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Abstract. The crust of Neutron Stars can be approximated by a highly conducting solid crystal
lattice. The evolution of the magnetic field in the crust is mediated through Hall effect, namely
the electric current is carried by the free electrons of the lattice and the magnetic field lines
are advected by the electron fluid. Here, we present the results of a time-dependent evolution
code which shows the effect Hall drift has in the large-scale evolution of the magnetic field. In
particular we link analytical predictions with simulation results. We find that there are two basic
evolutionary paths, depending on the initial conditions compared to Hall equilibrium. We also
show the effect axial symmetry combined with density gradient have on suppressing turbulent
cascade.
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1. Introduction
The magnetic field of neutron stars is anchored in their crust. The crust is an electric

conductor, where only electrons have the freedom to move with respect to the static
lattice. As most observable properties of neutron stars are directly connected to processes
of the magnetosphere and the surface of the neutron star, the understanding of the
magnetic field evolution is crucial. Goldreich & Reisenegger (1992) have shown that the
evolution of the magnetic field in neutron stars is governed by three processes: Hall drift,
ambipolar diffusion and Ohmic dissipation. The relative importance of these processes
depends primarily on the intensity of the magnetic field and the electron density, with
Hall effect dominating in the crust for magnetic fields B > 1013G, while ambipolar
diffusion being important in the core where the neutron fraction is larger. The strongly
magnetized and with low characteristic ages magnetars have dipole inferred magnetic
fields reaching 1015G (Olausen & Kaspi 2013), while older pulsars have weaker fields,
suggesting some decay of the field with age.

The evolution of crustal magnetic field due to the Hall effect has been studied ana-
lytically (Jones 1988; Vainshtein et al. 2000; Reisenegger et al. 2007) and numerically
(Shalybkov & Urpin 1997; Hollerbach & Rüdiger 2002, 2004; Pons & Geppert 2007;
Viganò et al. 2012; Kojima & Kisaka 2012). However, there are still some open ques-
tions. In particular, it is important to link the analytical work with the results of the
simulations, explore a variety of initial conditions and their effect in the structure of the
field and investigate the absence of turbulent cascade in crust simulations as opposed to
cartesian 3-D box simulations (Biskamp et al. 1996; Cho & Lazarian 2009; Wareing &
Hollerbach 2009).

Here we present the results of a code we have developed examining the evolution of
axially symmetric magnetic fields in neutron star crusts under the influence of the Hall
effect and Ohmic dissipation.
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2. Hall Effect
An axially symmetric magnetic field can be expressed using two scalar functions Ψ

and I, B = ∇Ψ ×∇φ + I∇φ, where φ is the azimuthal angle. Since only electrons have
the freedom to move, the electric current is given by j = −neev, where ne is the electron
number density, e is the electron charge and v is the electron velocity. From Ampère’s
law it is j = c

4π ∇ × B, where c is the speed of light, while for a finite conductivity σ
the electric field becomes E = − 1

c v × B + 1
σ j. We substitute the electric field in the

induction equation and we find

∂B

∂t
= − c

4πe
∇×

(
∇× B

ne
× B

)
− c2

4π
∇×

(
∇× B

σ

)
. (2.1)

In spherical polar coordinates (r, θ, φ) we define the Grad-Shafranov operator Δ∗ =
∂ 2

∂r 2 + sin θ
r 2

∂
∂θ

( 1
sin θ

∂
∂θ

)
and χ = c/(4πener

2 sin2 θ) which is related to the effect density
gradient and axial symmetry have in the evolution of the magnetic field. The vector
equation giving the evolution of the magnetic field reduces to

∂Ψ
∂t

= r2 sin2 θ χ(∇Ψ ×∇I) · ∇φ +
c2

4πσ
Δ∗Ψ , (2.2)

∂I
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= r2 sin2 θ[χ∇(Δ∗Ψ) ×∇Ψ + Δ∗Ψ∇χ ×∇Ψ + I∇χ ×∇I] · ∇φ

+
c2

4πσ

(
Δ∗I +

1
σ
∇I ×∇σ

)
. (2.3)

These two equations form a system of non-linear, coupled, differential equations for Ψ
and I, which in principle can be solved numerically. Yet, by analytical examination of the
above equations we can come to some important conclusions. Assuming high conductivity
σ, it is possible to find Hall equilibria solutions satisfying ∂Ψ

∂ t = ∂I
∂ t = 0, these solutions

have I = I(Ψ) with Ψ satisfying a Grad-Shafranov equation, similar to that of barotropic
magnetic equilibria (Cumming et al. 2004; Gourgouliatos et al. 2013a,b). In the absence
of an initial poloidal field (Ψ = 0), the toroidal field evolves with the advection of I on
surfaces of constant χ obeying Burgers’ equation (Reisenegger et al. 2007). However, a
purely poloidal initial field generates a toroidal field, even if it is not present in the initial
state.

3. Simulation - Conclusions
We have developed a finite difference code to study the evolution of the magnetic field

because of the Hall effect and Ohmic dissipation. We assume that the electron number
density on the surface of the crust is two orders of magnitude smaller than in the crust-
core interface and it is ne ∝ (r∗ − r)4 , while the conductivity is σ ∝ n

2/3
e , the thickness

of the crust is 0.2r∗, where r∗ is the radius of the neutron star. The field is confined in
the crust of the neutron star without threading the core, while the star is surrounded
by a vacuum, therefore, a multipole expansion is used as a surface boundary condition.
We have also run cases with constant electron number density ne to allow comparison
with previous studies. We have run a variety of initial conditions: purely toroidal field
(Figure 1), purely poloidal fields and combinations of poloidal and toroidal fields.

We link the analytical conclusions with the results of our simulations. In particular, a
purely toroidal field is advected along lines of constant χ. A Hall equilibrium field does
not evolve in a Hall timescale, but in a longer timescale which depends on the Ohmic
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Figure 1. The evolution of a purely toroidal field. I is advected along surfaces of constant χ,
drawn with white dashed lines. Within a Hall time-scale shocks form between fields of opposite
polarity. For a colour figure please refer to the online version.

Figure 2. The evolution of poloidal field starting out of Hall equilibrium so that it generates a
toroidal field of positive polarity in the northern hemisphere. The field lines are pushed towards
the poles initially. For a colour figure please refer to the online version.

timescale. Ohmic dissipation pushes the field out of Hall equilibrium, thus a toroidal
field is generated. A purely poloidal field out of Hall equilibrium generates a toroidal
field within a Hall timescale. The polarity of the toroidal field generated and subsequent
evolution depends on the initial field structure compared to the Hall equilibrium field.
If the quadrupolar toroidal field is positive in the northern hemisphere the poloidal field
lines are pushed to the poles (Figure 2), otherwise the poloidal field lines are pushed
to the equator (Figure 3), leading to distinguishable structures. The toroidal field is
subdominant energetically compared to the poloidal, unless the initial conditions impose
a strong toroidal field (Ciolfi & Rezzolla 2013). A strong toroidal field twists the poloidal
field lines trying to align I with Ψ, while transferring a significant amount of energy to
the poloidal field. Assuming a density profile where χ =const. the field generates higher
order multipoles, which are suppressed otherwise.

The two evolutionary paths shown in Figures 2 and 3 can be distinguished obser-
vationally in terms of the braking indices as they predict different decay rates for the
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Figure 3. The evolution of poloidal field starting out of Hall equilibrium so that it generates a
toroidal field of negative polarity in the northern hemisphere. The field lines are pushed towards
the equator. For a colour figure please refer to the online version.

dipole component of the field. Also the surface temperature profile is different, as thermal
conductivity depends on the internal structure of the field (Viganò et al. 2013).
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