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Abstract . We present an iterative method allowing to synthetize a semi-numerical solution for 
the equations of motion of the resonant Saturn's satellites Titan-Hyperion (limited now to the 
planar problem). The current theory of Hyperion by Taylor, Sinclair & Message (1987) gives the 
greatest terms of the long-period part of the solution (depending on two angles: the libration angle 
τ, and the angular distance of the pericenters ζ). Using it as a first approximation, this solution 
is substituted numerically in the exact Lagrange equations of motion for Titan and Hyperion, 
computed for many values of the three angles : τ, ζ and φ (the mean synodic longitude). Then, 
a multivariable Fourier transform allows to reconstruct the equations in these three angles, that 
is in same form as the initial one with, in addition, the short-period terms. Then, a solution 
may be obtained and used as a better approximation in an iterative process. Besides a complete 
determination of the short-period perturbations of Hyperion obtained here completely for the first 
time, some long-period perturbations of Titan by Hyperion are also found which would be non 
negligible at the 10 km level. 

Key words: Titan-Hyperion - semi-numerical theory - resonance 

1. Introduction 

The orbital motion of Hyperion around Saturn is strongly disturbed by the reso-

nance 3:4 with Titan, characterized by : ΆΝ' — AN + (ώ) = Ο 1. Then, observation 

shows that the critical angle : θ = 3λ' — 4λ + π = 3(λ' — λ) — Μ librates around 180° 

with a large amplitude : θ = 180° — 36°.5sinr — 13°5 sin ζ + · · ·, where r and ζ are 

two long-period arguments whose periods are about 640 d and 6850 d respectively, 

r is the argument of the libration, while ζ represents a linear function of time such 

that ς = {το — ώ'). When restricted to the plane problem, the representation of 

the motion depend on these two arguments and on the synodic angle φ, also linear 

function of time defined by φ = N' — N] the period of φ is about 63 d. This last 

argument may be considered as a short-period one. 

The main previous works about the Hyperion's motion are : 

- Woltjer (1928) who constructed numerically a first order semi-numerical represen-

tation of the orbital elements including long-period terms only; Woltjer computes 

numerically the influence of the short-period terms directly on positions for the 

date of each available observation. 

- Taylor et ai (1987) who made a new fit of the Woltjer's theory to observations and 

then obtained the short-period perturbations on orbital elements, from an analysis 

of the residuals obtained between the fitted long-period theory and a complete 

numerical integration; however, their discretisation allow them to find the only 

short-period terms whose period is longer than 30 days. 

- Message (1989) who proposed a second order long-period analytical theory in 

which the short-period terms which are necessary to know at the first order to 

1 Along this text, a, e, Ν, λ, w and M stand for semi-major axis, eccentricity, mean mean 
motion, mean longitude, longitude of pericentre and mean anomaly respectively. The primed 
quantities concern Titan, (x) stands for the mean value of χ over time. 
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compute the second order, are not explicited : their influence is only computed by 

numerical averaging. 

- Vienne &c Duriez (1991) who used a technique of synthetic expansions to compute 

directly all the short-period perturbations of the orbital elements of Hyperion at 

the first order in the Titan's mass. It appears there that many terms with period 

shorter than 30 days have not to be neglected. 

The present work is an extension ofthat presented in Vienne & Duriez (1991) : 

The process described there is now iterated, allowing to obtain synthetic expansions 

of both long-period and short-period terms up to a given precision. Assuming that 

Hyperion has a mass equal to 3 1 0 ~ 8 that of Saturn2, we have also computed at 

the same time the perturbations of Titan by Hyperion. 

2. Synthetic expansions 

The details of the method used to produce synthetic expansions of the Lagrange 

equations is given in (Vienne k, Duriez, 1991, Sect. 4). Say only here that the 

plane motion of the pair Titan-Hyperion may be represented by the following series 

depending on θ ijk — *Φ + 3 τ 4- : 

λ = λ 0 + Nt + δΧ with δλ = Y^ijfk A»j* sin 0^·* 

το - zu0 + (zu)t + δζυ δ zu = T,'i'j,k ^ i * s i n Öu* n\ 

e = e0 + 6e 6e = ^ijfk
 eijk cos e i j k 

a = a0 + δα δα = J2ijtk
 aijk cos 0^·* 

At the begining, only the main terms of each series are known from current theories 

(for example, Taylor et ai, 1987) and have long periods. We give here some of 

them : λ 0 ι 0 = 9113, zu001 = -13147, e 0 = 0.1046, e 0 0 i = 0.0242, a0 = 1.48 10 6km, 

a 0io = 0.0035αο· Then, the other terms are synthesized from them, like the short-

period terms presented in Vienne & Duriez (1991). In this aim, assuming analogous 

expressions for Titan, we define the angles tii, u2 and «3 : 

m = λ' - λ = φ + δλ' - δλ 

η2 = θ= 180° -h 3<5λ' - 4δΧ + δπ (2) 
Us = TD — W1 = ζ + δ ZU — δ ZU' 

from which we may obtain λ, λ' and zu as functions of φ, τ and ζ : 

λ = ζσ' -h 3ΐίι — u2 — U3 

Χ' = ζυ' + 4ι«ι - u2 - u3 (3) 
zu — zu' — U3 

w' may remain arbitrary; in the following, we denote by χ any of the elements 

{a,e ,a' ,e '} and by y any of {λ, zu, λ', zu'}. Therefore, χ and y are expressions in 

the form : 

x = χο + Σ Xi>k
 c o s 2 / = 2/0 + 2/0* + £ Vijk sin $ i j k (4) 

ijk ijk 
2 The Hyperion's mass has been estimated from its dimensions (ellipsoid 205 X 130 X 110 km), 

and with a density equal to 1.4 g.cm" 3 (average value of the densities of other small satellites). 
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Hence, from expressions (1), (2) and (3), we can compute χ and y for any value 

of φ, τ and £, as well as the right-hand members of the Lagrange equations for 

Titan and Hyperion by using the formula given by Chapront et α/.(1975). p^, p T 

and ρζ being given integer, we compute these right-hand members at the 'harmonic 

abscissae' : = 2ΐπ/ρφ}ί=0-..Ρφ, {η = 2iw/pT}i=0...Pr, {& = 2iw/pc}izz0 ··*><· 

Hence, a 3-dimensional FFT routine allows to synthesize the Lagrange equations 

as semi-numerical expansions in the three angles r and £, that is in the form : 

( TAT ) = - Σ X i J k s i n ( % j = Σ * c o s 

\ a i / synth i j k \ a i / s y n t h i j k 

3. Iterative process 

By derivation of expressions ( 4 ) , we have also : 

\ai J ^ e r t v \ a i / deriv ijk 

(5) 

(6) 

If χ and y are solutions of the Lagrange equations, the expressions (5) must match 

those (6). In fact, at the begining, it is not true; the frequencies TV, TV', (w) and 

(ώ') being supposed known and fixed to the values given by current theories, we 

have to adjust the other parameters of the problem, which are some of the X{jk and 

yijk, mainly : a 0 , a'0) e 0 , e'Q and λ 0ιο (amplitude of the libration in λ). Denoting 

these parameters by c/ and varying numerically each one, we can compute the value 

of each partial derivative of X{jk and Yijk with respect to c/, to obtain, instead of 

( 5 ) : 

= - M ^ + E , ^ A c , ) s i n % t 

Hence, we find a new solution x' and y' by identifying : 

''ijk = fa* + Σ , M J t ^ f c = ( y i i f c + Ε , ^ (8) 
where the 8c\ are the least-square solution of the system : 

(xijk + 6xijk)èijk - x i j k + Σι ^ r è c i ; ( y y * + % > * ) 0 ο · * = * ο · * + Σ / ^ f - i c / 

In this system, when or ytjfc correspond to some c/, the 6xijk or o t / t j * is iden-

tified to <Sc/, and else it is zero. This resolution depends also on the constraints : 

(dX/dt) = N, (dXf/dt) = JV', (d(3Xf - 4A + w)/dt) = 0 , and accounts on the secular 

perturbations of Titan and Hyperion by all other satellites and by the Saturn's 

oblateness. 

Hence, the new solutions x' and y' may be used instead of the previous χ and 

y to iterate the process up to stabilization. 
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Fig. 1. Short-period perturbations of Hyperion; the smallest lines represent about 15 km 

and remind that 700 km correspond to 0.1 arcsec as seen from Earth at oppositions. 

4. Application 

In practice, we have used ρ ψ = 81, ρτ = 15 and ρζ = 15 allowing to synthesize 

all arguments ιφ + jr + k£ with \i\ < 40, \j\ < 7 and \k\ < 7. To save place, the 

results are given in Fig. 1 to 3 in form of spectra. The short-period terms have been 

stabilized at the level of five kilometers. At this level, terms up to the argument 

21<£ are present (but do not appear in Fig. 1) and each series contains more than 

150 terms. In comparison with the first order given in Vienne & Duriez (1991), we 

observe that in Δα, the term in 2φ is now the major one, like in the results of Taylor 

et β/.(1987). 

Concerning the long-period perturbations, Fig. 2 and 3 show that there are only 

few terms in each solution. All terms larger than 100 km are already present in the 
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Fig. 2. Long-period perturbations of Hyperion in the semi-major axis and the mean lon-
gitude. 

current theory of Taylor et α/.(1987), except the terms τ ± 2ζ in Δ λ and Δτσ, and 

τ — 4ζ in Δ λ . Thus, we see what new terms must be accounted to progress to the 

kilometer level in precision. We have also to emphasize that the stabilisation of 

the long-period terms has been reached only at the level of about 50 km and that 

requires to compute the semi-major axis with a precision better than 100 m. 

At last, we have found the largest perturbations of Titan by Hyperion, which 

could be detected during the future CASSINI mission if the Hyperion's mass is of 

the same order than that we have used : 

Δλ' = -0^00127 sin τ = » 27 km on position 

Ae' = -0%00 012 cos ζ = > 15 km 

e'Aw'= -0^000 70 sin ζ = > 15 km 
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Fig. 3. Long-period perturbations of Hyperion in the eccentricity and the longitude of 
pericentre 

5. Conclusion 

We have presented a new way to construct by iterations an high order representation 

for the mutual perturbations of Titan and Hyperion, giving both all short and long-

period terms up to a given precision. However some progress must still be done to 

reach the kilometer level which will be necessary for the CASSINI mission. We work 

now in this aim and also to account on the effects of the inclination of the orbits. 
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