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INTEGRO-DIFFERENTIAL EQUATIONS
FOR THE SELF-ORGANISATION OF LIVER ZONES

BY COMPETITIVE EXCLUSION OF CELL-TYPES
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Abstract

A model is developed for the self-organisation of zones of enzymatic activity along a liver
capillary (hepatic sinusoid) lined with cells of two types, which contain different enzymes
and compete for sites on the wall of the sinusoid. An effectively non-local interaction
between the cells arises from local consumption of oxygen from blood flowing through the
sinusoid, which gives rise to gradients of oxygen concentration in turn influencing rates of
division and of death of the two cell-types. The process is modelled by a pair of coupled
non-linear integro-differential equations for the cell-densities as functions of time and
position along the sinusoid. Existence of a unique, bounded, non-negative solution of the
equations is proved, for prescribed initial values. The equations admit infinitely many
stationary solutions, but it is shown that all except one are unstable, for any given set of
the model parameters. The remaining solution is shown to be asymptotically stable
against a large class of perturbations. For certain ranges of the model parameters, the
asymptotically stable stationary solution has a zonal structure, with cells of one type
located entirely upstream of cells of the other type, and with jump discontinuities in the
cell densities at a certain distance along the sinusoid. Such sinusoidal zones can account
for zones of enzymatic activity observed in the intact liver. Exceptional cases are found
for singular choices of model parameters, such that stationary cell-densities cannot be
asymptotically stable individually, but together form an asymptotically stable set. Certain
mathematical questions are left open, notably the behaviour of large deviations from
stationary solutions, and the global stability of such solutions. Possible generalisations of
the model are described.
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f 2 ] Self-organisation of liver zones 157

1. Introduction

The liver performs its metabolic functions with the aid of various enzymes fixed
inside liver cells (hepatocytes). These immobile cells line the many capillaries
(hepatic sinusoids) through which the total hepatic blood flow is manifolded,
whereby exchange of substances between blood and the cells is facilitated. The
interplay of the unidirectional blood flow with local metabolism generates con-
centration gradients of blood-borne substances (such as oxygen) between the inlet
and the outlet of the liver.

Several metabolic functions of the liver have been found to be organised in
spatial zones arranged in relation to the direction of hepatic blood flow [7], in
such a way that some enzymes act almost wholly upstream of others [1]. We shall
attribute such distributions of enzyme activities to distributions of cell-types. For
the simplest case of two enzymes, let there be two corresponding cell-types, each
containing only one of the enzymes; separate metabolic zones occur when all cells
of the one type are located upstream of all cells of the other type. We shall
suppose, furthermore, that each cell-type reproduces itself by division. (A possible
alternative proposal, which we shall not consider here, is that there is only one
cell-type produced by division, but these cells are subsequently differentiated with
regard to their enzymatic activity in response to the variation along the blood
flow of the concentration of oxygen or some other controlling substance [1].)

It has been shown recently that, for several kinds of enzyme kinetics, the
observed zonal structures would result from the implementation of a certain
physiologically ̂ desirable optimisation principle [2,6,8]. In the present work we
consider a mechanism by which that optimisation principle could be implemented
in the development of any one liver. If the optimisation principle is the "architect's
plan", the mechanism of implementing it is the necessary "builder's craft".
Whereas these metaphors were used by Schrodinger [12, p. 21] in foreshadowing
molecular biology, the implementation proposed here in terms of competitive
exclusion of the two cell-types in space and time is an example of self-organiza-
tion of gross cellular patterns. Pattern formation at such a macroscopic level has
been much discussed, independently of molecular biology, since the work of
Wolpert [14]. In the present case the requisite communication between cells [14] is
provided naturally by hepatic blood flow. The unidirectionality of that flow is a
major influence on the mathematical structure of the model, which appears to be
capable of describing the formation of zones having one type of cell located
entirely upstream of the other, with a jump discontinuity in the densities of the
two types occurring at a certain distance along a capillary.

The model will be formulated in detail in the next section, with mathematical
analysis following in subsequent sections. A reader who is not interested in the
biological context may jump at this point directly to (2.22) and the ensuing
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158 L. Basset al. I3)

statement of the mathematical problems to be discussed. Although the model is
simple and natural physiologically, we have not been able to answer all questions
of interest: some unsolved mathematical problems will also be described in what
follows.

2. Mathematical formulation of the model

As the many capillaries comprising the liver are similar and act essentially in
parallel, we shall model a representative capillary lined with cells of two kinds.
We put the x-axis along the blood flow, with inlet at x = 0 and outlet at x = L.
We define the density of cells of the first kind, px(t, x), as a continuous
representation of the number of cells of the first kind per unit length of capillary
at time t at the position x. The density p2(t, x) of cells of the second kind is
defined analogously. The total cell density p1 + p2 cannot exceed some fixed
maximum density a of cell sites, as division of the cells is limited by the familiar
phenomenon of contact inhibition.

The local rate of change dpx/dt of the density of cells of the first kind is
assumed to consist of a growth-rate term proportional to px (self-generation) and
to the density of sites available, a - px — p2; and of a death-rate term propor-
tional to P l , with a coefficient ySx(c) > 0 dependent on the local concentration c
of a controlling blood-borne substance. In what follows we shall, for definiteness,
take oxygen as that substance. Then

9pi/9* = klPl(a - P l - p2) - & ( c ) P l (2.1)

with a constant coefficient kl > 0. A similar equation for p2 is obtained from
(2.1) by interchanging the suffices 1,2.

Let / be the steady rate of blood flow through the capillary, and A(x) be the
cross-sectional area of the capillary at position x. If oxygen is transported in the
x-direction predominantly by convection with the blood, and used up by the two
cell-types at the rates iCjPj and K2p2 (with positive constants KX, K2), then

Adc/dt + fdc/dx = -K1p1 - K2p2. (2.2)

After a disturbance, a steady concentration profile of oxygen is established along
the capillary on the time-scale of the convective transit time of blood through the
liver, which is of the order of 10 seconds. Even the fastest liver growth (following
partial hepatectomy) occurs on the time-scale of 10 hours. Hence the changes in
c(t, x) caused by changes in pv p2 are quasi-steady. We therefore drop the term
A dc/dt and integrate (2.2):

c(t,x) = c0 - 7 f (KIPI(/, 0 + K2p2(t, 0 ) dt, (2.3)
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[41 Self-organisation of liver zones 1 5 9

where c0 is the steady oxygen concentration (tension) in the blood entering the
liver.

We assume that as oxygen concentration falls, the death-rate of cells increases
(dpx/dc < 0, dP^Jdc < 0), though not necessarily equally for both cell-types.
Without speculating about the detailed functional forms of Px(c), P2(c), it will
suffice for our purpose to expand about c = c0, keeping to the linear terms: we
take

Mi

Mi = Pi(c0) > 0, "i = " ^ L > 0 (2.4)

and similarly for P2(c).
Introducing (2.3) and (2.4) in (2.1) for each cell-type, we arrive at the pair of

equations

i(° - Pi - Pi) - Mi --JJ («iPi + K2p2) di ,

dp2
 vi fx / \

- ' - 2 (a - px - p2) - ix2 --T I (KXPX + K2p2)d£ .
J Jo

We note at once that unless the first cell-type is inevitably to die out, its
greatest possible specific growth-rate kxa must exceed its least possible specific
death-rate fix.. If on the contrary kxa < nx, one can see from the first equation of
(2.5) that there exist no stationary non-negative solutions (p1( P2) of these
equations which do not have px = 0 almost everywhere. Similar remarks apply for
the second cell-type, and accordingly we assume from the outset that

kxa > px, k2a > p2. (2.6)

For vx = v2 = 0, (2.5) reduce to Volterra's classical equations for competitive
exclusion in time only [13]. Space dependence enters our model because death-rates
at each position x depend on the cumulative oxygen consumption by all cells
located upstream of x. Viewed in terms of px and p2 alone, (2.5) involve a
seemingly non-local interaction between cells, mediated in reality by oxygen
consumption and blood flow. It is this oriented cell-cell interaction that leads to
our generalisation of Volterra's equations into space taking the form of coupled
integro-differential equations. In contrast, the many ecological and biological
generalisations have more often taken the form of coupled partial differential
equations. This is true in particular of models which, unlike ours, allow for the
migration (diffusion) of competing species. For an introduction to the extensive
literature on these models and on pattern formation in biological systems gener-
ally, we refer the reader to recent reviews and conference proceedings [10].
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160 L. Basset al. [5]

To obtain some preliminary heuristic ideas about the formation of zones in our
model, we suppose that (2.5) admits solutions which at all finite times are
everywhere positive and satisfy (px + p2) < a. For such solutions we combine
equations (2.5) in the form

^ jf L (2.7)

where

A = /i2*x - ^k2, B = vxk2 - v2k1 (2.8)

and consider the competitive exclusion process at each value of x, in terms of the
underlying mechanism. Suppose that

M2A2 > M1A1, "2A2 < "1A1. (2-9)

so that the constants A and B are positive. Since the integral in (2.7) is bounded
above by (K1 + K2)OX, the right-hand side of (2.7) is positive at all times for
sufficiently small x. Volterra's argument [13] then applies: as t -* 00, Pi2/p2' ~~*
00, and with px bounded above by a, p2 must tend to zero. It is then plausible
that, for these values of x, pt will approach a stationary form determined from
the first of equations (2.5) with p2 = 0, viz.

k^a - P l ) - Mi - T f «!Pi dl = 0, (2.10)

yielding

Pi = Pt(*) = (C1/A:1)exp(-^K1x/Ai), (2.11)

where we set

C, = * ,0-M, . ' = 1.2. (2.12)

Now we note that, with p2 set equal to zero and px equal to pf, the right-hand
side of (2.7) decreases with increasing x and reaches zero at a value x = x*
determined by

exp(p1ic1*VAi) = BCx/kx(vxC2 - v2Cx), (2.13)

provided

vxC2 > v2Cv (2.14)

The point x = x* determined by (2.13) lies in the interval (0, L) of interest,
provided that

e x p ^ L / f a ) > BCx/kx{vxC2 - v2Cx). (2.15)

Under these conditions, it is then reasonable to suppose that, for x > x*, the
right-hand side of (2.7) will in fact be negative for sufficiently large values of t.
Volterra's argument then indicates that we can expect to find px -» 0 as / -» 00
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[ 6 ] Self-organisation of liver zones 1^1

for x > x * . Fur thermore , we may also expect that, for x > x * , p 2 will approach a
stat ionary form determined, from the second equation of (2.5), by

Mo-P2)-*»2-y[jTt*iC1pt^ + jrK2p2^] = 0, (2.16)

yielding

Pi = P*(x) = Dexp[-p2K2(x - x*)/fk2], x > x*, (2.17)

with

D = {vxC2 - v£x)/B. (2.18)

By such plausible reasoning we are led to conjecture that, when the inequalities
(2.9), (2.14) and (2.15) hold, and provided the initial values of p1 and p2 are
everywhere positive and satisfy (pt + p2) < a, the solution (plt p2) of (2.5) will
remain everywhere positive and bounded as time evolves and will, as t -* oo,
approach the stationary form

Pi = Pi(*), Pi = 0, 0 < x < x*,

Pi = °. Pi = P*(x), x* <x < L.

If this be so, then the model successfully defines a mechanism for the formation
of sharply defined zones in any one capillary (hepatic sinusoid)—in this case,
what we could call a 1-2 zone, with cells of type 1 located upstream of cells of
type 2. Note that in (2.19), pl and p2 have jump discontinuities at x = JC*.
(Interchanging the roles of type 1 and type 2 cells in the above argument would of
course lead to the description of a 2-1 zone.) A set of capillaries in parallel, with a
distribution of flow rates [3], could by this mechanism generate macroscopically
diffuse zones in the liver as a whole.

If the conjecture is correct, the above reasoning suggests also that the approach
of a positive solution (p1; p2) of (2.5) to the stationary form (2.19) may proceed at
a greater rate for x < x* than for x > x*, as a consequence of the oriented
cell-cell interaction.

The requirement that the initial values of px and p2 be everywhere positive
seems essential for the conjecture to hold. In fact the form of (2.5) suggests that,
whatever the values of the parameters n,, vlt &„ K(, i = 1,2, a class of initial
conditions having an arbitrary interdigitating piecewise structure, with regions on
which Px = 0, p2> 0 alternating with regions on which pt > 0, p2 = 0, would
lead to solutions preserving such a structure as they evolve, possibly towards
stationary forms. For if there are initially no cells of one type in some region,
there is no mechanism in the model by which they can subsequently appear there.
The validity of the main conjecture would however imply that, at least in the case
that the parameters satisfy (2.9), (2.14), and (2.15), stationary solutions of that
type are unstable against arbitrary small positive perturbations.
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Equations (2.5) have the advantage of explicit symmetry between the suffixes
1,2, but they contain more parameters than necessary for mathematical analysis.
We note firstly that the case vx = v2 = 0 is uninteresting from our point of view
because, as already discussed above, equations (2.5) degenerate into those for
competitive exclusion in time only—whichever cell-type excludes the other as
t -* oo at one value of x does so at all values of x. We therefore assume that at
least one of vx, v2—say vx for definiteness—is positive, and now define new
variables

t' = Cxt, x' = ̂ -x, Vi(t',x') = ^-Pi{t,x), (2.20)

and new parameters

a K2 „ - ^2 kxC2 v2kx , .
a = — , v = -.—, A = -.—-^r, Ti = —:—. (z .z l )

tt if if € tt lr
KX K.x t^*"! ^1*2

Then (2.5) become, on dropping at once the primes from the new independent
variables,

- £ - ( t , x ) = vx(t,x) 1 - v x { t , x ) - v 2 ( t , x ) - C [ o 1 ( t , S ) + 0o2(t,S)]
at [ Jo

~^{t,x) = yv2(t,xMX- vx{t,x) - v2(t,x) - i)fX [vx(t,|) + Bv2{t,,

(2.22)

with constant parameters

0 > 0, Y > 0, X > 0 and rj > 0. (2.23)

The spatial interval of interest is now [0, A], where A = vxxxL/fkx. Had we
interchanged the roles of type 1 and 2 cells in defining new variables i, x, vt and
new parameters 6, y, X, TJ by analogy with (2.20), (2.21), we would have obtained
instead of (2.22), the equation

ex- , _ x

3 / L -U J ( 2 2 2 / )

VU2 - l i - - f* I - . 5- \ At I
-—- = vr 1 - v, — v-, — I [V2 + 0u , ) a t ,
dt 2 [ l 2 Jo

 K 2 u J
with 6 = 1/0, y = 1/y, TJ = 1/TJ, X = 1/X. Evidently there is no loss of general-
ity in concentrating on (2.22). The inequalities (2.9), (2.14) and (2.15) which,
according to our conjecture, are sufficient to lead to the formation of a 1-2 zone
(given everywhere positive initial data), become

TJ < X < 1,
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(81 Self-organisation of liver zones 163

and the "zonal" stationary form (2.19) becomes
v1 = exp( -x ) , v2 = 0, 0 < x < x*

*M . . . 4 (2-25)

where now

** = Mf-f|- (2-26)
Our conjecture is that any solution (vly v2) of (2.22)-(2.24) which is bounded

and positive on [0, A] at t = 0, will remain so for t > 0 and will tend, as / -» oo,
to the form (2.25).

In what follows we shall not address directly the latter part of this conjecture.
We shall prove firstly, in Section 3, the existence and uniqueness of a solution of
(2.22), (2.23) satisfying initial conditions of the form

vi{0,x) = v?(x)>0, i = 1,2, (2.27)
where the vf are given bounded and (Lebesgue) measurable functions on [0, A],
and show that for this solution, vx and v2 are bounded and satisfy

vi(t,x)>0, i = l , 2 (2.28)
on [0, A] for all t > 0; furthermore, if the inequalities in (2.27) are made strict,
then those in (2.28) become strict. (This does not of course preclude the possibil-
ity that vr or v2 could go to zero as / -» oo.)

We go on to characterise, in Proposition 4.1, infinitely many stationary
solutions of (2.22). Then we show in Theorem 4.1 that, for any given set of values
of the parameters (2.23) (excepting the case \ = TJ = 1 which we treat separately
in Section 6), all non-negative stationary solutions except one, to within sets of
measure zero, are unstable against small perturbations. In Section 5 we show that,
for each parameter set, this remaining one solution is asymptotically stable
against a particular class of perturbations. When the parameters satisfy (2.24) this
solution has the zonal form (2.25) (Theorem 5.1 and Corollary). While this lends
credibility to our conjecture, a complete proof remains to be found. Of the other
results, Proposition 4.1 and Theorem 4.1 relate to our earlier speculations on the
variety of possible stationary solutions and their stability; and Theorem 5.1,
which gives our best estimates of the behaviour in time of vx and v2 following a
small perturbation to the zonal stationary solution (2.25), relates to our remark
concerning the approach to equilibrium on either side of the singular point
x = x*.

As mentioned, the case A = JJ = 1 is treated separately in Section 6. In terms of
the original variables, this corresponds to a situation where the parameters in (2.5)
satisfy
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for some positive constant y. Then the specific growth rate of p2 is at all times
and at each value of x, a multiple by y of the specific growth rate for p1( so that
wherever well-defined, the ratio of p\ to p2 (

or pYy t o Pi) is constant in time at
each value of x. Our main result in this case is that non-negative stationary
solutions are not individually asymptotically stable, but rather there is an asymp-
totically stable set of such solutions. In order to understand this at least partially,
one need only consider any perturbation of a stationary solution which changes
the ratio of p\ to p2 (or p1/* to px) at some value of x. If the resultant solution of
(2.5) approaches a stationary solution as time increases, it can only be one with
the new ratio holding at that value of x.

In closing this section we remark that in what follows we sometimes denote
(v1(t,x),v2(t,x)) by v(t,x); {v^x), v$(x)) by v°(x), etc. More generally, if
u = (u1; u2), we write u > 0 to mean «x > 0 and u2 > 0; and we define

|u| = K | + |«2 | . (2.30)

Finally, if u1 and u2 are bounded and measurable real-valued functions on [0, A],
we write

H u || — sup ( M * ) | + | « 2 (* ) | )= sup 1U(JC)|, (2.31)
xe[0,A] x£[0,A]

and we denote by X the Banach space of such pairs, with this norm.

3. Existence and uniqueness

By a solution of (2.22) we mean a pair of functions (t, x) -* (v^t, x), v2(t, x))
defined for all t e /, x, e [0, A] (where / is an interval of the form [0, oo), [0, t0)
or [0, /0] for some /0 < oo), and satisfying there the following conditions: they
must be continuously differentiable in t for each fixed x and measurable in x for
each fixed t; they must be such that JQ i>,(f, £) d£, i = 1,2, is finite and continu-
ous in t for each fixed x; and they must satisfy (2.22) for each (t, x).

We shall show first that any solution of (2.22), (2.27) is bounded on / X [0, A];
in fact that, if C > max(l, X) is constant, and

sup (O»(JC) + v°2(x)) < C (3.1)
j6|0,A]

then
y(t,x)>0, (3.2a)

Vl{t,x) + v2(t,x)^C. (3.2b)

Since (2.22) implies

x) (3.3)
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[10] Self-organisation of liver zones 165

for some function /) which is continuous in /, we have

o,(t,x) = o,°(*)exp[j[V,(T,*)rfT] > 0. (3.4)

Furthermore, if v?(x) > 0, we see that u,(f, x) > 0. Suppose now that vx{tx, xx)
+ v2(tx, xx) > C for some tx and xv Since ^(O, xx) + v2(0, xx) < C, there exists
a t2 e [0, ̂ ) such that vx{t2,xx) + v2(t2,xx) = C and vx(t, xx) + v2(t,xx) > C
on (t2, tx]. But then (2.22) implies dvt(t, xx)/dt < 0 for t e [<2, r j , which gives a
contradiction. Thus inequality (3.2b) must also hold.

Turning now to the questions of existence and uniqueness, we introduce the
Banach space X with norm as in (2.31), and also the mapping F: X -» X defined
by

F(u) = n (3.5)
where

- Ul(x) - u2(x) - r Mt)+**
r r* J i ( 3 - 6 )

U2(x) = yn2(*) X - ux(x) - u2(x) - i, / [Ul(0 + 0«2(O]
We want to show first that (2.22), (2.27) is equivalent to the initial value problem

%-F{u), (3.7)

u(0) = (v^vty > 0. (3.8)
By a solution of (3.7) and (3.8) we mean a strongly continuous and differentiable
function u: / -» X for some interval / as above, such that (3.8) is satisfied and
(3.7) holds for all t e /. If u is such a solution, then defining v(/, x) = u(f )(x) we
obtain a solution of (2.22), (2.27) on / X [0, A], because the strong continuity and
differentiability of u implies, for each x, continuity and differentiability of v( •, x)
and continuity of /0* v(•,£)</£. On the other hand, if v is a solution of (2.22),
(2.27) then, because of the boundedness of the v,, the function u: / -» X defined
by u(t)(x) = v(t, x) is strongly differentiable and satisfies (3.8) and (3.7) on /.

We can now prove

THEOREM 3.1. The problem (2.22), (2.27) has a unique solution, which exists for
all t > 0.

PROOF. It is sufficient to prove that there exists a unique solution of (3.7), (3.8)
for all t > 0. Let C > max(l, X) be such that (3.1) holds, so that ||u(0)|| < C.
From the definition of F we see that there exist constants M and K such that
||F(u)|| < M and \\F(u) - F(v)\\ < K\\a - v||, whenever ||u - u(0)|| < 1 and ||v -
u(0)|| < 1; and that these constants can be taken to be independent of u(0)
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provided ||u(0)|| < C. It then follows [9, Theorem 5.1.1] that (3.7) and (3.8) have a
unique solution for 0 < / < a where a = \/M. From what was shown above, in
particular (3.2b), we know that ||u(a)ll < C. We can then consider (3.7) with
initial value u(a) at t = a, and repeat the argument to obtain a unique solution
for a < t < 2a; altogether we then have a unique solution of (3.7), (3.8) on
[0,2 a]. Continuing in this way we obtain a unique solution on [0, oo), thus
completing the proof.

We remark in passing that it follows from the foregoing properties of the
solution of (2.22), (2.27), that the functions v^ and v2 are measurable in (t, x).
This justifies our applications of Fubini's theorem in the sequel.

4. Stationary solutions: instability

By a stationary solution of (2.22) we mean a pair v of measurable, bounded
functions on [0, A], satisfying on that interval

Vl(x)

v2(x)

- Vl(x) - v2(x) - jf [^(0 + 6u2(t)) # ] = 0,

X - Vl(x) - v2(x) - i,jT [Vl(O + 0o2(S)] # ] = 0.
(4.1)

Let v! b e a such a solution. Since we are interested in non-negative solutions of
(2.22), we suppose that \s > 0 on [0, A]. In this Section we shall assume also that
X and TJ are not both equal to 1; the special case X = 17 = 1 will be treated in
Section 6.

Given that \s satisfies (4.1), it is easily seen that each x e [0,A] must belong to
one of the following sets:
Eo= {x:ys(x) = 0}, (4.2a)

Ex = [x: v[(x) > 0, vi(x) = 0,1 - v\(x) - jT [0J(0 + <

(4.2b)

E2 = {x: v\{x) = 0, v2{x) > 0, X - v2(x) - n£ [v[U) + 6v2(O] di = o},

(4.2c)

E3 = {*: 1 - v{(x) - v'2(x) - j[* [vi(t) + dv2(£)] di = 0,

X - v[(x) - v>2(x) - Vf [v[(O + 6viU)] di = 0). (4.2d)
•'0 . /
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It is obvious that Eo, Ex and E2 are disjoint. Consider E3, and suppose it is
non-empty. If TJ = 1, it then follows from (4.2d) that X = 1; hence TJ =# 1. On E3

we have, again from (4.2d),

v[(x) + v<2(x) = ^ , (4.3a)

If E3 has positive measure, it follows from (4.3b) that v[ + 6v2 = 0 almost
everywhere on E3 and hence, because vs > 0, that vs •= 0 a.e. on E3. Then (4.3a)
implies X = TJ, and consequently, that vJ = 0 everywhere on E3. Thus E3 c £0.
Furthermore, if xt < x2 are two points in E3, it follows from (4.3b), with X = TJ,
that ft (v[ + 6v2) d£ = 1 on [xx, x2], since the integrand is non-negative. It then
follows that no point from [xu x2] can belong to Ex U E2, and consequently that
[*!, x2] Q E3Q Eo. Thus E3 must in fact be an interval, on which v* is every-
where zero.

If m(E3) = 0, it still follows from (4.3b) that if xx < x2 are two points in E3,
then vs = 0 a.e. on [xv x2]. Since we are not interested in distinguishing solutions
which differ only on sets of measure zero, we can in this case redefine v* to be
zero on E3. We thereby obtain another stationary solution which is unchanged
outside the old E3, and for which the new E3 is contained in the new Eo.

In this way we see that there is no essential loss of generality in assuming that,
for any given non-negative stationary solution of (2.22), every x e [0, A] belongs
to one of the corresponding disjoint sets Eo, Ev E2.

The following proposition characterises infinitely many stationary (though not
necessarily non-negative) solutions of (2.22).

PROPOSITION 4.1. Let Al and A2 be arbitrary measurable, disjoint subsets of
[0, A]. Then there exists a unique solution v of (4.1) such that

o2(x) = 0, l-vl(x)-J^[D1U) + Bo2(i)]di = 0 on ̂  (4.4a)

vl(x) = 0, \-v2(x)-r,f k ( O + M £ ) l « = 0 onA2,

(4.4b)

v(x) = 0 ontO.AJX^Uy^) . (4.4c)

All non-negative stationary solutions of (2.22) are obtained in this way (possibly
after redefinition on sets of measure zero).
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PROOF. We shall show that there exist uniquely determined measurable and
bounded functions vl and v2 such that

(4-5)

hold for all x e [0, A], where x^ denotes the characteristic function of the set A.
Let X^ be the Banach space of all pairs v = (vv v2) of measurable, bounded

functions on [0, A] with norm

||T||jr= sup e-""{\Ol(x)\ + \
j€|O,A]

where

K= (1 + Tj)max(l,0).

Introduce the mapping T: XK -* XK defined by

r(v) = v,

V2\x) - XA2\
X)

For any u, v e X^ we have

\\T(u)-T(v)\\K= sup e~1K'

(4.6)

(4.7)

(4.8)

< sup e'1-"
x6[0,A]

< sup e~2K

j£(O,A]

< i l | u - v | | j c . • (4.9)

Thus T is a contraction, implying that the equation T(\) = v has a unique
solution in X^ [11, Chapter 4, Theorem 1.1]. Therefore (4.5), and hence (4.4), has
a unique solution.

This solution is not necessarily non-negative, but when it is, we can construct as
above the sets EQ, Elt E2 and E3, and we see at once that Ex c Alt E2Q A2.
Note however that different pairs Ax, A2 could lead to the same solution and, in
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the non-negative case, to the same Ev E2. On the other hand, in order to prove
the last part of the proposition it suffices to set A1 = Ev A2 = E2 to show that
any given non-negative solution, redefined if necessary so that E3 c Eo, is
obtained as the unique solution of (4.4) for some Ax, A2.

Now, consider again the non-negative stationary solution vJ. Let v be the
solution of (2.22) and (2.27), and define, for all x e [0, A],

W(/,JC) = \(t,x)-\s(x), w°(x) = v°(x)-\s(x). (4.10)

Note that

(w°(x) + vs(x)) > 0 (4.11)

for all x e [0, A]. Then wx and w2 satisfy

dW r / ( 4 1 2 )

-g^ = y(w2 + vs
2)\\ -w1-w2-7lfo (*>! + 6w2

Define

f ). (4.13)( ) f[[
•'o

Then we have, from (4.12) and the definitions (4.2), that

on£ x : dWz/dt = yii(x)w2 + f2(t,x) (4.14)

on E2: dwt/dt = -fi(x)wl + gx(/, x) (4.15)

(dw1/dt = {l-+(x))wl + g1(t,x),

°nh°- \dw2/dt = y(\-VHx))»>2+f2(t>x)

where

/ = -yw2\Wl + w2 + Vf (H>X + 6w2)

r i (417)

I (wt + 6w2) d£\.
Jo 1

We want to investigate the stability of stationary non-negative solutions with
respect to certain perturbations w°. Many different definitions of stability can be
considered, depending on which class of perturbations we want to allow. For

https://doi.org/10.1017/S0334270000005701 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005701


170 L. Bassetal. [is]

instance, it may be desirable to allow only perturbations that vanish where p = 0,
or that go to zero at a specified rate as x approaches a point where \i = 0. (See
Section 5.) The following definition covers many such possibilities:

DEFINITION 4.1. Let <f> be a class of pairs of measurable functions <p = (tp^ <p2)
on [0, A] such that

(a) 0 < <Pi(x) < B, for all xe [0 ,A] , q> e <£, i = 1,2, for some positive con-
stant B.

(b) {x: <px(x) = 0} = {x: <p2(x) = 0} = #„, say.
(c) for every a > 0 there exists a <p e </> such that m(A'q)) < a.

A stationary solution vJ > 0 is said to be <j>-stable if, for every q> e <f> and e > 0,
there exists a 8 > 0 such that if (4.11) and \w°(x)\ < <Pj(x)8 hold for all
* e [0, A], i = 1,2, then K( / ,x ) | < e for all x <= [0, A]\A^, t > 0, i = 1,2.
Such a solution is said to be asymptotically ^-stable if, in addition, for every
<p e <j> there exists a 8' > 0 such that if (4.11) and Iw/^x)! < <p,(x)8' hold for all
x e [0, A], / = 1,2, then w,(f, x) -» 0 as f -> oo for all x G [0, AJXA',,, / = 1,2.
We can proceed for the remainder of this section without specifying <j> completely.

LEMMA 4.1. Suppose \s > 0 is testable for some <f>. Then the sets Ex n {x:
H(x) > 0} (= Ex, say), E2C\{x: n(x) < 0} and Eon{x: ,//(*) < 1 or •#(*)
< X } all have measure zero.

PROOF. Suppose m(E^) > 0. Then we can find a compact set Ka Ex with
m(K) > 0. Since p is continuous there is a /x0 > 0 such that n(x) > /x0 for all
x G K. By the results of Section 3, there exists a positive constant cx such that,
for all perturbations satisfying (4.11) and having |w°(x)| < B for all x e [0, A],
i = 1,2, (B as in Definition 4.1), we have |w,.(r, x)\ < cx for all x e [0, A], t > 0,
i = 1,2. Now, by (c) in Definition 4.1, there is a <p e <£ such that

»))- ( 4 1 8 )

For this 9 we have # \ iV,, =£ 0, so we can choose an xx e K\ JV̂ . Let x be the
characteristic function of [0, AlXiV^. We note that there is an e > 0 such that

1 ,
dx (4.19)

for all measurable functions w1 and w2 having |w,(x)| < e for all x e [0, A]\NV,
i = 1,2. We now use this q> and this e in Definition 4.1 and find a corresponding
8 < 1. Suppose (4.11) holds and |w°(x)| < <p,(x)8 for all x e [0, A], 1 = 1,2.
Then |w,(f, x) | < e for all x e [0, A]\NV, t > 0, i = 1,2, and \w,(t, x)| < Cj for
a l l x e J V f , / > 0 , j = l, 2. It then follows from (4.17), (4.18) and (4.19) that

) W ' , * i ) | , t>0. (4.20)
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Since <p2(*i) * 0, we can choose w2°(Xi) > 0. Then (4.14) implies with (4.17) that
w2(t, jq) > 0 for all /, and from (4.14) and (4.20) we get

dw^dt > Y/*(*iK " l/2 I > hM(*iK, (4.21)

so that

w2(t,xv) > w,0(jc1)exp[hM(*i)']. (4.22)

which is a contradiction. Therefore m(El) = 0. The other assertions are proved in
similar fashion.

COROLLARY. If there is a q>0 e <f> such that m(NVo) = 0, then the sets mentioned
in Lemma 4.1 are subsets

PROOF. If E1 \ NVo =* 0 , choose any x1 e E1 \ NVo. Then a contradiction is
obtained as in the proof of the lemma.

THEOREM 4.1. Of all stationary non-negative solutions of (4.1), only the following
are possibly ^-stable:
When r\<X<\:

v\ = e~x, vs
2 = 0 a.e. on [0, x*)

v{ = 0, vs
2 = j ^ - exp[-T,0(;c - x*)] a.e. on (x*, A] ^22>>

v\ = e~x, v*2 = 0 a.e. on [0, A] (4.24)

ifx* > A.
When X < 1 and 7j > X:

£,J = e-
x, vs

2 = 0 a.e. on [0, A ] . (4.25)

When X = 1 aW TJ < 1;

v\ = 0, ^ = e-"fljt a.e. on [0, A ] . (4.26)

Wfte/j X = land* ij > 1:

*>{ = e~x, v'2 = 0 a.e. on [0, A ] . (4.27)

When X > 1 a/w/ TJ < X:

v\ = 0, oj = Xe-"0* a.e. on [0, A]. (4.28)
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When 1) > X > 1:

v[ = 0, v'2 = \e-"'x a.e. on [0, x*)

v\ = 3^4e-<*-**>, u*2 = 0 a.e. OH (x*, A]

TJ — 1

/ /x* = (l/7,<?)ln[X(T, - 1)/(TJ - X)] < A;

»I = 0, »J = Xe""'* a.e. on [0, A] (4.30)
z/x* > A.
7o /A« /«f should be added the stationary solutions when X = TJ = 1, investigated in
Section 6.

PROOF. Let v* > 0 be a </>-stable, stationary solution. Suppose that X < 1. Since
H(0) = X - 1 < 0, either ji(x) < 0 for all x e [0, A] or there is an x* e [0, A]
such that fi(x*) = 0 and p(x) < 0 for x e [0, x?). Assume the latter case, which
is possible only if TJ < 1. Then either \p(x) < 1 on [0, x*] or there is an
a e [0, x*] such that ip(a) = 1 and \p(x) < 1 on [0, a). In the second case it
follows from Lemma 4.1 (and the fact that £3 \ EQ is a null-set) that almost all
points of [0, a) belong to Ev Therefore v\ = e~x, if2 = 0 a.e. on [0, a], so that
i{/(a) = /o e~xdx = 1 - e~" < 1, which is a contradiction. Thus <|/(x) < 1 on
[0, x*], almost all points of [0, x*) belong to Ev and v{ = e'x, v\ = 0 a.e. on
[0, x*). From fi(x*) = 0 we get (1 - X)/(l - TJ) = 1 - e'x' < 1, so that TJ < X.
Thus we see that if X < 1 and TJ > X, or if X < 1, TJ < X and x* = ln[(l - TJ)/
(X - TJ)] > A, we get v\ = e~x, vs

2 = 0 a.e. on [0, A].
Assume now that TJ < X < 1 and x* < A. Then v{ = e'x, vs

2 = 0 a.e. on
[0, x*). Since n is non-decreasing, there is a maximal interval [x*, b] where /i = 0.
If x* < b, then n(x) = 0, «Kx) = /o

x («i + 6v\)d$ = (1 - X)/(l - TJ) < 1 on
[x*, b]. Then ^ = v\ = 0 a.e. on [x*, b], so that ahnost all points of [**, fc]
belong to Eo, in contradiction of Lemma 4.1. Therefore b = x*, and /i > 0 on
(JC*, A]. Now 4>{x*) = (1 - X)/(l - TJ) < 1 < X/TJ. Either V/(x) < X/TJ for aU
x e [x*, A] or there is a c e (**, A] such that i//(c) = X/TJ and i//(x) < X/TJ for
x G [x*, c). Assume the latter is true. According to Lemma 4.1 almost all points
of (x*, c) belong to E2. Since v\(x) = 0 and v2(x) satisfies

v'2(x) = X - !,*(*•) - i,tfjT «1</« (4.31)

for almost all x e (x*, c), we find that

"iix) = [X - n^C^Jle-"'^-^ (4.32)
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a.e. on (x*, c). I t follows that

v\dx = *(*•) +-[\- iĵ (

<*(**) + ̂ [X-! ,*(*•)]=£. (4-33)

This contradiction shows that \p(x) < \ /TJ for all x e [x*, A], so that almost all
points of (**, A] belong to E2, and

v[ = 0, ^ = [(X - ij)/(l - 7,)] exp[-T,0(x - x*)]

a.e. on (**, A].
Let us next consider the case X = 1, TJ < 1. We have p(x) = (1 — TJ)I|/(JC) > 0.

If v/'(x1) = 0 for some xt > 0, then v[ = wj = 0 a.e. on (0, JCj), which is impossi-
ble by Lemma 4.1. Therefore ip(x) > 0 and /i(x) > 0 for x > 0. Just as in the
previous case, we can now show that almost all points of [0, A] belong to E2, and
that v\ = 0, v\ = e"1"* a.e. on [0, A].

The remaining cases can be treated similarly, or by noting that a change of
variables like that leading to (2.22') transforms these cases to ones already treated.

COROLLARY. / / there is a <p0 ^ 4> such that m(NVo) = 0, then v[ and vs
2 are of

the stated forms for all x except for a subset of N9o and except that it can only be
said of the point x = x* in (4.23) or (4.29), and of the point x = 0 in (4.26) or
(4.27), that it belongs to ([0, A ] \ £ o ) U Nw

PROOF. Consider the proof of the theorem. In the case TJ < \ < A, x* < A, we
obtain

[ 0 1 x * ) c £ 1 u ( £ i \ £ i ) U ^ (4.34)

by the Corollary to Lemma 4.1. However, [0, x*] n E3 can consist of at most one
point (otherwise v[ and v2 would both vanish almost everywhere on an interval in
[0, x*], giving a contradiction to (4.34)) and at that point we have \l> =
(1 - X)/(l - TJ). But since rp(x*) = (1 - X)/(l - TJ), this point can only be x*.
Thus [0, x*) c Ex U NVo and x* e ([0, A] \ Eo) U NVo. The other cases are treated
similarly.

5. Stationary solutions: stability

In the previous section we saw that most stationary non-negative solutions are
unstable. We now wish to examine the possibly stable solutions described in
Theorem 4.1. The most interesting cases are those where two zones occur.
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Consider in particular the case

0 < T J < A < 1 , l n ^ — ^ < A (5.1)
A - 17

and the stationary solution

v[(x) = exp(-x) f o r O < x < x *

= 0 for x* < x < A
v*2(x) = 0 f o r0<x< jc*

= exp(-x*)exp[-7)0(;c - x*)] for x* < x < A, (5.2)

where

Defining w as in (4.10), we proceed to estimate its time-dependence for suitably
small initial perturbations w° satisfying (4.11). It is necessary to consider first the
inverval 0 < x < x* and then x* < x < A; we shall not consider the behaviour
of w at the exceptional point x = x*.

Suppose then that 0 < x < x*. From (4.12) we get

(wx + 6w2

(5.4)

where

ft

A = -YW2 wi + wi + i)j (wi + 9w2)di ,
L •'o J

v(x) = y[(l — 7))e~x + T/ — A] = -y[i(x). (5.6)

We see that v is positive and decreasing on [0, x*) and that v(x*) = 0. From (5.4)
we obtain

w2(t, x) = w2(x)e-'ix* + [' e-(*x'-T)/2(T, x) dr (5.7)
•'o

and

dt x[ 1
 JQ

 l J

where
r .r I

-A(',*)- (5-9)
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If F is considered known, (5.8) can be solved. This is a consequence of the
following lemma, which for later applications covers a slightly more general
situation:

LEMMA 5.1. Assume that the real-valued function w is defined for t > 0, x0 < x
< xx, bounded, continuously differentiate in t and measurable in x, and that it
satisfies

f ^ G ( t , x ) ,
Jx0 J (.5.10)

w(0, x) = w°(x)

where a, g, G and w° are bounded; a, g and w° are measurable; G is continuous in t
and measurable in x; and a(x) > aQ > 0 for all x e [x0, x j . Then the Laplace
transform wofw with respect to t is given by

Hs,x) = s + ^ [w°(x) + G(s,x)]

s + a(x) JXo s + ait

(5.11)

where G is the Laplace transform of G.

PROOF. By Laplace-transforming (5.10) we get

sw-w° =-a\w+ fX gwdt\ +G. (5.12)

Let p(s, x) = w(s,x)/a(x) and H(s, x) = [w°(x) + G(s,x)]/a(x). Then

(s + a)p+ rgapdt = H. (5.13)
J

Let us for a moment assume that a and H are continuously differentiable with
respect to x. Then we get from (5.13)

t , \ dp , i , . \ dH i \ H(s,x0) /CTA\

{s + a)JL+{a> + ga)p = —, p{s,Xo) = — - — . ( 5 . 1 4 )

Equations (5.14) are easily solved to give

a(x)JXo s + aU) CXP[ J
(5-15)
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But it is now easily seen that (5.15) gives the solution of (5.13) without any extra
assumptions on a and H. Then (5.11) follows.

We now apply this result to (5.8). In this case g = 1 and a = v[, so that
a' = -a. Thus

and (5.11) becomes

(5.17)

so that

Wl(t,x) = w?(x)cxp(-v[(x)t) - tv\(x)f W°{

+ f' F(r,x)txp[-v{(x)(t - r)]dr

F(T,Z)exp[-v[U)(t -

(5.18)

Now choose a number a < x* so close to x* that v(a) < exp(-x*), and then
choose w such that

v(a)<u< exp(-x*). (5.19)

Then for all x e [0, x*),

exp(-v\{x)t) < e"",

texp(-v[(x)t) < texp[-(e-*' - u)t\e-" < coe~ut (5.20)

for some positive constant c0. Let

Wt(t,x)= sup \w,(t,S)\, i = l , 2

W(/, x) = max ^ ( / , JC). (5.21)

It follows from the fact that the w, are continuous in t, uniformly with respect to
x, which in turn follows from the results obtained for the v, in Section 3, that Wt

and W are continuous in t. We consider perturbations w° satisfying (4.11) and

R(*) |<8 , K0OI «'(*)'« (5.22)
for all x e [0, x*), where p > 1, and S > 0 is a number to be chosen later.
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It follows from (5.5) that

\fAtcMW, i = l,2, (5.23)

for some constant cv Then (5.7) gives

e'<**\wi(t,x)\< P(X)P8 + cJ' e'Mr\w2(r,x)\W(r,x)dT, (5.24)
'o•'o

and GronwaU's inequality [11, Chapter 6, Proposition 1.4] then gives

M/,x)|« p(x)pe-'™'adcifi W(r,x)drh. (5.25)

From (5.9), (5.18) and (5.23) we get

\F\<\»I\+or
•'0

r
•'0

f
o

+ f e-^'-^[c2W2(r,x) + c1\w1{r,x)\W(r,x)]dr

+ cof e-^'-^[c3W2(r,x) + c4Wl(j,x)W(T,x)]dr

< cs8e-"' + c6 (' e-*('-T)W2(T, x) drJo

+ cJ' e-ui'-r)W1(r,x)W(r,x)dT. (5.27)
•'o

Since the right-hand side is non-decreasing in x we get

e"'WY{t, x) < c5S + c6 (' e»'W2{r, x) dr + c7 V e^W^r, x)W(r, x) dr,

(5.28)

and then from Gronwall's inequality,

Wi(/,jO« fcjfie""' + c6f e-^'-r)W2(r,x)dr]exp\c1f W(r,x)dr\.

(5.29)

For small / we have /0' W(T, X) dr < 1 for all x e [0, x*). As long as this is so
we have from (5.25) and (5.29)

K ( / , J C ) | < ee'v(x)pe-'lx)'S,

|*!(/,*) | « W^t.x) ^Cse-U'8 + c9f e-u('-^W2(r,x)dr. (53°^
Jo
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The function v -* vpe~" attains its maximum value (p/te)p at v = p/t. Since
v decreases to zero on [0, x*), it follows that

max „(«)'.-«>._/(/'/*)'.

l), t>0. (5.31)

Then, from (5.30) and (5.21)

Mt,x)\< W2(t,x)^cn8/(tp + l) (5.32)

and

^4j|^r. (5.34)

Therefore,

f'w(r,x)dr<cu8 (5.35)
•'o
f
•'o

for all x G [0, x*) and all f in question. Now c14 is a constant determined by
given quantities, and in particular, it is independent of 8. Let us assume that 8
from the outset was chosen so that 8 < l/c14. Let

h(t)= sup f W(r,x)dT. (5.36)
J 6 [ 0 , I « ) •'0

If h(t) > 1 for some /, there is a t1 such that h(tx) = 1 and h(t) < 1 for
/ G [0, fj), since h is continuous. But on [0, f j the above estimates are valid, and
in particular we would get /i('i) < ci4^ < 1» which is a contradiction. Thus
A(O < 1 for all /, and (5.30), (5.32) and (5.34) are valid for all t > 0 and
x e [0, x*).

It follows from above that

*W2{t,x)dx<^£±, (5.37)
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but this estimate can be improved. There are positive constants m1 and m2 such
that

mx{x* - x ) < v(x)^m2(x* - x) (5.38)

for x e [0. x*]. Thus, from (5.30),

W2(t,x) ^ eCl8 max v{£)pe~"(i)t

<ec>«mf_max ( x * - | ) V " " ( l ' - « ' . (5.39)

Suppose t > p/mxx*. Then

\x* -xYe-m^x*-x)l, x^x*

max (JC* -
f [ 0 ]

ffl-yt

(5.40)

and so

max (x* - (•)pe~mi(x'~i)'dx = f* P " ' (x* - x)pe~mi(x'~x)ldx
l*[Q,x] Jo

(p/m^eYdx
x'-p/m-il

p + 1
= (**

Jp/mx,

where

'* x»e-m>x'dx =
{mxtY

+XJP

Thus

and it follows that

1

(«,/)"Tjf ^

(5.41)

(5.42)

(5.43)

f*'\w,(t,x)\dx* tp
<£+i, 1 = 1,2, r > 0. (5.44)
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We now turn to the interval x* < x < A. There

-r- = -n(x)w1 + gl

dw r ,* i (5-45 )

-£ = -yviix^w, + w2 + vj^ (Wl + 0w2)^J +g2

where

w1 + w2+ I (Wl + 6w2)dn,
Jo \

82 = -YW2 \wi + W2 + V f (wt + 0w2) d^\ - yqvs
2(x) fX (w1 + 6w2)d£,

L •'0 J •'0

^x) = h^UL[i-e-^x-x^ i f 7 J > o ,

li(x) = 0\(x - x*) if TJ = 0. (5.46)
We see that /i(x) is positive and increasing and that n(x*) = 0. Then we get from
(5.45)

wx(t, x) = e - ^ X X * ) + (' e"M(*x'"T)gi(T, x) dr (5.47)

and

-p-= -yvs
2(x)\w2 + T)0 (* w2dn + G(t,x), (5.48)

at i Jx. j
where

G(t,x) = -yvs
2(x)\Wl(t,x)+v[

X
 Wl{t, t) di] + g2(t,x). (5.49)

L "x' J

Again we apply Lemma 5.1, this time with a = yvs
2, g = r}6 and a' = -t]6a, so

that

(5.51)

r ,x) = w2°(x)exp[-yl;2(x)/] - V6yvl(x)t f*

+ f exp[-yvi(x)(t-T)]G(T>X)dr

(t- T ) [ /* exp[-y^(|)(/ - T)]<7(T, j

(5.52)

https://doi.org/10.1017/S0334270000005701 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005701


[26] Self-organisation of liver zones 181

Choose p such that 0 < p < yvs
2( A). Then

exp(-y us
2(x)t) < <?-"', /exp(-yj4(x)0 < c17e-"'. (5.53)

We define

Wi(t,x)=\wi(t,x)\ + [* \W,(t,i)\dt, 1 = 1,2, (5.54)

W(f,x)=max sup W,(t,Z) (5.55)
' = 1.2 fe (*•,* ]

and assume that, for all x e (x*, A], (4.11) holds and, in addition

|Wl°(*)|<,i(*)'«. K°(x) |<«, «<1A1 4. (5.56)

Using (5.44) and (5.46) we get

\gl(t,x)\<c18\Wl(t,x)\W(t,x)+\w1(t,x)\fo
X*[\Wl(t,Z)\+6\W2(t,Z)\]dt

<K(f,*)l[c18*r(/,*) + c l v + f + i ] , (5.57)

so that

e ^ ' \ W l ( t , x) | < | Wl°(x) | + / ' e ' W ' M r , x ) | [ ^ ( ) + f
'O

/ e M r , x) |[c18^(r, x) + c19 f
•'O L T^ + 1

(5.58)

and hence

f^ W(r,x)dr + c208^. (5.59)

Next we note that

\G(t,x)\<c21W1(t,x)+\g2(t,x)\

[
(5.60)

and

,01«/€ < c25^(r,x) + W2(t, x)\c26W(t,x) + c2 7—f—1
L / + 1 J
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*. x) | < \w?(x) \e-<"

Jo

< c29Se-"1

L. Bass et al.

J fX

e"W2(t, x) < c34S dr

W2{t,x) < |c348e-"'

As long as

we have

W2{t,x)

•'o

[27]

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

It then follows by an argument similar to that leading from (5.30) to (5.32), (5.34)
and (5.35), that

(5.67)

and

(5.68)

With the same kind of argument as before, it follows that if 5 is chosen so
small that, in addition to (5.56) we have S < l/c43, then (5.66), (5.67) and (5.68)
hold for all t and all x e (x*, A].
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Finally, we can estimate / £ |w , ( / ,x ) \dx . There are positive constants nY and
n2 such tha t

nx(x - x*) < n(x) < n2(x - x*) (5.69)

for all x G [x*, A]. Then

c398nf/ (x- ,-n^x-x'

<c^ni jo y'e^dy. (5.70)

Thus

JAJw1(t,x)\dx^c44-;Tf , (5.71)

j*W1(t,x)dx^cA5-^-^, (5.72)

/ \w2(t,x)\dx^cA68e-'"
0 T^T1 + 1

< C 4 V ^ 7 T (5-73)

Our results can be summarized as follows:

THEOREM 5.1. Assume the inequalities (5.1) hold, and define w as in (4.10),
(4.11), with \ s as in (5.2), (5.3). Then there is a80>0 such that if 0 < 8 < 80, and
if (5.22) and (5.56) are satisfied, then for i = 1,2, andt Ss 0,

lwi('«*) I ^ 77TTT' 0 < x < A, x ¥= x*, (5-74)

- ; (5.75)

and furthermore, for 0 < JC < **,

[ ( f l ) , K j c ) V ] , (5-76)

with v as in (5.6), a as in (5.19). The constants alt a2, and a3 are independent of
x, t and 8.
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COROLLARY. The stationary solution vJ in (5.2) is asymptotically ^-stable with
{ ) (a one-point set) where, for any fixed p > 1,

' O^x <x* ,
( 5 7 7 )

v{x)P' 0<x<x* (5.78)
, x* < x < A.

Note that Nv here consists of the single point x*.

If instead of (5.1) we have the case X < 1, r\ > X, and we take (4.25) to hold
everywhere on [0, A], then the function v of (5.6) satisfies v(x) > v0 > 0 for all x
for some constant v0. Choose 0 < /? < min(»'o, e~A). Then, using (5.7), (5.18),
(5.23) and (5.26) we find that |w,(/,x)| < a4e-p'S, t > 0, x e [0, A], / = 1,2, if
|w°(x) | < 8 and 8 is sufficiently small.

In the case where X = 1, -q > 1, and vJ is given by (4.27) for all x, v is
increasing and r(0) = 0. As above (in the analysis of the first case on (x*, A]), we
find that |*v,(/, x)\ < as8/(tp + 1) for x e ( 0 , A ] , and /O

A \wt(t, x)\ dx <
a68/(tp+l + 1) if \w°(x)\ < 8, |w2°(x)| < 8»-(x)* and 5 is sufficiently small.

The remaining cases mentioned in Theorem 4.1 (except X = TJ = 1) are treated
similarly. In every case the non-negative stationary solution (with (4.23)-(4.30)
taken to hold everywhere) is asymptotically <J>-stable for a suitable choice of <f>.

REMARK 5.1. If we consider perturbations satisfying (4.11) and
suPxeio.Ailw/'C*)! < 8, i = 1,2, which might seem natural, then we can show in
the case (5.1)-(5.3) the following: If 0 < x < x*, there exists a 80(x) such that
sup { e [ 0 ,A]K( '>£) l< Vexp[-min(K(a) , *(*))'] if 8 ^ 80(x). But this 80(x)
tends to zero as x -* **, and therefore we cannot obtain a good estimate for
fo*(wi + &W2) d£, consequently we cannot obtain any useful results for x > x*.

REMARK 5.2. The sub-case 7) = 0 is an exception in regard to Remark 5.1. Here
it is possible to show also that for x* < x < A, we have

sup |w,(f,£)l
feU,A]

with p as in (5.53), /x as in (5.46), provided 8 < S^x), where 8x(x) -> 0 as

6. The case X = TJ = 1

When X = ij = 1, the system (2.22) becomes

( 6 1 )
a r
? £ = yo2[l - vt - v2 - f* (Vl + 0v2
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Let v1 > 0 be a stationary solution of (6.1). With the notation of Section 4 we
have this time that E1 c £ 3 and E2Q E3, so we need only consider the sets Eo

and £ 3 :

\s(x) = 0 on £0 (6.2a)

1 - v\{x) - vs
2(x) - I [v\te) + 9vitt)] d£ = 0 on £3. (6.2b)

From (4.12), (4.13) and (4.16) we get

a on£0 (6.3)

w2+ [ (»>i + 6w2)d£\ +g1

onE3 (6:4)

V l (6'5)

where

gi = ->

h = -V^21 Wl + w2 + I (w, + 6w2)

and

){x) = f*[v\tt) + 8vS2tt)]d£. (6.6)

Suppose that \s is (^stable with respect to a certain class <p, as in Definition
4.1. Since i//(0) = 0 and i// is continuous, either iK*) < 1 for all x e [0, A] or
there is an x0 e (0, A] such that ip(xo) = l and \p(x) < 1 for x e [0, x0).
Assume the latter case. From Lemma 4.1, which continues to hold if X = ij = 1,
we conclude that x e E3 \ Eo for almost all x e [0, x0). Then on [0, x0) n
(E3\E0),

v{(x) + v'2(x) = f° [v\te) + Ovitt)] di, (6.7)
Jx

so that (v\ + v2) is positive and decreasing on that set, and consequently

o{(x) + v'2{x) < max(l,e)[v\(x) + v'2(x)](x0 - x) (6.8)

there. But this is self-contradictory for small positive (x0 - x). Therefore \p(x) <
1 for all x G [0, A], m(E0) = 0 a n d x e £ 3 for almost all x G [0, A].
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In view of this we shall now consider, with no significant loss of generality,
only those non-negative stationary solutions Vs for which E3 = [0, A] and Eo = 0 .
Denoting the set of all such solutions by S, we shall show that S is asymptotically
stable. By this we mean the following: For every e > 0 there exists a S > 0 such
that

inf | | v ° - v i < 8 (6.9)
v'eS

implies

inf |jv(f, •) - vJ| |< e (6.10)

for all / > 0; and furthermore there exists a 8' such that

inf | | v ° - v ' | l<« ' (6.11)
I'ES

implies

lim inf ||v(/, •) - vJ|| = 0. (6.12)
/-•oo v'eX

It will be shown also that the individual solutions in 5 are <£-stable for <f> = {(1,1)},
but are not asymptotically <J>-stable for any </>.

Before proceeding to prove these statements, we need the following observa-
tions. Let £ be an arbitrary measurable subset of [0, A] and f an arbitrary
measurable non-negative function defined on E. Denote by v | f a non-negative
solution of

1 - u[(x) -, vi(x) - f [u\(O + Ovi(Z)} d£ = 0, x^ [0, A]
•'0

vs
2(x) = !;(x)[v[{x)]\ x<EE <6-13)

v\(x) = 0, x <£ E.
We shall show below that there exists a unique such solution. It is obvious that,
for each E and f, v | f e S, and it is also easily seen that any v ' e S can be
obtained in this way—given v*, use the third equation of (6.13) to define a
corresponding E, and then the second to define a corresponding J. Now consider
(6.1) with non-negative initial values v°(x) satisfying (v° + v%) > 0 on [0, A]. If
v?(x) = 0 for some i and x, then «,.(/, x) = 0 for all / > 0. Furthermore, if
v°(x) > 0 for some x, then (6.1) implies vx(t, x) > 0 for t > 0 and
d(v2(t, x)/[vx(t, x)]y)/dt = 0. Hence, for such x,
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Taking

E= {x: v°1(x)>0)

«x)-&- ' ' " • ( 6 I 5 )

we call v | f the stationary solution associated with v°.
The stability results for S and its members, referred to above, can be seen to be

consequences of the following two results which we shall now prove:
Result 1. For every e > 0 there is a 8 > 0 such that, for any Vs e S and v° > 0

satisfying

||v°-vi<S, (6.16)

it follows that, for all x e [0, A]

<;?(*) + u°(x) > 0 (6.17)

and

| | v | > f - v J | | < e , (6.18)

where v|if is the stationary solution associated with v°, and is in general distinct
from v*.

Result 2. There exist positive constants 80, c and k such that, if v° Ss 0 satisfies

«<«o (6-19)

for all x e [0, A], where V£ j is the stationary solution associated with v°, then

\\(t,x)-v^((x)\<c8e-kt (6.20)

for all x G [0, A], / > 0.
PROOF 1. For given E and f, and x e E, consider the equation

wv1 + !!(x)vl, v^0. (6.21)

Since the function vl -* v1 +.£(x)v\ is strictly increasing on [0, oo), (6.21) has a
unique non-negative solution vx = F(x, u) for u > 0. The function u -* F(x, u)
is continuous for u > 0. Moreover, it is continuously differentiable for u > 0,
with

§£(*,«) = 1/{1 + yt(x)[F{x,u)y-1}. (6.22)

The right-hand derivative of F at u = 0 exists as well and equals the limit of the
right-hand side of (6.22) as u -* 0+. We see also Jhat the function x -» ^(x, M) is
measurable on E (since {f > 0: lvx such that 0 < vx < a, vx + fv\ = u > 0} is
an interval for any a > 0). Finally, if x € E, we define F(x, u) = 0 for all u > 0.
In this way we have defined a function Fon [0, A] X [0, oo), measurable in x and
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continuously differentiable in u, and such that

0 < F(x, u)^u, 0 < -^(x, u) < 1. (6.23)

We consider also the function G(x, u) = u — F(x, u) and see that v2 = G(x, u)
is the solution of

v2 + x(x)v\/y = u>0, »2 > 0 , ' (6.24)

for x e ([0, A ] \ £ ) U ( x £ £ ?(x) > 0}, where

o, itxe[0,A]\E.

Now it follows that (6.13) is equivalent to

1 - u(x) - f [F(t,«({)) + 6G{£,«({))] rf€ = 0, (6.26)

with the connections Ui = F(x, u(x)), v2(x) = G(x, u(x)), or equivalently u(x)
= v[(x) + v2(x). But (6.26) is equivalent (in Caratheodory's sense) to the ordinary
differential equation

du/dx = -F(x, u) - 6G(x, u),

u(0) = 1 (6.27)

and from the properties of F and G it follows [4, Chapter 2] that there exists a
unique absolutely continuous function w satisfying (6.27) almost everywhere, and
(6.26) everywhere. We denote this solution of (6.26) by us

Ei or simply by us.
It follows from (6.27) that dus/dx > -max(l, 6)us, so that us(x) >

exp(-max(l, 0)x) and hence there is a constant K > 0 such that

v\(x) + v*2(x) > K, xe[0 ,A] (6.28)

for every v ' e S .
From (6.28) it follows that there is a 8X > 0 such that any non-negative v° with

| v ° ( x ) - v i ( x ) | < 5 1 (6.29)

for all x e [0, A] and some v' e S, satisfies i>?(x) + v%(x) > $K for all x e [0, A].
Now consider an arbitrary \s G 5. According to (6.28), for each x e [0, A],

either v\(x) > ^K or v'2(x) > \K. AS above, set

E={x: v[(x)>0}

v[(x)>0 (6.30)

v{(
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Supposing v° 35 0 satifies (6.29) for all x, define

E= {x: v°1(x)>0)

v ' r 0/ \]i/r -i\~/

and let v1 denote the associated member of S. We also define /", G, u and F, G, u,
respectively, as above. If \v°(x) - v\x)\ < S < 6\ for all x, and 8 is small
enough, |f(jc) - f(x)| can be made arbitrarily small on the set where v[(x) > \K,
and |x(*) — x(x)\ c a n ^e made arbitrarily small on the set where v^(x) > |K.
Since the solutions of (6.21) and (6.24) depend continuously on f(x) and x(*)>
respectively, we find that \F(x, u) — F(x, u)\ = \G(x, u) — G(x, u)\ can be made
arbitrarily small, uniformly in x e [0, A] and u e [K, 1]; and since the solution of
(6.27) depends continuously on the right-hand side we can make \u(x) - u(x)\
arbitrarily small, uniformly in x. Finally,

| v{(x) - v{(x) I *z\F(x, u(x)) - F(x, «(*)) | + \F (x, u(x)) - F(x, u(x)) \
(6.32)

can be made small, and similarly for \v^(x) - u£(;t)l- In all, for any e > 0 we can
find a S < 6\ such that |V°(JC) - v*(x)\ < S for all x implies that ps(x) - v"(x)\
< e for all x; S can be chosen independently of vJ.

PROOF 2. The system (6.1) can be written in the equivalent form

| ^ = [F(x,u) + yG(x,u)]ll -u- f [F(£,u) + 9G(Z,u)] dA (6.33)
at ( Jo }

with initial condition

u(0,x) = u°(x)= lVl
Q ^**'-Vl^X'l ' X G (6.34)

I V2\X)> X $ E

where E and f are as in (6.15), and with the identifications vt(t, x) =
F(x, u{t, x)), v2(t, x) = G(x, u(t, x)), or u(t,x) = vx(t,x) + v2(t,x). We want
to show that u(t, x) -* u'(x) = u*El(x) as t -» oo, uniformly in x, if u° is
sufficiently close to u'.

Let

w0 * u° - u'. (6.35)
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Then

^(t,x) = -a(x)^(t,x) + f*g(tMt,i)d(\ +h(t,x), (6.36)

where

a(x) = F(x, u*{x)) + yG(x, us(x)),

g(x) = 9+(i-e)^;(x,u'(x)) ( 6 3 7 )

and h is a function which is continuous in t, measurable in x, and such that

\ h ( t , x ) \ ^ C l s u p \ w ( t , Z ) \ 2 (6.38)

for a certain constant cl5 independent of E and f, provided

sup \w(t,x)\ < i K . (6.39)
xe[O, A] l

Since a(jc) > a 0 > 0 for a certain constant a 0 , also independent of E and f, we
can apply L e m m a 5.1 to obtain

s + a(x) JQ s + a(t) [ J( s + a( \

(6.40)

for the Laplace transform of w. We can write

where |/9(|, x) | < c2, ^0 is analytic in J for Res > -a0, and |^0(s, ,̂ x)| ̂
c3/|5 + ao\

2 for Re5 > - ±a0. It then follows [5, Theorem 28.2] that q0 is the
Laplace transform of

0 ( ) (6.42)
-a0/2-ioo

with

i/" % \ (6.43)
(«o/2)J

Then
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where q is the Laplace transform of

q(t, t, x) = p(£, x)e—' + qQ(t, {, x), (6.45)

so that

\q(t,i,x)\< c2e-^' + cAe-"°'/2 < c5e-a°'/2. (6.46)

Then w(s, x) is the Laplace transform of

w(t, x) = w°(x)e-aix>' + (' e-»<*X'-^(Tf x) dr
Jo

-a(x)f

(6.47)

where • denotes convolution in the f-variable:

J [ ) . (6.48)

We have the following estimates:

0 < { e-"Ml} * { e"«<»'} < { e-"o'} • { e-
a°'} = »"«•', (6.49)

<\w°(x)\e-a°' + c7<ra°'/2 sup \w°(t)\

+ [' e-
a°('-r)\h(T,x)\dT

Suppose

(6.50)

so that

^2 sup \h(r,i)\dT. (6.51)
«e[0,A]

sup |w°(x) |<f i<i K (6.52)
ie[0,A]
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and let

W(t)= sup \w(t,x)\. (6.53)
X G ( O , A ]

Then, as long as W(t) < £K, (6.38) gives

\h(t,x)\*ClW(t)2, ' (6-54)
so we have .

W(t) < cs8e-"<»/2 + cg (' e-a^'-^2W(r)2dr (6.55)
'o
(

•'o
and hence

W(t) < cs8e-"°'/2exp\c9f' W(T) dr]. (6.56)

As long as W(t) < \K and /0' W(T) dr < 1, we then have

W(t) < c10exp[-5a0r8], (6-57)

and so

f TX/( ~ \ Av ^ j~ ft /» Si (f\ ^Si\

If 5 is chosen so small that cl08 < \K and cn8 < 1, then (6.57) and (6.58) must
hold for all t > 0. Therefore there is a 80 such that if 0 < 8 < 80, then

\w(t,x)\ < c10exp[-^cr0f8] (6.59)

for all t > 0, x e [0, A]. This proves Result 2, since all the constants are
independent of E and f.

7. Concluding Remarks

Our interest is mainly in the asymptotically stable stationary solution (2.19) [or
(2.25)] which arises when the growth-rate constants characterizing the two
cell-types satisfy the inequalities (2.9), (2.14) and (2.15) [or (2.24)] and which has
a zonal structure. To be precise, we have shown only that this solution is
asymptotically stable against a particular class of perturbations, which are re-
quired to be vanishingly small near the singular point x = x* where the discon-
tinuities ultimately occur in the densities of the two cell types. The question
obviously arises as to whether or not one can prove (asymptotic) stability against
a wider class of perturbations. It would be interesting in particular to know the
behaviour at x = x* following a perturbation to the densities near and at that
point. More generally we have the question as to whether indeed, as conjectured
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in Section 2, this zonal solution is globally asymptotically stable for everywhere
positive initial data. These questions remain open.

We have obtained estimates for the rates at which a small perturbation of the
allowed type decays away as time / progresses, and found an exponential rate for
x < x* (with a decay constant which goes to zero as x -» x*). But for x > x* our
best estimate of the behaviour is of the form t'p, where p > 1 is a constant
involved in the definition of the class of allowed perturbations as in (5.22). These
results do suggest that the rate may indeed be qualitatively different to the left
and to the right of x = x*, as speculated in Section 2, but perhaps improved
estimates can be found which disprove this.

Turning to possible generalisations, we remark firstly that it seems likely that
the model can be applied to a whole class of processes including, for example, the
distribution of certain plant species in a river with a limited resource originating
upstream. The extension to N competing species is immediate, at least in so far as
obtaining the appropriate coupled equations is concerned: we get for i = 1,2 • • •
N, in place of (2.5),

(7.1)

The analysis of stationary solutions, and in particular the identification of the
stable ones amongst them, naturally becomes rather complicated with increasing
N, but it is easily seen that multi-zonal solutions can occur. Even in the case
N = 1, where we have members of a single species competing for a resource
flowing from x = 0 to x = L, the model is not without some interest for
applications, though there is of course no question of zones forming in this case.

It is more difficult to envisage a simple generalisation of the model to two or
more spatial dimensions, but the radially symmetric case in ^-dimensions, with N
species competing for a resource flowing radially outwards from a central point,
seems straightforward.

Another generalisation which could be considered involves taking a more
general form for the /?,(c) than the linear approximation (2.4). Under mild
conditions on these functions one can still prove existence and uniqueness of
bounded non-negative solutions, much as in Section 3, but the analysis of
stationary states and their stability is then a more difficult task.

As remarked earlier, the model does not allow for migration of species. This
undoubtedly limits the range of applicability. But it also accounts for the degree
of mathematical tractability we have found, enabling us to show that the model
can account for the appearance of stable spatial patterns within a simple
conceptual framework.
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