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Abstract

We prove a weak form of the mean ergodic theorem for actions of amenable locally compact quantum
groups in the von Neumann algebra setting.
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1. Introduction

The following mean ergodic theorem is well known. Let G be a locally compact group
with right Haar measure µ, and assume that it contains a Følner net (3λ), that is, a
net of Borel sets in G such that 0< µ(3λ) <∞ and limλ µ(3λ1(3λg))/µ(3λ)= 0
for all g ∈ G. Furthermore, let Ug be a contraction on a Hilbert space H such
that UgUh = Ugh for all g, h ∈ G, and G 3 g 7→ 〈Ugx, y〉 is Borel measurable for
all x, y ∈ H . Take P to be the projection of H onto V := {x ∈ H | Ugx = x for all
g ∈ G}. Then

lim
λ

1
µ(3λ)

∫
3λ

Ugx dµ(g)= Px (1.1)

for all x ∈ H . A standard proof for the case G = Z can be found for example in [5]
and [11], but it can be extended to the more general case without much effort (see
the review in [2, Section 2]). A more general theorem in Banach spaces is presented
in [10, Theorem (5.7)].

In this paper we prove a version of this theorem for the action of an amenable
locally compact quantum group on a von Neumann algebra. We use the von Neumann
algebra setting for quantum groups, as developed by Kustermans and Vaes [9] building
on earlier work on Kac algebras (see, for example, [4]).

In this setting a locally compact quantum group is defined to be a von Neumann
algebra M with a unital normal ∗-homomorphism 1 : M → M ⊗ M (where M ⊗

N denotes the von Neumann algebraic tensor product of two von Neumann
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algebras), such that (1⊗ ιM ) ◦1= (ιM ⊗1) ◦1 (where ιM denotes the identity
map on M), and on which there exist normal semi-finite faithful weights ϕ and ψ
such that ϕ((θ ⊗ ιM ) ◦1(a))= ϕ(a)θ(1) for all a ∈M+

ϕ and ψ((ιM ⊗ θ) ◦1(a))=

ψ(a)θ(1) for all a ∈M+

ψ , for all θ ∈ M+
∗ , where M+

∗ is set of the positive normal
linear functionals on M , andM+

ϕ = {a ∈ M+
| ϕ(a) <∞}. This quantum group is

denoted as (M, 1). We refer the reader to Kustermans and Vaes [6–8] for background
and motivation for this definition. If, furthermore, there exists a net (ϕλ) of normal
states on M such that ‖θ ∗ ϕλ − ϕλ‖ converges to 0 for all θ ∈ M∗ with θ(1)= 1, then
we call (M, 1) amenable; see, for example, [3]. Here µ ∗ ν := (µ⊗ ν) ◦1 for any
µ, ν ∈ M+

∗ .
An action of (M, 1) on another von Neumann algebra A is defined to be

a normal injective unital ∗-homomorphism α : A → M ⊗ A such that (ιM ⊗ α) ◦

α = (1⊗ ιA) ◦ α; see [14].
Given such an action, we shall assume the presence of a normal state ω on A which

is invariant under the action, by which we mean that (θ ⊗ ω) ◦ α = ω for all normal
states θ on M . In Section 2 we show how to set up the analogue of the integral
in (1.1) for a quantum group action, and in Section 3 we state and prove a mean
ergodic theorem for such actions, though only in a weak form analogous to

lim
λ

〈
x,

1
µ(3λ)

∫
3λ

Ug y dµ(g)

〉
= 〈x, Py〉 (1.2)

for all x, y ∈ H . Our approach is to set the problem up in a suitable Hilbert space
framework, closely related to that of (1.1), and then to follow the basic structure of the
proof of (1.1).

We shall not need the full force of the theory of locally compact quantum groups as
developed in [8, 9], and therefore it will be convenient to formulate our results in an
abstract setting incorporating only the concepts from locally compact quantum groups
that we need, modelled on the definitions discussed above. We shall focus on this
abstract setting, rather than on concrete examples.

2. A suitable integration theory

In this section we develop the tools and notation that we need in order to formulate
and prove the mean ergodic theorem in the next section. Throughout this section and
the next we shall use the following notation: R will be an arbitrary von Neumann
algebra, its unit denoted by 1R , and its normal states by (R+

∗ )1. By ω we shall mean
an arbitrary normal state on a von Neumann algebra A. We shall denote the GNS
construction of (A, ω) by (H, γ ), by which we mean that H is a Hilbert space and
γ : A → H a linear mapping such that 〈γ (a), γ (b)〉 = ω(a∗b) and with γ (A) dense
in H .

We remind the reader that we shall use the notation R ⊗ A to indicate the von
Neumann algebraic tensor product, often written as R⊗A in the literature. The
algebraic tensor product will be written as R � A. We shall constantly use tensor
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products of mappings on von Neumann algebras, and a useful reference for this
topic is [13]. For example, if θ is a normal state on R while ιA is the identity map
A → A, then we can define θ ⊗ ιA : R ⊗ A → A as the tensor product of conditional
expectations, in which case θ ⊗ ιA itself is a conditional expectation, which is also
normal, that is, σ -weakly continuous; see [13, Section 9].

We shall view R as a noncommutative measurable space, and, roughly speaking,
we shall be integrating A-valued ‘functions’ over R.

Note that the integral in (1.1) is an integral of a bounded function f : G → H which
can be defined via the Riesz representation theorem by〈∫

3

f dµ, x

〉
=

∫
3

〈 f (g), x〉 dµ(g).

We now mimic this construction for A-valued ‘functions’ on R, in other words for
elements of R ⊗ A.

PROPOSITION 2.1. Let µ be a normal positive linear functional on R. Then there is
a unique function

µ̃ : R ⊗ A → H

such that
〈γ (d), µ̃(T )〉 = µ⊗ ω([1R ⊗ d]

∗T ) (2.1)

for all T ∈ R ⊗ A and d ∈ A. Furthermore, µ̃ is linear, ‖µ̃‖ ≤ ‖µ‖ and

〈γ (d), µ̃(T )〉 = ω(d∗(µ⊗ ιA)(T ))

for all T ∈ R ⊗ A and d ∈ A.

PROOF. For any T ∈ R ⊗ A, define the linear functional

fT : γ (A)→ C : γ (d) 7→ µ⊗ ω([1R ⊗ d]∗T )

which is indeed well defined, since if γ (d)= 0 then µ⊗ ω([1R ⊗ d]
∗T )= 0 as

follows. First consider any

T =

n∑
j=1

r j ⊗ a j ∈ R � A;

then

|µ⊗ ω([1R ⊗ d]
∗T )| ≤

n∑
j=1

|µ(r j )||ω(d
∗a j )|

but
|ω(d∗a j )| ≤

√
ω(d∗d)

√
ω(a∗

j a j )= 0,

since ω(d∗d)= ‖γ (d)‖2, therefore µ⊗ ω([1R ⊗ d]
∗T )= 0. For a general

T ∈ R ⊗ A there is a net Tλ ∈ R � A converging σ -weakly to T , according to
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von Neumann’s density theorem (see, for example, [1, Section 2.4.2]). Hence,
[1R ⊗ d]

∗Tλ converges σ -weakly to [1R ⊗ d]
∗T , but µ⊗ ω is σ -weakly continuous

(that is, normal), so µ⊗ ω([1R ⊗ d]
∗T )= 0.

Clearly fT is linear, and ‖ fT ‖ ≤ ‖µ‖‖T ‖ since

| fT (γ (d))| ≤

√
µ⊗ ω([1R ⊗ d]∗[1R ⊗ d])

√
µ⊗ ω(T ∗T )

≤

√
µ(1R)

√
ω(d∗d)

√
‖µ⊗ ω‖‖T ∗T ‖

=
√

‖µ‖‖γ (d)‖
√

‖µ‖‖T ‖.

Therefore fT can be linearly extended uniquely to H without changing its norm. By
the Riesz representation theorem and since γ (A) is dense in H , there is a unique
element µ̃(T ) in H such that fT (γ (d))= 〈µ̃(T ), γ (d)〉 for all d ∈ A. Furthermore,
‖µ̃(T )‖ = ‖ fT ‖. Hence, we obtain a unique function µ̃ : R ⊗ A → H such that (2.1)
holds. Clearly µ̃ is linear and ‖µ̃(T )‖ ≤ ‖µ‖‖T ‖.

Lastly, for r ∈ R and a ∈ A,

µ⊗ ω([1R ⊗ d]
∗(r ⊗ a))= ω(d∗(µ⊗ ιA)(r ⊗ a)),

hence
µ⊗ ω([1R ⊗ d]

∗T )= ω(d∗(µ⊗ ιA)T )

for all T ∈ R � A by linearity. But again by σ -denseness, and by σ -weak continuity,
this extends to all T ∈ R ⊗ A. 2

We now take this a step further by finding an analogue of the linear operator
H → H : x 7→

∫
3

Ugx dµ(g) that appears in (1.1).

PROPOSITION 2.2. Consider the situation in Proposition 2.1 and furthermore assume
that we have a ∗-homomorphism α : A → R ⊗ A which leaves ω invariant in the sense
that

(µ⊗ ω) ◦ α = µ(1R)ω (2.2)

for the given µ. Then there exists a unique linear operator µ̃α : H → H such that

µ̃α(γ (a))= µ̃ ◦ α(a)

for all a ∈ A. Furthermore, ‖µ̃α‖ ≤ ‖µ‖, and if α is unital, then ‖µ̃α‖ = ‖µ‖.

PROOF. The operator µ̃α is well defined on γ (A) since µ̃ ◦ α(a)= 0 when γ (a)= 0,
as we now show. For any d ∈ A, from Proposition 2.1,

|〈γ (d), µ̃ ◦ α(a)〉|2 = |µ⊗ ω([1R ⊗ d]
2α(a))|2

≤ µ⊗ ω([1R ⊗ d]
∗
[1R ⊗ d])µ⊗ ω(α(a∗a))

= 0

by (2.2) and since ω(a∗a)= ‖γ (a)‖2
= 0. But γ (A) is dense in H , so µ̃ ◦ α(a)= 0.

Clearly µ̃α is linear and, as in the above calculation, for any a, d ∈ A,
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|〈γ (d), µ̃α(γ (a))〉| ≤ µ(1R)‖γ (d)‖‖γ (a)‖

so ‖µ̃α‖ ≤ µ(1R)= ‖µ‖. Hence, µ̃α has a unique bounded linear extension to H ,
with the same norm. If α is unital, then by (2.1),

〈γ (d), µ̃α(γ (1A))〉 = 〈γ (d), µ̃(1R ⊗ 1A)〉

= µ(1R)ω(d
∗1A)

= 〈γ (d), µ(1R)γ (1A)〉

so µ̃α(γ (1A))= µ(1R)γ (1A) from which ‖µ̃α‖ = ‖µ‖ follows. 2

Lastly we shall need the following important property in the proof of the mean
ergodic theorem. Note that by a normal ∗-homomorphism from one von Neumann
algebra to another, we mean a ∗-homomorphism that is σ -weakly continuous.

PROPOSITION 2.3. Consider the situation in Propositions 2.1 and 2.2. Furthermore,
let ν be another normal positive linear functional on R satisfying (ν ⊗ ω) ◦

α = ν(1R)ω. Also assume that α is normal, and that 1 : R → R ⊗ R is a normal
∗-homomorphism such that

(ιR ⊗ α) ◦ α = (1⊗ ιA) ◦ α.

Write
µ ∗ ν := (µ⊗ ν) ◦1.

Then it follows that
µ̃ ∗ ν

α
= ν̃αµ̃α.

PROOF. For any r ∈ R and a, d ∈ A,

ω(d∗
[µ⊗ (ν ⊗ ιA)] ◦ (ιR ⊗ α)(r ⊗ a)) = ω(d∗µ(r)(ν ⊗ ιA) ◦ α(a))

= 〈γ (d), ν̃ ◦ α(µ(r)a)〉

= 〈γ (d), ν̃α(µ̃(r ⊗ a))〉

by Propositions 2.1 and 2.2, hence by linearity

ω(d∗
[µ⊗ (ν ⊗ ιA)] ◦ (ιR ⊗ α)(T ))= 〈(̃να)∗γ (d), µ̃(T )〉 (2.3)

for all T ∈ R � A. The left-hand side of (2.3) is a σ -weakly continuous linear
functional of T ∈ R ⊗ A, since ιR ⊗ α is the tensor product of two σ -weakly
continuous ∗-homomorphisms, and (µ/‖µ‖)⊗ ((ν/‖ν‖)⊗ ιA) that of two σ -weakly
continuous conditional expectations (the case µ= 0 or ν = 0 being trivial). The right-
hand side of (2.3) is also a σ -weakly continuous linear functional of T ∈ R ⊗ A. To
see this, consider any net Tλ ∈ R ⊗ A converging σ -weakly to T . For any c ∈ A,

〈γ (c), µ̃(Tλ)〉 = µ⊗ ω([1R ⊗ c]∗Tλ)→ µ⊗ ω([1R ⊗ c]∗T )= 〈γ (c), µ̃(T )〉
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in the λ limit, since µ⊗ ω is σ -weakly continuous. However, the σ -weak topology
is a weak* topology, hence by the resonance theorem (uniform boundedness) the net
(Tλ) is bounded in the norm of R ⊗ A. Since γ (A) is dense in H , it therefore follows
that 〈x, µ̃(Tλ)〉 → 〈x, µ̃(T )〉 for all x ∈ H , so indeed the right-hand side of (2.3) is
σ -weakly continuous in T . But R � A is σ -weakly dense in R ⊗ A, therefore (2.3)
holds for all T ∈ R ⊗ A, in particular for T = α(a), so

〈γ (d), ν̃αµ̃α(γ (a))〉 = ω(d∗
[µ⊗ (ν ⊗ ιA)] ◦ (ιR ⊗ α) ◦ α(a))

= ω(d∗
[(µ⊗ ν)⊗ ιA] ◦ (1⊗ ιA) ◦ α(a))

= ω(d∗
{[(µ⊗ ν) ◦1] ⊗ ιA} ◦ α(a))

= 〈γ (d), µ̃ ∗ ν
α
(γ (a))〉

for any a ∈ A, by Propositions 2.1 and 2.2, and since 1 is normal (which ensures that
[(µ⊗ ν)⊗ ιA] ◦ (1⊗ ιA)= [(µ⊗ ν) ◦1] ⊗ ιA on R ⊗ A). Since γ (A) is dense in
H , we obtain ν̃αµ̃α = µ̃ ∗ ν

α
. 2

3. The mean ergodic theorem

Continuing with the notation of Section 2, we can now formulate and prove a mean
ergodic theorem.

THEOREM 3.1. Consider two normal ∗-homomorphisms 1 : R → R ⊗ R and
α : A → R ⊗ A such that (ιR ⊗ α) ◦ α = (1⊗ ιA) ◦ α and (θ ⊗ ω) ◦ α = ω for all
θ ∈ (R+

∗ )1. Assume the existence of a net (ϕλ) in (R+
∗ )1 such that ‖θ ∗ ϕλ − ϕλ‖ → 0

for all θ ∈ (R+
∗ )1. Let P be the projection of H on

V := {x ∈ H | θ̃αx = x for all θ ∈ (R+
∗ )1}.

Then
lim
λ

〈x, ϕ̃αλ y〉 = 〈x, Py〉

for all x, y ∈ H.

PROOF. Set
N = span{x − θ̃αx : x ∈ H, θ ∈ (R+

∗ )1}

and note that ‖θ̃α‖ ≤ ‖θ‖ = 1 (that is, θ̃α is a contraction). Then by a standard
argument N = V ⊥ (see, for example, [5, Section 1.1]). Keep in mind that (R ⊗

A)∗ = R∗ ⊗∗ A∗ where by ⊗∗ we mean the tensor product of Banach spaces with
the completion taken in the dual norm of the spatial C*-norm on R � A (see for
example [12, Section 1.22]); this will be useful in the following calculation. Note
that this dual norm is a cross norm. For any a, d ∈ A and θ ∈ (R+

∗ )1 it follows from
Proposition 2.3 that
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|〈γ (d), ϕ̃αλ (γ (a)− θ̃αγ (a))〉|

= |〈γ (d), ϕ̃αλγ (a)− θ̃ ∗ ϕλ
α
γ (a)〉|

= |ϕλ ⊗ ω([1R ⊗ d]
∗α(a))− (θ ∗ ϕλ)⊗ ω([1R ⊗ d]

∗α(a))|

= |(ϕλ − θ ∗ ϕλ)⊗ ω([1R ⊗ d]
∗α(a))|

≤ ‖ϕλ − θ ∗ ϕλ‖‖ω‖‖[1R ⊗ d]
∗α(a)‖

→ 0.

Furthermore, ‖ϕ̃αλ − ϕ̃αλ θ̃
α
‖ ≤ 2 by Proposition 2.2, so (ϕ̃αλ − ϕ̃αλ θ̃

α) is a bounded net,
while γ (A) is dense in H , hence

〈x, ϕ̃αλ (y − θ̃α y)〉 → 0

for all x, y ∈ H and θ ∈ (R+
∗ )1. Since ‖ϕ̃αλ‖ ≤ 1, we conclude from the definition of

N that
〈x, ϕ̃αλ y〉 → 0

for all x ∈ H and all y ∈ N . So for any x, y ∈ H we obtain

〈x, ϕ̃αλ y〉 = 〈x, ϕ̃αλ Py〉 + 〈x, ϕ̃αλ (1 − P)y〉

= 〈x, Py〉 + 〈x, ϕ̃αλ (1 − P)y〉

→ 〈x, Py〉

by the definition of P and since (1 − P)y ∈ V ⊥
= N . 2

In particular, this result holds in the situation presented in Section 1, where R = M
is an amenable locally compact quantum group. This is our main and final result, and
we now conclude with a few brief remarks to give some indication of the relation with
classical ergodic theory and how the theorem might be used.

Note that if α is unital in Theorem 3.1, then P�=�, where � := γ (1A) is the
(nonzero) cyclic vector of the GNS construction of (A, ω), since

〈γ (d), θ̃α�〉 = 〈γ (d), θ̃ (1R ⊗ 1A)〉 = 〈γ (d), �〉

for all θ ∈ (R+
∗ )1. This is essentially the same situation as in classical ergodic theory.

Extending the classical case, it seems reasonable to say that the dynamical system
(A, ω, α) is ergodic when dim P H = 1, that is, P H = C�. Using Theorem 3.1, this
is easily seen to be equivalent to

lim
λ
ϕλ ⊗ ω([1R ⊗ a]α(b))= ω(a)ω(b),

again paralleling the situation in classical ergodic theory.
One simple application of the mean ergodic theorem in classical ergodic theory is

Khintchine’s recurrence theorem; see, for example, [11, Section 2.3]. If we only had
the weak form (1.2) of the mean ergodic theorem, we would correspondingly get a
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weaker recurrence result, which we now discuss. For the simple case of an action
of Z on a measure space (X, 6, µ) given by a measure preserving transformation
T : X → X this recurrence result can be expressed as follows: for any S ∈6, ε > 0
and j ∈ Z there is a λ0 ∈ N such that

1
λ+ 1

j+λ∑
n= j

µ(S ∩ T −n S) > µ(S)2 − ε (3.1)

for all λ≥ λ0. To clarify the interpretation of this as recurrence, note that it implies that
µ(S ∩ T −n S) > µ(S)2 − ε for some n ∈ { j, j + 1, . . . , j + λ0}. The strong form of
the mean ergodic theorem results in this recurrence taking place on a relatively dense
(or syndetic) set. The latter result was generalized in [2] to a state-preserving action
of a group on a noncommutative ∗-algebra. We now consider the action of a quantum
group. For a dynamical system (A, ω, α) as above, and the situation in Theorem 3.1,
for any a ∈ A, ε > 0 and θ ∈ (R+

∗ )1 there is a λ0 such that

|〈γ (a), ϕ̃λ ∗ θ
α
γ (a)〉 − 〈γ (a), Pγ (a)〉|

= |〈(θ̃α)∗γ (a), ϕ̃αλγ (a)〉 − 〈(θ̃α)∗γ (a), Pγ (a)〉|

< ε

for all λ≥ λ0 according to Theorem 3.1. Hence

|(ϕλ ∗ θ)⊗ ω([1R ⊗ a]
∗α(a))|> |ω(a)|2 − ε

for all λ≥ λ0. We could then interpret this as a form of recurrence, analogous to (3.1),
with a generalizing the characteristic function of S, ω generalizing integration with
respect to µ, and ϕλ ∗ θ generalizing 1/(λ+ 1)

∑ j+λ
n= j if we view ϕλ as corresponding

to the unshifted sum 1/(λ+ 1)
∑λ

n=0.
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