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ON DIFFERENTIAL POLYNOMIALS I

HISASI MORIKAWA

Abstract. The content of Part I is nothing else than, the theory of bino-
mial polynomial sequences in infinite variables (u™,u®,u® . ..) with weight
u") = I. However, sometimes we are concerned with specialization u® —»(%)lu,
therefore, we call the elements in K [u(l) Ju® u® || ] differential polynomials.
As analogies of special polynomials with binomial property, we may construct
special differential polynomials with binomial property.

§1. Differential polynomial sequences

The theory on differential polynomial sequences, is formally nothing else
than the theory on polynomial sequences in a system of infinite variables,

w= (M @ & )

with weight
weight ul) = [ (>1).

However sometimes we are concerned with specializations,

u (%)lf(s) (1>1),

therefore we call the elements in K [u("), () 43, .. ] differential polynomi-
als instead of polynomials in (u(l))lzl. The main result in this paragraph
is the expansion formula for binomial differential polynomials sequences.

1.1. Binomial differential polynomial sequences

We shall first recollect the definition of binomial polynomial sequences,
given by R. Mullin and G. C. Rota in [2], and shall generalize it slightly, so
that the set of binomial polynomial sequences in wide sense has a module
structure with respect to infinite triangular matrices.

DEeriniTION 1.1. (R. Mullin-G. C. Rota)
A polynomial sequence (p,(z))n>0 in a polynomial algebra K|z], is called
to be binomial, if it satisfies
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i) po(z) =1

ii) degp,(z) =n
i) pu(z+y) =) (Z) pn-i(z)pi(y)  (n=0)
1=0

where K means a field of characteristic zero. The condition
V) pa(0) =0 (n>1)
is a consequence of i) and iii).
DEFINITION 1.2. Replacing ii) by a weaker condition
ii*) degpp(z) <n (n>1)

we define binomial polynomial sequence in wide sense.
For each polynomial sequence (pn(x))n>0 we associate its generating
functions

(1) 2,z 1) = Y pole)
n=0

which is a formal power series in t. By means of generating functions, the
condition iii) is equivalent to

iii%) @p(z+y | £) = 2y(z | )By(y | ¥

ProOPOSITION 1.1. The set P(K|[z]) of binomial polynomial sequences
in wide sense in K|[z|, coincides with the set of polynomial sequences

{(Payn(z))n>0 | @ = (a1, a2,03,...), oj € K},

which are defined by means of generating functions,

(1.2) D, (z]t) =-exp [m Z ajj| Z Dex n(:):
Jj=1 )

Proof. Since po(z) = 1, we may put

log ®,(z | t) = 10g<1+ng(fc ) Z (“3)%

7j=1
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with polynomial ¢;(z) (j > 1) in K[z]. Then condition ®,(z +y | t) =

O,(z | t)®p(y | t) is equivalent to ¢;(z + y) = ¢;(z) + ¢;(y) (7 > 1) and
this is also equivalent to ¢;(z) = ajx with constants o; in K. This means

®,(x | t) =exp xZajﬁ
j=1
PROPOSITION 1.2.

(1.3) Pan(z) = Z%j::n ol (Hi <&>u) "

lezm

Proof. From the definition of (pan)n>0 it follows,
l]
_ Hexp [aja] ’]

l
et

X0 un NI
S5 s (s
n! AN
n=0 Ejl]:n i 7
Similarly to polynomial sequences, we define binomial differential poly-

nomial sequences and these in wide sense.

DEFINITION 1.3. A differential polynomial sequence (p,,(¢))n>0 in K [u]
= K[uW, 4@ 4®) . ]is called to be binomial, if it satisfies

i) po(u) =1

ii) weight pp(u) =n

iil) pn(u+v) i (?)pn 1(w) pr(v) (n>0).

=0
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The condition
iv) p,(0) =0 (n>1).
is a consequence of i) and iii).
DEFINITION 1.4. Replacing ii) by a weaker condition
ii*) weight p,(u) <n (n>1),
we define binomial differential polynomial sequences in wide sense.
By means of generation functions, condition iii) is equivalent to
ii*) @p(u+v|t) = Pp(u|t)Pp(v|t).
PROPOSITION 1.3. The set DP(K[u]) of binomial polynomial sequences

in wide sense in Ku|] coincides with the set of differential polynomial se-
quences,

{(Pan(u))nzo | @ = (@ij)i<icy; oij € K}

which are given by means of generating functions,

) n=0 :

1<6<j

Proof. Since pp(u) =1, we may put

log B, (u | £) = log (1 + Epj(w%) =3 o)

Jj=1

with polynomials ¢;(u) of weight at most j (j > 1) in K[u]. Then the
condition ®p(u+v | t) = ®p(u | t)Pp(v | t) is equivalent to ¢;(u + v) =
@;(u) 4+ pj(v) (j > 1), and this is also equivalent to

i
ei(w) = ayu® (5 >1)
=1

with constants «;; in K. This means

oo J ‘ tj
®i(ul|t)=exp ZZO@-ju(’)j—!

j=14i=1

From the expansion of exp[}> 72, uU)t7 /1], we obtain the standard bi-
nomial differential polynomial sequence (pi,(u))n>0, which corresponds to
the standard binomial polynomial sequence (z™)p>0. The relation between
(w®, 4@ 4G ) and (pr,1,P1,2, P13, - - -) is very important in this article.
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PROPOSITION 1.4.

(1.5) exp {iu])t } ZPIn

u(d
(16) pI,n( = Z ’Hl | ( )
Z]l =n J

(17) u(n) = Z (_l)m_l(m - 1)!pm,n (pI,la ce apI,n)
m=1

(1.8) prn(Pris- - p10) = Y 0! (H <p1ﬂ) ) (1 <m<n).
Z]l]:n J
Zl‘—m

Proof. By calculation we have

oo (_l)m—l
log(1+z) = Z z™
m=1 m
we have
) I ol t
ZU(J)ﬁ = log (1 + ZPI,J(U)?)
j=1 =1
=\ ( > p(
m=1 Jj=1
© ,n n m—1 L
B Z L Z (—1) Z n'm'H (pl,]( ))
n=0 n! m=1 Zjljzn 4! o
le—m
o0 tn n
— Zm Z —1)'pmn(pll( ) ...,an(u)).
n=0 m=1
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ProPOSITION 1.5.

n n

(1.9) Prasi(u) =) <l>u(l+1)pl,n—l(u) (n>1).
l

=0

Proof. Applying d/dt on the both sides of

Zmn —eXP [ZU(J }

n=0

we have

ZOPI’NH(U)E:(Z 7l t/ | exp ZU(J)_.‘_

The next statement is one of the evidence of the standardness of the

differential polynomial sequence (pi,(t))n>0-

PROPOSITION 1.6. Putting Z(s) = explu(s)], we have
tween the derivates;

(n)

Z 1 u’ g
(1.10) = prn(u(s)) —( ' ) ’
Z(s) M Z%—n lzlz

d

where Z™ (s) = <£>" Z(s) and uV(s) = (%)Ju(s)

Proof. From Tayler expansion of u(s + t) it follows,

Z(s+t) _ — ()b
W = explu(s +t) — u(s)] = exp [Z ul)(s)=

i=1 gt

tn

= palu(s))
n=0
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1.2. Homomorphisms of DP(K[u]) onto P(K]|z])

R (K) means the K-algebra of triangular matrices (a;;)1<i<; with co-
efficients in K, and G (K) means the group of triangular matrices (y; j)i<;
with 7,520 (j > 1). By means of generating functions, the natural R (K)
module structure on DP(K[U]) and P(K|z]) are defined as follows,

Do (u | 1) 0, (u | 1) = @p, ., s (u | 2)
Oy (u|t) =@y, (u]t) (8,7 € Ro(K); M\ ueK),
Dy, (| 1) By (x| 1) = Bp, (T | 1)

Pa(a: l t) = pa'y(x I t) (a = (an)nZLﬂ = (ﬁn)nZl;
A€ K; v € Ro(K)).

PROPOSITION 1.7. To each formal power serious f(s) without constant
term, we associate a mapping py of DP(K[u]) into P(K|[z]);

(1.11) py (exp [Zzam ()t :l) = exp {xi (Zaijf(i)(0)> %] )

j=1l1i=1

them ps is an R (K)-module homomorphism.
This is a direct consequence of the definitions of Reo(K)-module struc-
tures on DP(K[u]) and P(K]|z]).

PROPOSITION 1.8. The mapping pso defined by

(112)  pe (exp [ZZ% LD - lxzi% z}

j=1li=1 j=1li=1

is a R (K)-module homomorphism of DP(K|[u]) onto P(K|[z]) such that

Poo tnduces a vector space isomorphism from the vector subspace

,OéjEK}

Proof. Putting f(s) = >252; s7/5! and po = pf, we observe that poo
is an Ry (K)-module homomorphism of DP(K [u]) onto P(K[z]) satisfying
the condition in the proposition.

There exists a very simple and concrete cross section of P(K|[z]) into
DP(K|[u]) which is unfortunately not a vector space homomorphism.

W = {(pa,n(u))nzo | (I)pa (u ] t) = exp {Z aju(j)%

J=1

onto the vector space P(K|x]).
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PROPOSITION 1.9. Let vy be the mapping of P(K|z]) defined by
(113 i (pafa)) = DL
then vy is a cross section of P(K|z]) into DP(K[u]) such that
i) vo(a") = pra(u)
ii) povo = idp(kpa))
where D™u = u™ (n > 1) and po = py, f(s) = s.

Proof. Let y be a variable independent over K|[z] and let D’ be the
derivation acting on a variable v independent over K[z] such that

DMy = o™ (n>1)
and ,
pn(D’) exp(v)
exp(v)

Since DD’ = D'D and Dv = D'u = 0, for each element (pn(z))n>0 in
P(K|z]) we have

(vo(pn(y)) =

pn(D + D) explu + v]
explu + v]

(7)o Drm Dt el

= exp|u] exp[v]

v (pn(z +y)) =

This means vy maps P(K|[z]) into DP(K[u]). On the other hand, putting
z(s) = explu(s)] for a generic function z(s) and D = d%’ by virtue of
Proposition 1.6 we have

D" explu(s)] _ 2 (s)

explu(s)] — Z(s)
hence D
vo(") = exe;([z%u} = prn(u) (n>1)

Since pg means the specialization

WV — gz wl)—o0 (7 >2),
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this means

@O\Y
wine)=m| T Tl (5) | =
Sih=n 3 9\

1.3. Expansion formulas

For each (pn(u))n>0 in DP(K[u]) the vector subspace spanned by pr, (u)
(n > 1) is very thin in K[u], hence in order to treat expansion formulas, it
is necessary to introduce a suitable equivalence relation in DP (K u]).

DEFINITION 1.5. Two elements (p,(¢))n>0 and (gn(¢))n>0 in DP(K[u])
are called to be similar each other, if there exist two systems of constant
(Am,n)lgmgn and (,Ufm,n)lgmgn in K such that

n

Qn(u) = Z pm(u))‘m,na pn(u) = Z Qm(u)/v"m,n (n > 1)
m=1

m=1

THEOREM 1.1. (Expansion theorem) Let (py,(u))n>0 and (gn(w))n>0 be
binomial differential polynomial sequences. Then (pn(u))n>0 and (gn(u))n>0

are similar each other, if and only if there exists a system of constants
(Aj)jzl such that )\1 75 0 and

n N\
(L1 ) = 3 pnie) Z;:n'r[%(%) (n>1)
lejzm

Condition (1.14) is equivalent to

(1.15) B, (u|t) =d, (u | Z/\j%)
=1 7

Proof. Let (pn(u))n>0 and (gn(u))n>0 be similar binomial differential
polynomial sequences and put

Qn(u) = Z pm(u))\m,n
m=0
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with Ap, , in K. They Moo =1, Ao, =0 (n > 1) and

n
qn(u + ’U) = Z pm(u + U)Am,n

m=0
= Z (Z (Z)pm—h(u)ph(v)> )‘m,n
0 \h=0

l>qn—z(u)Qz(v)

(
Z( ) (Zpa an_z) (Zpb Au)

Comparing the coefficients of p,,—p(u)pr(v) in the both sides of

£ (o)

m=0 \h=0
n

Z ( ) <Zpa(u)/\a,n-l> (Zpb(v)/\b,l> )
1= a b
we have

(-t

m — h)! h!
Z(n il mhnll>\hl (0<h<m<n).
l !

Using this relation, we obtain a nice relation on the power series

fm®) =Y F')\m,nt" (m > 1),
n=m
as follows
2. ml!
fm(t) = an H)‘m,ntn
- (m—h)! b
M hat® At
(a_;h - _h, Z T b

= fm—h(t)fh( 1 <h
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This means
Fa®) = 1" = [ A5 ]
=1 I

where A; = Ay ; (j > 1). Hence we have

A\b
Amn = Z:anF(é).

|
Zle:" i J:

Elj:m
Moreover
e .e] tn
By t) = Y gulw)
n=0
X, tn NPV
1 I GG R
n=0 Z]l,:n J
Zl]:m
1
B = pm(u) 1 17N
Nl DD m’HF(T
m=0 ZlJ:m i 7
pm(u) i)\jtj X
= : =) UlZAjf
=0 ™ (j:l J! i=1 7!

For its sake of the invertiblity, we observe Ay # 0.

Remark. A variable transformation ¢ — E Aj= (A1 # 0) induces tri-
"7 4l
7=1
angular matrix:

o(A) = (omn(}))
0 (m>mn)
Imn(\) =4 PmaN) = D ][ ——7 (m<n)

g )

> | =
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such that
© a1 (&t = (&, t
Zu(a)j Z M| = Z Zu(l)ai,j()\) -
et &= h! = \T 7!
n o0 n tn
1+ Zpln(u (Z hh') =1+ Z (Z me(u)Um,n()\)) g
n! n=1 \m=1 :
o(A) is given concretely as follows,
A A A3 Ay As
0 M2 3z 4h 3 +3X02 5Ahg 4 100003
0 O )\13 6)\12)\2 10/\12)\3 + 15)\1)\22
sqA=10 0o o A 10032
0 0 0 0 A

1.4. Multi-binomial differential polynomials sequences
We choose r infinite variable vectors

1 2
(Ug )7u5 )a g)a), BN Ur=(u$1),ug),u$3),...)

with weight

weight u() ... = weightu) =1 (l>1).

DEFINITION 1.6. A differential polynomial sequence (pn(ui,...

Ur))n>0 in Klug,. .., u,], is called to be multi-binomial, if it satisfies

i) po(ut,...,up) =1

ii) weight p,(u1,...,u,) = n, weight p,(ug,...,u.) =n (1<k<r),

27’
iii) pp(urtor,. .., urto) = Y ( > I pa; (wjn, -y wy,
~ \ai,az,...,asr
S ay=n

where (wj1,...,wj,) runs over all the vectors such that
Wjk = Uk OF Vj 1<k<r 1<j<27).

The condition

iv) pn(0,...,0)=0  (n>1)
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is a consequence of i) and iii).

DEFINITION 1.7. Replacing ii) by a weaker condition
ii*) weight p,(u1,...,ur) <n (n>1),

we define multi-binomial differential polynomial sequences in wide sense.
By means of generating functions, condition iii) is equivalent to

27‘
iii*) @p(ur +v1,...,u, +vp | ) = H O (wja, - wik | L),
i=1

where (wj1,...,w;) runs over all the vectors such that w;j = up or vy
1<k<r 1<5<20).

PRrROPOSITION 1.10. The set DP(K[uy,...,uk|) of multi-binomial dif-
ferential polynomial sequences in K[uy, ..., u,] in wide sense, coincides with
the set of differential polynomial sequences

{(pa,n(ul, e Ur))nz0 | 0= Qi i )it bir iy s JGK} ,

which are defined by

0o A 4
(1~16) ¢pa (ul, oo 7u7‘ l t) = eXp Z Z ail,-..,ir; ju§11)7 . 7u£‘zr)ﬁ
j=1ji+..4+jr<j
o0 tn
= Z pa,n(“’l? e 7“7‘)'——'-
n!
n=0

Proof. Since po(uy,...,u,) =1, we may put

log @, (u1,...,u,) =log | 1+ lej(ul,...,ur)ﬁ
J:
I

o
= Z@j(’u,l,...’ur | t)—'
=1 J:

with polynomials ¢;(u1, ..., u,) of weight at most j (j > 1) in K[uy,...,u,).
Then the condition

2T
Qp(ur +v1,.. . ur +0p | B) = H Pp(wpa,.-., Why | 1)
h=1
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is equivalent to

2T
<pj(u1 + v, .., Up T+ U,,«) = Z (pj(’ij, . ,H)j’,,-).
h=1

This is also equivalent to ¢;(u1, ..., u,) are liner homogeneous in uy, ..., U,
i.e. there exists a system of constants «; 1,...,;.;; in K such that

Pj (ula tet ur) = Z gy \oying jug“) ce uq("lr) (.7 > 1)’
i1+t <j
i.e.
= i1 @ | ¥
®,(ur,...,ur | t) =exp Z Z Oy i UL ey Uy ﬁ

J=1 \é1+-+ir<n

Two multi-binomial differential polynomial sequences (pp{1, - - ., Ur)n>0
and (gn(u1,. .., ur))n>0 are called to be similar each other, if there exist two
system of constants in K (A n)1>m>n and (fm n)1>m>n such that

n
Qn(ula e >ur) = Z pm(ula ce. aur))\m,na
m=1

n
pr(ul, ..., up) = qu(ul,...,ur)”mm (1<m<n)
m=1

THEOREM 1.2. (Expansion Theorem) Multi-binomial differential poly-
nomial sequences (Pp(U1,...,Ur))n>0 and (qn(u1,...,u))n>0 0 Klug,. ..,
ur| are similar each other, if and only if there exists a system of constants
(Aj)j>1 in K such that Ay # 0 and

(L17)  gn(u,...,ur)

=Y putw) | S [ (5)| 2,
m=1 Ejlj='n J 77 J

le:m

condition (1.17) is equivalent to

(1.18) By(ut,. .y ur | y) = By <u1’~~~’ur|;AJﬁ>‘
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Proof. Assume gp(u1,...,ur) = Y1 Pm(Ul, ..., Ur) A (n > 1).
We fix ws, ..., w, and consider (pp(u1, w2, ..., w,))n>0 and (gn(u1, wo,...,
wy))n>o as differential polynomial sequences in u; with coefficients in
K|ws,...,w,], then they are binomial differential polynomial sequences sim-
ilar each other. Hence by virtue of Theorem 1.1 there exists a system of
elements in K[wy,...,w,] (Aj(w));>1 such that A;(w) # 0 and

Q4(ur,we, ..., wr |y) =Pp (ul,wg,...,wr | Z )\j(w)ﬁ) .
J=1 :

It is enough to show Aj(w) (j > 1) belong to K. Since pn(u1,wa,...,wr)

(n > 1) are linearly independent over K [ws,...,w,], this means
L (Aj(w)\"
Zjl]:n i 7
le:m

On the other hand by virtue of Proposition 1.4, using v, = Y 71 Amn
(n > 1), we have

Up = pLm(A1(w), ..., An(w)) (n>1)

Y 1 1 /v \W
Aj(w) =Y (1) H(m —1)! EZ m!Hﬁ (ﬁ)
m=l jlj=n 3 7

lezm
This proves Aj(w) (j > 1) belong to K.

1.5. Binomial partial differential polynomials sequences
We shall use the following multi-indexed notations:

n=(n,...one), 3=l g, o (M) ),
J J1 Jr

. . tJ tj1 tIr
u(n) — u(nlr"’n"')’ t] — t‘il’ . ‘Z"", 7 e -.1_' e .TT_'
J J1 Jr

MO wledr) \ b
]' B jl!a'~‘7j1‘! ’

V= (Yi)i<i = Vagoooin) o) it e in) <G

o = (an)n>0 - (a(nl,...,nr))(nl,...,nr)>o7

doili=n=(n1,...,n:) =D (1, » )l i)
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where (u(™),,~0 means a system of variables with a vector valued weight:
weight u("1mr) = (n1,...,np).

Replacing the notations in 1.1, 1.2, 1.3, and 1.4 by the above multi-
indexed notations, we observe that almost all statements and formulas hold
by the same expressions.

DEFINITION 1.8. A partial differential polynomial sequence in K [u]
(Pr(u)n=(n1,..nr)>0
is called to be binomial, if it satisfies
1) po(u) =1,
ii) weight p,(u) = n,
i) po(uto)= Y (7) Pri()p(v) (n 2 0).
0>I>m
By induction on n = (nq,...,n,), i) and ii) implies
iv) pn(0) =0 (n = (n1,...,n,) > 0).
Using the generating function
n
(1.19) Byl 1) = Y pulu)
n>0
we can express iii) by the equivalent condition,
iii*) ®p(u+v|t)=Dp(u|t)®p(v]t).
DEFINITION 1.9. Replacing ii) by a weaker condition
weight p,(u) < n (n=(nyg,...,n.) > 0),
we define binomial partial differential polynomial sequences in wide sense.

PROPOSITION 1.11. The set DP,.(K|u]) of binomial partial differential
polynomial sequences in wide sense in Ku], coincides with the set of partial
differential polynomial sequences

{(Pan(u))n>0 | @ = (045)o<icsi o jo =5 (0 € Sp) 05 € K},
which are given by
wl®

. tn
(1.20) D, (ult)=exp Zai’j i | = Zpa’”(“);ﬁ
i>j ' n>0 :

where S, means the symmetric group of degree r.
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Proof. For each (pn(u))n>0 in DP,(K[u]) we may put,

log(® (UIt))—log(lJrZPJ(U)J) >_ei(w

7>0 720

with a unique system of partial differential polynomials (¢;(u));>0 such
that ¢;(u) is of weight at most j. From multiplicative property ®p,(u + v |
t) = Op(u | t)Pp(v | t) we obtain pj(u +v) = @j(u) + ¢;(v), i.e. j(u)
are linear in u(¥ (0 < ¢ < j). This means there exists a unique system of
bisymmetric contains o; ; in K such that

®,(u | t) = exp [ > awu(l)t ]
7!

0<i<j

We obtain also the standard binomial partial differential polynomial
sequences as follows;

PROPOSITION 1.12.

(1.21) exp [ Z 7 ] Zpln

0<i<y n>0

e
(122 o) = S T (—)

n>0 7

o) — et py\”
(1.23) Zj;j-n( 1) l!H ( ;! ) (n > 0)
er——m

Proof. By direct calculation we have,

Z U(J)— log (1 + ZPI,J (u) JJ>

7=>0 720

-y b )ml(zm W’ )m

j>0

:Zg Z%{ Z n'm'H“(M)

!
m>0 m=1 Z]ljzn J

Zl—m
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n (u l]
EIDY (—1)””1(m~1)!n11;[$ (plﬂ( ))

I i

lezm

PROPOSITION 1.13. Putting z(s) = explu(s)], we obtain the relation
between the partial derivatives;

) (s u@(s)\"
(1.24) Zé)=mmw»= 5 mH%( fﬁ (n>0),

|
Zjljzn J J:

where z(s) = ,.z(sl,...,sr), u(s) = u(sy,...,s,), z2M(s) = (%)nz(s) and
ul(s) = (&) uls).

Proof. From Tayler expansion of u(s + t) we have

s 1) =exp[u(s +t) —u(s)] = exp Z u(j)(s)tf]'
z(s) =0 J!
= 3 praluls))

n>0

Two binomial partial differential polynomial sequences (py(u)),>0 and
(gn())n>0 are called to be similar, if there exist two siptems of constant
(Amn)ozm>n and (fmn)o>m>n such that

qn(u): Z pm(u))\m,m pn(u): Z Qm(u)ﬂm,n-

0<m<n o<m<n

THEOREM 1.3. (Expansion Theorem) Two binomial partial differential
polynomial sequences (pn(u))n>0 and (gn(u))n>0 are similar, if and only if
there erists systems of constants in K

AD)j30,- -, (A7)530

such that O O 3
AL AL a8
/\(2) :

(1.25) det | 7% : #0
A0 A
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and

(1.26)  gn(u)

(%)
M) (k) lJ(’c)
=D pm(u) ) n! H Il l(k) | ](k)
0<m<n Z Z (k) l(k) ,=n k=1 j(k) FION
k Ik

(S MJM) —m

R 5 ]

(n 20)

where ey = (1,0,...,0), ea = (0,1,...,0),...,e, = (0,...,0,1). Moreover
(1.25) 1is equivalent to

12m) ]t (ZW D (”tj)

§>0 >0

Proof. Putting g, (u) = Z Pm(n)Am n, we have
o<m<n

)\070 =1, >\0,n =0 (71 > 0)

and two way expression of g,(u + v):

qn(u + U) = Z pm(u + 'U))\m,n

0<m<n
= > (Z <:)Pm_h(u)m(”)) P
0<m<n \0<h<m

> (7)q,(11‘_)lql(v)= > <7) (Zpa(u)/\a,n—a> (Zpb(v))\b,l)
0<I<n 0<i<n a b

Comparing the coefficients of p,,—p(u)pr(v) in the both sides, we have

m n
<h ) >\m,n = Z (l) )‘m-h,n—h/\h,b
0<i<n
m! B Z (m —h)! h!

— Amn = Am—hn—1=y Ah,l-
n! ™ ~ (n—1)! I
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Hence, putting
m!
fn@) =Y S Amat™  (m>0)
e ™

we obtain the key relation,

m! m — h)!
fm(t) = Z _'Am,ntn = Z (_—"_)—)‘m—h,ata Z >\h btb
m>n n m~h>a a: h>b
T M
k ti
= fuen @ u(t) = [[ o (t)™ = H S
k=1 k= ]>0 ‘7
where )\g-k) = Ae,j (4 = 0). This means,
0]
r 1 (AE G\ ®
Amin = > o T ( 7
53 50N®, k=1 (k) l](-m! i®
k 3(k)
(% 1 1y %:) l(r)ju)):(ml,m,mr)
J J
and
o(ul?)
t”l
= Z (In(u)“,
n>0
L)
n | 1 [ )](k) by
= >Oa > o n kH I FOIRNNICH Pm(v)
= 2 2y Pl = Lo *

»\
(ij M 4y ) l.(r))-m

1(k)
)\(k))t](k) J(k)

(k
= Z H H J(k) J](k), pm(u)

m>0 Ic-l 4k

e P\

)‘j(k)
= Z ' Z k:)l Pma,...,m, (U)

my.
mil,...,mp>0 ;.
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=2, (u | ZA“ ZAM) .

J !
>0 >0 =

1.6. g¢-binomial differential polynomial sequences
We choose a quantity g in K which is transendental over rational num-

ber field @), and denote briefly

n

(n)qzll'_qq =1+qg+...+¢"7  (0),=1
- (1-q)r

=(1+(l+qg+¢)...(L+g+...+¢" ), (0),!=1,

(n) _ (n)g!
L] (n—= D)D)

Replacing binomial coefficients with ¢ binomial coefficients () (0 <
lq

I <n), we can easily define binomial differential polynomial sequences. We ‘
introduce two types of infinite variables;

a=@m,a® @ ), w= (LM, u® O )
with commutation relation
(1.28) 2@al) = gWa®) u® ) — @)y,
2Dyl = g D@ (4,5 > 1).

DEFINITION 1.10. A differential polynomial sequence (pn(u))n>o is
called to be g-binomial, if it satisfies

i) po(u) =0,

ii) weight p,(u) = n,

iii) pn(@ + ) =Z< ) poa(up(@) (1)
=0 q
The condition

iv) pn(0) =0 (n > 1)

is a consequence of i) and iii).
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DEFINITION 1.11. Replacing ii) by a weaker condition
ii%) weight pn(u) < n (n > 1),

we define g-binomial differential polynomial seqences in wide sense.
By means of generating function

(1.29) (I’J(gq)(u [t) = an(u) (:)Lq!

condition iii) is equivalent to
ii*) @2(u+a | t) = O (u| t)®p(a | t),

where ¢ is commutative with 4, u® (7,5 > 1).
Since the commantation relation £z = gxZ implies

(1.30) @+ =3 (7;

=0

N——

xn—l:%l,
q

g-exponential function

@ o "
(1.31) exp'?(t) =
:L:B (n)q!
satisfies
(1.32) exp(? (2z) = exp® (&) expl? (z).

g-log function log?(1 +t) is the formal power series in ¢ which is the inverse
function of exp?(t), i.e.,
log? [exp?[t]] = t.

We briefly denote

-1
(1.33) ) = 3 () (Hlj!«j)q!)lj) .
oo Y

PROPOSITION 1.14.

(1.34) log @ (1 +1)

oo |n-—1 n

t

=t+ 3 (Y)Y AP m)pl (ma) . pl) ()| —
n=2 | r=1

n!
1<mi<ma<
<My 1<n
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Proof. We denote

7!
A= =
! (])q!
1+5=exp(q)[t]=1+z . :1+Z)\jf‘
j=1 (J)q j=l .7
and
(e o) Sm
log (1 +s) = Z om—
m=1 '
then

This means

apiN) =1, Y ampma(A) =0 (n>2).
m=1
On the other hand

! n
Pnn(A) = n! (:)q! . % = (n)'q" pri(A) =1
Pmn(A) _ (n)g! n 1 ij_ b

lezm

-1
> (H () ) =0 ),
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hence
] = 1
n—1
Pm,n(/\)
Qp = — Om
3::1 Pnn(A)
n—1
= — Z ampgg)(n)
m=1
n—1
=S Y PP ()@ (ma) ... (n),
r=1 1<m1<<mz<<
<M1 <N

log @ (1 +t)

o |n—1
r tm
=i+ | XD X AP ma)pl) ma). . p) ()]
n=2 | r=1 1<mi<ma< ’

My 1<n

PROPOSITION 1.15. The set DP9 (K[u]) of q-binomial differential
polynomial sequences in wide sense in K[u] coinicides with the set of dif-
ferential polynomial sequences

{(Pan(u))n>0 | @ = (ay5)i>;, iy € K},

which are given by menas of generating functions as follows

1<y

(1.35) @I()‘i)(u | ¢) = exp(® [ Z 05U —(———} .

Proof. For an element (p,(u)) in DP9 (K[u]) we put

log!? (@) (u | t)) = log'? [1+Zpg G ] Z% U)
7=1

with polynomials ¢;(u) of weight at most j in K[u]. Let us prove

pla+u) = pi(@) +@;(u)  (G=>1)

Since

1 1
im —— = — i @D =
émi (gl =l ;mi exp'?[t] = explt]
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we have
ti t
exp Z w;(t+ u) = hm exp® Z wjlt+u)—— ’
j=1 .7 j=1 (])q

= hm Q(q)(u +ult)= _1}1 (@(Q)(u | t)q)(Q)( ’ ))

1
-—hm<I> (u|t)11mcz><4(a| t)

— hm exp(Q) I:Z 80] ;q' Z (pj( A) (jt; ':l
et q

7=1

[ o 4 o ) 4
= exp _j; (u)ﬁ} L; cp](u);'}
—exp |3 (@) + o(w) }}

=1 '

This means ¢;(4 + u) = ¢;(@) + ¢;(u) (j > 1), ie., @;j(u) (j > 1) are liner
forms. The converse is obviously true.

THEOREM 1.4. Two q-binomial differential polynomical sequences
(Pr(u))n>0 and (rn(u))n>o0 are similar each other, if and only if there exists
a system of constans (Aj)j>1 in K such that Ay # 0 and

n . g
(1.36)  ro(u) = Z ,pm() > eI ((%]—:)
m=1 ’ Zgla n J a

Zl]—m

Condition (1.36) is equivalent to

(@ (y =@ |4 S i
(1.37) Q0 (u | t) = p ( 'j;’\ﬂ(j)qg)

The proof of this theorem is completely same as that of Theorem 1.1.

Appendix A. Central moments of entropy

1. Using the standard binomial differential polynomials, we an express
the n - th central moment of entropy concretsly.
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A distribution function means a positive real value function in s > 0
which is given by an integral

(s) = [ expl=sf(@)lu(da),

where f(z) is a non-negative real value function on a measurable space
(©, 1) and we assume that d/ds and integration are always commutative.
Entropy of the distribution function z(s) is defined by

Be = | (_log [exp[z—g(wnb exp{ﬁ(w)]w &)

_ /Q (——log [eXP[Z—(g(w)]D exp[z—(g(w)] u(dz)
21 (s)

=—g + log z(s).

z(s)

The n-th central moment of entropy F(z(s)) is defined by

(o) = [ (—1og [PEETN  pa(o)) wtae) (nz0)

Putting z(s) = exp[u(?(s)], from Proposition 1.6, we have

0 (n)(g) " o J > "
Z ()¢ = exp [Zu(])(s)t—} = Zpl,n(u(s))%

n=0 Z(S) ? j=1 -7‘ n=0
where
w9 (s b
pau(e) = Y n'Hl—lf,( . )) (n>0)
Zjli—n J 7" :
w5 = (5) 496 G20
THEOREM 1.
> z(s < w(s -
n=0 ) 7j=2 )

= exp [exp [u(s — st)] —u(s) — u(l)(s)]
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u@(s)\ ¥
(A.2) Mu(2(s)) = (=9)* Y n'H%,( ()) :
i

>, 50 dl=n 7
(A3)  My(x(s) =0,
2(2)(s) z(l)(3)>2
2(8)) = s2u(s) = s —
Ma(a(s)) = % (s [ — ( . ]

where u9) (s) = (d/ds)?~2u?(s) (j > 2).

Proof. By calculation we have

Ma(a(9)) = [ (~10g [FRETEN] _ psyy) 2L SHE,

z(s) z(s)
_ 2(s)\" exp[—sf(x)]
_ /Q <sf(a:)+s e ) )
=s" (" z(l)(s)> L )" exp[—s x
- ;(l)( ) <5 @ elst@ne)

n—1
Levt(5) ewlss@la)
_ e m) 1 Z(l)(8)>l da o
N IZ( 2 (l z(s)( z(s) (ds)

2" (s) 20 (s)
) ()
This means

> z(s > " n\ 2D (s) [2(M(s : —st)"
ot (5 () (201

n=0 : n=0
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_ (2 29%) (—sty) = <z<1>(s>)’<s_t>’
B (ZE% z(s) U (; z(s) !

= exp Zu])( (—St) exp [u(l)st]

= exp Zum s)( St) ,

u@(s)\ Y
M, (2(s)) = n'H%( ( )> ,

2. Relations between the contral moments under certain functional
equations

THEOREM 2. Under the assumption

-1
A4 —)=2A
(A.4) (=) =xa(9)
or .
(A.5) 2(5) = 2(s)
with a non-zero constant \, we obtain the relations between the central mo-
ments,
-1 Sy - —1rK NV ()
k() =nt Y (Z l i) (1) h(;'); ull)(s)
5 o<hizi<n \PTET v
or

Ko(f)=n! % (nﬁlq)( DM Kn(e)sDul) ()

0<hiai<n h+1-1 hll!

Proof. Putting z(s) = exp[u(s)] and a = log A, we have
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u (:l) _ _ﬁ_%(u(s) +a) = s*ul)(s),

()

or

K(s,t) = i

= exp [exp [u(s(1 — 1)) — u(s) — u(s)(~st)] ],

Appendix B. The inhomogeneous invariant theory

1. The GL2(K)-germ action on the basic formal power series
We choose an element w in K different from positive integers, and a
system of variables

£= (9,6, 6™,
with degree, weight and index such that
degé), weight€) =1, €0 =w -2,

We introduce the basic formal power series

(e}

4
(B.1) fol€t) = Z 50)7!

1=0

on which the germ of GLo(K) acts as follows,

b ) Bk

0+ at
5+ 6t)” ;
- lO <6+7t >

where (w); = w(w —1)(w—2)...(w—1+1) and (%) = (w);/1.
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(B.2) is equivalent to the realization of the algebra sly(K) in K[¢],
D" =g (€' =0)
(B.3) Aug?) = (w = ety
H,tY = (w—20)e®

where
[Du, Ay] = H,
(B.4) [H,,D,] = 2D,,
[Ho, Ay] = =24,
LEMMA 1.
©5) (Do, Al] = —1(1 — 1)AL + 1A H

[H,,Al) = —21AL
Proof. Assuming (B.5) for [, we have

[Dw’ Afjl] = [DUM AL]AUJ + AL[DU)) Aw]
=—I(l-1)AL + 1AL H A, + AL H, + DL H,
= —I(l+1)AL + 1A H,, AL + 1AL H, + DL H,
—1(l+ 1AL + (1 +1)ALH,,
[Hwa Afjl] = [Hw AL]Aw + Afu[Hw, Aw]
— —2[Al+1 — oA
= —2(1+1)AL!

2. (D, A, H,)-action on the basic inhomogeneous formal power series

We mean by the basic inhomogeneous formal power series the formal
power series

(B.6) 1+ Z

z) £
g(o) [

Changing variables
20 = (w),e® (1>0),
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from (B.3) we have

Doz¥ =lw—-1+1)2"1 (z7'=0)
(B.7) A2V = (D)

H,zW = (w—21)z¥
Again changing variables 2V /z(% (1 > 1) to u() (j > 1) by

+§§¥%§—i = exp [iu(”%} ,
1=1 j=1

we obtain the following (D,,, A,,, H,)-action on K[u),u® +(®) . ];

PROPOSITION 1.

il — DY (s
(B.8) iG-1) (1=2)

A,ul) = D
ku(j) — —2ju(j)

Proof. We choose a generic analytic function y(s) and w)(s) = (d/ds)
w(s). Hence by means of differential algebra specialigations

(y(l)(s) ¥ (s) y®(s) . d> . (z(l) 2(2) ,(3) )

yO(s)" yO(s) y©O(s)" """ ds 20 20 2027

d
(1) 2 @G 2 (D @, 3) .
(w (s),w'“(s),w'™, .. ds> (u AR VA Aw),

we obtain
A =400 (5> 2).

From (B.7), denoting £(® = 2(9 = exp[u(?], we have
D,z H, 20 = 20
and
D u® = D‘,,(exp[u(o)])exp[u(o)]_1 = Dwz(o)z(o)—1 =0

H,u® = Hu,(exp[u(o)])exp[u(o)]_1 = w207 =,
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Hence from u? = AJ~1u® = AITA u® = AJu® and Lemma 1 we
obtain

Do’ = DAl u® = [D,,, A7 Ju® + AJ D,u©®
= [Du, A)u(® = —j(G — DA @ + jAI H,u©)
w (G=1)
{—j(j — 1l (j=2)°

Aud = LUt ,

H,uY = [H,, Au® + ATH,u©
= —2iA @ 4@ f AV = —2549) (G > 1),
Now we can conclude as follows:

THEOREM 3. The invariant theory on the basic inhomogeneous formal
power series

(Dut =16
(B.9) H’Z“(J)ﬁ AW = (w_ EGRY
= HotO = (w — 20

1s equivalent to the invariant theory on the basic inhomogeneous basic form
(B.10) 1+ Z u(ﬁ—
7j=1

with respect to the realization
1
Do =% U=
=3 = Dubl™Y (>2)
Doul) = U+

The structure of the graded algebra © of semi incariants in K [u] is very
simply expressed as follows:

THEOREM 4. The isobaric polynomials

(B.11) Yn(u) = z": @L”Z_—l)iwn'_lu(n”l)u(l)l
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are generators of the graded algebra © of semi-invariants, i.e.

©= K[#’Z(“)a ¢3(u)7 ¢4(u)7 . ]
Proof. By calculation

Dvn) =3 —(")l(”;!‘ Dt ety -0y 1,
n—l
- W= D ety gy g 1yt 0
1=0
( lnl+1nl(1)l1
= l -1)!
o (n )l+1(";'— Dit1 n—t,,(n-t-1),, (1)}
1=0 :
=0
On the other hand K[u®™, vy (u), ¥s(u),s(u),...] = K[u®, u® oG ]

and u() is transcendental over K [thy(u), 13(u), 1/)4( ),...], hence F Zk:o
u(l)kgk(w) belongs to ©, if and only if F' = go().

A Cashimi operator is a non - zero element in the center of the uni-
versal enveloping algebra of sly[K], and the next is a generator of Cashimir
operators of the realization (D,,, A,, H,) of sla(K),

(B.12) K, = %(Hf +4A,D,, + 2H,).
PROPOSITION 2.

(B.13) KEa/ =0  (j>1)
Proof. By caluculation we have

1
KoulM) = Z(Hw?u“) +4A,DuV +2H,,)uV)

1
= (2%l + 48w +2(-2)u) = 0

Kl = 2((=27u + 480 (=) = D™ + 2(=27)u)

= i(4j2u(j) — 45 — Dul) — 4ju(j)) =0
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PROPOSITION 3.
(B.14) K¢ = iw(w +2)¢®  (1>0)
Proof. By calculatation, we have
KeW = i(Hﬁg(l) +4A,D,6Y 4 2H,,¢0)

= i—((w —20)* + 4w — 1+ 1) + 2(w — 20))¢0 = iw(w +2)e0).
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