximate eigenfunctions may be constructed within smaller sub-
spaces thanL, with great advantage. We know that the true zero energy eigenfunction lies
in L2(RN) and hence is localised in space. Instead of using a single subspaceL associated
with a fairly large setS ⊆ ZN we may consider a sequence of smaller subspacesLn associ-
ated with an increasing sequence of subsetsSn, and letfn be the solution of the appropriate
eigenvalue problem inLn for eachn. The initial computations will then be cheaper because
the matrices involved are smaller, and only the final stages in the computation, which lead
to the most accurate approximation to the zero energy eigenfunction, will be expensive.

Newton’s method can also be used to determine higher thresholds, even though the other
eigenvaluesλn(s) need not be concave functions ofs, provided that one starts with a value
of t1 close enough to the relevant threshold. One can obtain an initial approximation to the
positions of the thresholds by computing the number of negative eigenvalues ofA+ sB for
a range of values ofs. The Chebyshev iteration method provides a possible procedure for
doing this [16].

Suppose that one expects that for a given value ofs the matrixA+sB has a small number
k of negative eigenvalues, and wants to confirm this. Denote the actual number of negative
eigenvalues ofA+ sB by k′. Define the operatorK by

Kf := f − 2

c2 + c1|s| (A+ sB)f

so that the spectrum ofK lies within [−1,1] except fork′ eigenvalues larger than 1. Now
take an initial linear subspaceM0 of dimensionk + 4 (or some such number) and define

Mn := pn(K)M0

wherepn is thenth Chebyshev polynomial. The actual code uses the iterative formula

fn := 2Kfn−1 − fn−2,

wheref0 runs through a basis ofM0 andf1 := Kf0. Generically, the subspaceMn contains
very good approximations to the eigenvectors ofH associated with itsk′ negative eigen-
values asn → ∞. Hence if we restrictK toMn it will have exactlyk′ eigenvalues larger
than 1 for all large enoughn. Note that we are only trying to determinek′, not the actual
magnitudes of the negative eigenvalues ofA+ sB, which are of no interest in the context
of this paper.

If all of the eigenvalues ofK restricted toMn are greater than 1 for large values ofn,
then this indicates thatk′ > k + 4, and we have to restart the algorithm with a larger value
of k.

The method is not rigorous because eigenvalues ofH very close to zero will only become
visible by takingn extraordinarily large, so if we terminate the iteration at some preassigned
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value ofnwe may not detect those eigenvalues. However, we are only advocating this method
as a way of getting an initial view of the likely location of the higher thresholds.

5. Obtaining enclosures on thresholds

Everything written so far leads to the construction of certain approximate solutions of
H̃f = 0 for values ofs which we expect to be close to the thresholds ofH̃ , or equivalently
of H . The computations involved would presumably be done in double-precision floating-
point arithmetic. In this section we describe how to obtain rigorous enclosures on the first
threshold from this information. The computations of this section should be done in interval
arithmetic. The following theorem reduces the problem of obtaining an accurate enclosure
of s1 to that of obtaining an accurate enclosure ofλ1(s) for a value ofs such thatλ1(s) is
very close to zero.

Theorem 13. Let

H̃ := H̃0 + sW

in the quadratic form sense, where

H̃0 = H̃ ∗
0 > cI > 0

andW is a self-adjoint relatively compact form perturbation ofH̃0. Then the smallest
eigenvalueλ1(s) of H̃ is a concave, decreasing function fors > 0. The thresholds1 of s
for which it vanishes is unique. If0 6 λ1(s) 6 ε < c then

s 6 s1 6 s(1 − ε/c)−1.

On the other hand, if−δ 6 λ1(s) 6 0 then

s(1 + δ/c)−1 6 s1 6 s.

It follows from the variational formula for the smallest eigenvalue that it is a concave
function of s, and from regular perturbation theory that it is analytic. The proofs of the
inequalities are elementary consequences of concavity.

Given the approximate eigenfunctionf constructed in the previous sections, we obtain
an upper bound onλ1(s) easily using RR. The lower bound can only be obtained by means
of TL once we have crude lower bounds on some higher eigenvalues ofH̃ . As in [8],
[13], [14], [15] this depends upon a homotopy with a comparison operator for which the
eigenvalues are known precisely, as described next.

GivenH and the rotationally invariant weightσ , letV0 be a rotationally invariant potential
such thatV0(x) 6 V (x) for all x ∈ RN . We define

Wt(x) := σ(x)2 [(1 − t)V0(x)+ tV (x)]

so thatWt is an increasing function oft . We then putKt := H̃0 +Wt for 0 6 t 6 1.
SinceK0 is rotationally invariant, its spectrum may be analysed independently in each

angular momentum sector. This reduces one to the study of a sequence of half-line problems,
and we assume that accurate enclosures of the eigenvalues of such operators can be obtained
by a study of the solutions of the Riccati equation or some related method [1]. This frequently
necessitates obtaining asymptotic control of the solutions of the differential equation at
infinity, and solving an initial value problem for a range of parameters, which can be turned
into a rigorous procedure if one uses interval arithmetic [12].
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Once this has been achieved, it provides crude lower bounds on the eigenvalues ofKt by a
variational comparison theorem, and this enables one to obtain accurate and rigorous lower
bounds on the eigenvalues ofKt1 for some small enought1 > 0. An inductive procedure
leads to accurate enclosures on the eigenvalues ofKtr for an increasing sequencetr and
eventually fortn = 1. We refer to [8], [13], [14], [15] for the elaboration of this idea.

The extension of the method to higher thresholds cannot use Theorem13, since higher
eigenvalues need not be concave functions ofs. However, one may proceed by applying
the intermediate value theorem after obtaining enclosures of the relevant eigenvalue at two
values ofs which straddle the threshold.

6. A numerical example

If H is anM×M self-adjoint matrix, the ease of computation of its smallest eigenvalue
λ1 depends not only upon how well that is separated from the remainder of the spectrum
but also upon how easy it is to invert the matrix. We define the relative condition number
of H to be

rcn(H) := λM − λ1

λ2 − λ1
.

The closer this is to 1, the cheaper is the computation ofλ1 by any iterative method. In
particular, ifHs depends continuously on a parameters, then the ease of the computation
of a thresholds at whichλ1(s) = 0 depends upon the size ofλM(s)/λ2(s).

The example which we consider in this section is a discretisation of the ordinary differ-
ential operator

Af (x) := −f ′′(x)− s cos(πx)exp(−x2/2)f (x)

acting inL2(0,∞), but we consider it as a model in its own right. We determined the
eigenvalues of the various matrices using sparse matrix routines from Matlab, since the
example is only one-dimensional. The operatorH on l2{1,∞} is defined with the aid of a
positive integerk, representing the number of points per unit length, and is associated with
the infinite matrix

Hs := H0 − sV

where

H0,m,n :=



2k2 if m = n

−k2 if |m− n| = 1
0 otherwise

and

Vm,n := δm,n cos(πn/k)exp(−n2/2k2).

This operator has continuous spectrum[0, 4k2], and may also have a finite number of
eigenvalues outside this interval.

In order to compute the first threshold we use the weight

σ(n) := 1 + n/k.

Given the positive integerb, representing the length of the interval, we defineM0 to be
the subspace of sequences with support in{1, N} whereN := bk. We letM2 be the one-
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dimensional subspace spanned by the sequence

u(n) :=
{

0 if 1 6 n 6 N

(1 + n/k)−1 if n > N + 1

so thatu approximates the tail of any threshold eigenfunction andM2 is orthogonal to
M0. If h = 20 andb = 10 the restriction ofH̃ to L := M0 ⊕ M2 has a zero energy
threshold fors ≈ 4.2558517176, this value being essentially independent ofb for b > 10
(seeAppendix A).

The relative condition number of̃H as defined above is rather large, 1.4735× 105 even
for h = 20 andb = 10, and it increases rapidly withb. This emphasises the importance
of obtaining a good tail expansion to reduce the size of the setS ({1, N} in this example)
and hence the cost of the computation. If one does not include the vectoru in the subspace
L, the results obtained are very inaccurate: forb = 10 one getss ≈ 4.56997 and even for
b = 100 one only getss ≈ 4.28473 (seeAppendix B).

Appendix A. Computation of threshold with ‘tail’ test function

The Maple program to find the eigenvalues of the modified operatorTHT when the
coupling constant is set at the value for which there is a zero energy threshold is available
to subscribers to the journal at:
http://www.lms.ac.uk/jcm/2/lms99003/appendix-a/.

Appendix B. Computation of threshold with sharp cut-off on test functions

The Maple program to find values ofs for which one has zero energy thresholds for a
self-adjoint operator with a coupling constants is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/2/lms99003/appendix-b/.
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