Efficacy and safety of ginseng

DD Kitts* and C Hu
Food, Nutrition and Health, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver, B.C. V6T-1Z4, Canada

Abstract
Ginseng (Panax ginseng, C.A. Meyer) has been a popular herbal remedy used in eastern Asian cultures for thousands of years. In North America, the ginseng species indigenous to both Canada and the United States (Panax quinquefolium) represents an important industry for both domestic and export markets. There are numerous theories and claims describing the efficacy of ginseng, which can combat stress, enhance both the central and immune systems and contribute towards maintaining optimal oxidative status against certain chronic disease states and aging. Risk issues concerning the safety of ginseng at recommended dosages are less prominent and scientifically based. While some epidemiological or clinical studies have reported indications of efficacy for specific health benefits or potential toxicity, there are an equal number of studies that provide contradictory evidence. This situation has led to questionable conclusions concerning specific health benefits or risks associated with ginseng. Recent advances in the development of standardized extracts for both Panax ginseng (G-115) and Panax quinquefolium (CNT-2000) have and will continue to assist in the assessment of efficacy and safety standards for ginseng products. This paper reviews the scientific literature and evidence for ginseng efficacy and safety derived mostly from in vitro and animal studies and places emphasis on the need for more randomized, double-blinded, placebo clinical studies that can provide unequivocal conclusions. An example of the efficacy and safety of ginseng is provided with the description of biological activity of a North American ginseng extract (NAGE), which includes illustrating mechanisms for antioxidant activity without prooxidant properties.

Keywords
Ginseng
Safety
Efficacy
Antioxidant activity

Ginseng composition
The recognized primary active components of ginseng are a group of 30 different triterpene saponins, also referred to as ginsenosides, which vary in content and relative
proportions among different species of ginseng1-3. Noting the differences in ginsenoside composition between North American and \textit{Panax ginseng} C.A. Meyer ginsengs is important in assessing and interpreting efficacy and understanding safety. For example, traditionally recognized differences in pharmacological properties exist between different species of ginseng, as proposed by the ancient Asian concept of the complementary forces of \textit{yin} and \textit{yang}. In this example, it is the North American ginseng that provides the \textit{yin}, or the cooling effect to offset stress, while \textit{Panax ginseng} C.A. Meyer provides warmth, or the \textit{yang} conditions to counter-balance stress. These apparent differences in cause and effect properties of ginseng may be related to the different composition of ginsenosides present in these two sources of ginseng. However, in addition to the bioactive ginsenosides, recent studies have also identified an acidic polysaccharide, referred to as ‘Ginsan’, with noted immunostimulatory activity5,6. To alleviate the difficulty in assessing the bioactive properties of ginseng, relatively recent ginseng research has employed the use of standardized extracts of both \textit{Panax ginseng} C.A. Meyer (G115, marketed as Ginsana) and North American ginseng (\textit{Panax quinquefolium}, extract CNT-2000 from Chai-Na-Ta Corp., Langley, B.C.). These products hold the potential to enable improvements for assessing both quality control of ginseng products and efficacy of proposed activity from this herb. Of the numerous ginsenosides that have been identified from ginseng, six (namely Rb1, Re, Rc, Rd, Rb2 and Rg1) have been chosen for reference standards for ginseng products7.

It is noteworthy that although the \textit{Panax quinquefolium} species is grown in both North America and Asia, pharmacological activity with specific organ systems has been reported to be stronger for the North American variety than the Asian counterpart8. Although the mechanisms underlying these differences in biological activity are not fully understood, subtle compositional differences are a likely explanation. Similar differences in bioactive properties have also been observed between cultivated and wild \textit{Panax ginseng}9. Moreover, although the traditional source of ginsenoside from ginseng is the root, both the leaf and berry parts of this plant also contain significant quantities of ginsenoside10, thus adding to another potential variable in product source. In light of these facts, the employment of standardized extracts of ginseng with specified bioactive potential relative to known composition of active constituents will be the first step to assess efficacy and safety as well as ensuring optimal quality control of ginseng-based products. A good example of this is the proposal to include ginseng powder in multivitamin and mineral supplements for possible synergistic effect11,12.

\textbf{Ginseng metabolism}

Central to the difficulties in explaining, in scientific terms, the underlying biochemical mechanisms for various biological functions proposed for ginseng is the paucity of information concerning the absorption and metabolism of ginseng constituent(s) (e.g. primarily the ginsenosides, see Fig. 1). Pharmacokinetic studies conducted in rats have reported only 23\% absorption of ginsenoside (Rb1) after a period of 2.5 h13. Very small recoveries of this ginsenoside were made in the liver (e.g. 0.25\% dose) and heart (e.g. <0.1\% dose), while the majority of the material was recovered in the small intestine. The bioavailability of bioactive ginseng constituents appears very limited, as evidenced by the low absorption rates for orally administered Rg1 (e.g. 0.1\% dose) and Rg2 (e.g. 1.9\% dose)14. Considering the fact that very little of the original ginsenoside material was recovered in the faecal matter (e.g. <1\% dose), these results would appear to indicate that either metabolic or bacterial transformation of the parent ginsenoside constituents occurs in the small intestine. Support for this suggestion comes from studies conducted with bacteria collected from human intestines, which hydrolyse ginsenosides Rb1 and Rb2 to specific metabolites15, and which in turn are the likely forms absorbed from the intestine. Bacterial metabolites of ginseng have also been reported to have antigenotoxic properties16. The potential for the transformation of parent ginseng constituents to specific products of bacterial metabolism has made it difficult to directly associate various physiological effects noted for ginseng with standard pharmacokinetic parameters of specific ginsenoside absorption.

\textbf{Adaptogenic effects of ginseng}

Some adaptogenic effects of ginseng, initially reported by Brekhman and Dardymov17 are listed in Table 1, and probably involve changes in tissue oxygen uptake and transitory alterations in carbohydrate and lipid utilization. Piera\textit{lis et al.}18 demonstrated increased oxygen uptake and related work load in normal subjects consuming ginseng. Earlier studies also reported increased oxygen uptake and transport in elderly subjects as well as enhanced energy levels in athletes19. These results are in agreement with other studies that have reported a dose-dependent \textit{in vitro} increase in glucose uptake in brain tissue and associated decreases in lactate and pyruvate concentration ratios attributed to the presence of the standardized ginseng G115 extract20. Reduced lactic acid metabolism by ginseng has also been reported in athletes undergoing intense exercise after consumption of 4\% ginsenoside21. The enhancement of tissue glucose uptake and reduced production of anaerobic metabolic products have been explained by ginseng-related changes in tissue oxygen uptake.

The ergogenic effects of ginseng are less clearly observed in non-stressed experimental animal or human subjects, compared with counterparts which were challenged with an intense physical activity. For example, studies designed
to evaluate exercise performance due to ginseng supplementation have reported a marked stimulating effect of ginseng on carbohydrate and lipid mobilization and utilization22. Rats given a ginseng extract devoid of ginsenosides Rb1 and Rg1, prior to exercise, exhibited a preference for utilization of free fatty acids, thereby sparing glucose and glycogen levels. As a result of these animal studies, ginseng has recently been evaluated in human subjects for efficacy in numerous exercise performance studies22±28 and incorporated in sports drinks to enhance athletic performance23. Many of these studies, however, have questioned the proposed ergogenic effect of ginseng24±26. In a clinical study comprising two dosage treatment groups receiving 8 and 16 mg kg-1 body weight of both a placebo and ginseng before an intense cycling exercise, no effect of ginseng ingestion for a 1 week period was observed in enhanced physical endurance compared with placebo treatment25. A randomized, double-blinded, placebo controlled study of healthy men receiving 200 and 400 mg day-1 of a \textit{Panax ginseng} extract (G115) drew similar conclusions. The study showed no effect on oxygen consumption, respiratory exchange ratio, blood lactic acid and perceived exertion in men receiving ginseng26. Similar results have been reported in healthy adult females using a randomized, double-blind placebo-controlled experimental design25.

The fact that many of the metabolic effects attributed to ginseng relate to adaptation of homeostatic mechanisms resulting from exposure to stress, suggests some interaction between ginseng constituents and endocrine activity (Table 1). Ginseng has been reported to bring about changes in circulating levels of adrenocorticotrophin hormone27 and corticosterone concentrations28. Specifically, two ginsenosides, Rb1 and Rg1, have been reported to possess glucocorticosteroid activity due to a tendency to behave as functional ligands to the glucocorticoid receptor29. The tendency of ginseng to exhibit apparent ergogenic, or non-specific resistant effects, is possibly due to the increased adrenal responsiveness afforded by ginseng constituents which ultimately enhances the activity of the pituitary±adrenal axis.

Significant increases in plasma corticosterone attributed to both intraperitoneal and oral administration of ginseng have also been shown to parallel increases in plasma glucose and decrease plasma immunoreactive insulin30. Other studies have reported ginseng constituents to lower
blood glucose and stimulate insulin release in diabetic animals31. Similar findings have been reported in non-insulin-dependent subjects administered 100 mg and 200 mg ginseng in a random study that continued for 8 weeks32. Reduced fasting blood glucose corresponded to an increased physical activity and body weight reduction. Future clinical studies are needed with accompanying information on the specific ginsenoside content to confirm efficacy and safety of the proposed adaptogenic properties of ginseng.

Ginseng and oxidative status

The abundance of studies that have shown a strong association between ginseng intake and increased levels of activated oxygen species in various pathological states, or during natural processes such as exercise33, demonstrates the importance of antioxidant mechanisms which function to preserve oxidative status. The oxidative damage to carbohydrates, proteins, nucleic acids and lipids resulting from contact with free radicals is believed to be the source of early detrimental cellular changes that influence the aetiology of chronic disease (e.g. cancer, atherosclerosis) and aging. The oxidative status of the individual is balanced by the activity of both non-enzymatic antioxidant compounds (e.g. tocopherols, \(\beta\)-carotene, glutathione) and antioxidant tissue enzymes (e.g. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)), which together prevent reactive oxygen species formation, or work to mitigate the damage caused to cells by various sources of free radicals35.

The role of ginseng constituents in supporting antioxidant defence mechanisms has also been shown to involve direct stimulation of cell defence mechanisms (Table 2). Prolonged administration of standardized ginseng G115 extract to rats reduces oxidative stress in certain tissues by altering specific antioxidant enzyme activities that are required to eliminate free radicals, thus reducing specific end-products of tissue peroxidation reactions34–36. Common to these studies has been the demonstration of a dose-dependent, ginseng-induced increase in GSH-Px activity and an associated decrease in tissue malonaldehyde. This effect is particularly evident in stress-induced states, such as that reported with the intense exercising of rats that resulted in both an increase in cytosolic and mitochondrial GSH-Px and SOD activities36. Marked protective effects of ginseng against chemical induced hepatotoxicity has also been reported37, thus demonstrating a role for ginseng in protecting against xenobiotic toxin-induced peroxidation reactions. Specific ginsenosides have also been shown to protect against cellular toxicity induced from oxygen and lipid derived free radicals in dogs with haemorrhagic shock38, and characterized in a ferrous/cysteine peroxide induction model system using hepatic microsomes39. The

<table>
<thead>
<tr>
<th>Table 1 Reported metabolic and adaptogenic effects of ginseng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological system</td>
</tr>
<tr>
<td>Physiological system Metabolic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Endocrine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Immune</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Chronic disease condition</td>
</tr>
<tr>
<td>Cancer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Ref. 87 – no interference with therapeutic cancer agents.
affinity of Rb1 and Rg1, in particular, to scavenge reactive oxygen species in hepatic and brain microsome preparations exposed to Fenton type oxidation reagents, has been reported to occur at ginsenoside concentrations of 10^{-3} to 10^{-4} M. These same workers observed significant reductions (28%) in malonaldehyde and associated increases in GSH-Px (96.4%) and CAT (47%) after administering 50 mg kg$^{-1}$ day$^{-1}$ Rb1 to rats.

The protection against oxidative stress afforded by ginseng consumption has also been associated with the regulation of Cu/Zn SOD1 at the molecular level. Kim and coworkers demonstrated that both total saponins and panaxatriol were ineffective at inducing SOD levels, whereas Rb2 triggered a specific induction of SOD transcription. The interaction of Rb2 with an activator protein (AP2) in a promoter region of the SOD gene resulted in the induction mechanism for antioxidant enzyme activity. Using a heterotrophic heart transplantation model for myocardial ischaemia and re-perfusion, Liu and Xiao observed that ginsenosides both stimulated myocardial SOD activity and reduced malonaldehyde, a product of lipid peroxidation. Similar antioxidant properties have also been reported in studies using ischaemica re-perfusion injury in the rat brain. Additional evidence of an indirect in vitro antioxidant role for ginseng has come from studies that proposed the preservation of tissue SOD activity, resulting from the consequence of ginseng-induced stimulation of nitric oxide production. The tendency of ginseng to prevent the effects of oxygen free radical induced injury by promoting nitric oxide release has been confirmed in studies using pulmonary and endothelial organ systems. Collectively, the findings that nitric oxide protects against Chinese hamster fibroblast V79 cytotoxicity induced by generation of reactive oxygen species, and the fact that ginseng increases both nitrite and cGMP levels in rat serum and urine, as well as facilitating endogenous nitric oxide release, is strong evidence for an indirect role for ginseng antioxidant activity that involves enhanced nitric oxide synthesis. Further confirmation of this suggestion has recently been reported with the finding that Panax quinquefolium inhibited thrombin-induced endothelin release similar to the pharmacological action noted for nitric oxide. Ginseng extracts derived from Panax ginseng have also been shown to exhibit a dose-dependent protection against free radical induced injury in pulmonary and myocardial tissue. The fact that crude extracts of ginseng were found to be more effective at inducing this effect, compared with purified ginsenosides (e.g. Rb1 and Rg1), demonstrates a possible synergistic action among different ginseng constituents which occurs only when an extract of ginseng is employed.

In recent years, numerous components derived from fruit, vegetable, oilseed and herb plant sources have demonstrated in vitro antioxidant activity. In vitro studies conducted with Panax ginseng have shown a strong tendency to prevent peroxidation of polyunsaturated fatty acids using a transition metal induced lipid oxidation model. Recent in vitro studies using a standardized North American ginseng extract (CNT-2000 from Panax quinquefolium) reported direct free radical scavenging of stable radicals as well as the prevention of both site specific and non site specific hydroxyl radical mediated deoxyribose and DNA degradation. This study demonstrated the free radical scavenging activity of North American ginseng using a number of model systems. The question concerning which one, or more, of the specific ginsenoside(s) present in ginseng contributes directly to antioxidant activity, or in concert with other bioactive components, has not been clearly established. Studies conducted with Panax vietnamensis root extract showed inhibition of TBARS formation in mouse tissue homogenate, further supporting antioxidant activity reported by other workers. These workers also showed that ginsenosides Rg1 and Rb1 failed to inhibit hydroxyl radical formation. However, recent studies conducted in our laboratory with Rb1 have led to the

<table>
<thead>
<tr>
<th>Table 2 Standards of evidence for ginseng antioxidant activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>In vitro model mechanisms</td>
</tr>
<tr>
<td>Inhibition of Fenton reaction induced radicals</td>
</tr>
<tr>
<td>(a) Fe$^{2+}$-cysteine induced peroxidation of cultured liver, brain microsomal assay</td>
</tr>
<tr>
<td>(b) Membrane fatty acid peroxidation assay</td>
</tr>
<tr>
<td>(c) Site-specific deoxyribose degradation assay</td>
</tr>
<tr>
<td>(d) DNA scission assay</td>
</tr>
<tr>
<td>(e) Electron spin resonance analysis</td>
</tr>
<tr>
<td>In vivo mechanisms</td>
</tr>
<tr>
<td>Tissue antioxidant enzyme activity</td>
</tr>
<tr>
<td>(a) Reduced hepatic GSH-Px activity and MDA levels</td>
</tr>
<tr>
<td>(b) Reduced hepatic GSH-Px and SOD activities (exercised)</td>
</tr>
<tr>
<td>(c) Rb1 & Rb2-induced increased hepatic GSH-Px activity</td>
</tr>
<tr>
<td>(d) Rc-induced decrease in Cu/Zn SOD activity</td>
</tr>
<tr>
<td>(e) Rh2-induced increase in catalase activity</td>
</tr>
<tr>
<td>(f) Nitric oxide-like activity in pre-contracted aortic rings</td>
</tr>
<tr>
<td>(g) Rb2 induced expression of Cu/Zn SOD1 gene</td>
</tr>
</tbody>
</table>
conclusion that this ginsenoside inhibits peroxyl radical induced DNA breakage (Hu and Kitts, unpublished data). Ginsenosides Rb1, Rb2, Rb3 and Rc, but not Rd, have also been shown to protect against superoxide radical induced damage of cultured cardiac myocytes56. Similar in vitro studies conducted with individual ginsenosides have indicated some degree of protection against free radical induced endothelial cell damage57. Maltol, a principal plant phenolic present in ginseng (e.g. Korean red ginseng) has also been shown to contribute to antioxidant, and little prooxidant activity, as assessed using an iron-catalysed free radical DNA damage model58. More research is required to define the source of antioxidant activity characteristic of specific ginseng constituents.

To demonstrate the mechanisms of antioxidant activity of a North American ginseng extract (CNT-2000), a number of in vitro model systems were used to characterize ginseng antioxidant activity, thereby suggesting efficacy towards enhancing the stability of different biological macromolecules. Statistical analysis of the experimental data was performed using Student’s t-test with significant difference set at P < 0.05.

Assessing ginseng antioxidant activity in vitro

The absorption spectra of 1 mg ml⁻¹ NAGE ginseng (line I) and 100 μM CuCl₂ (line II) in phosphate buffer (pH 7.4) are shown in Fig. 2. Maximum absorbance of 217 nm was common for both the NAGE and CuCl₂ solutions. A shift in absorption maxima from 217 nm to 245 nm occurred in the differential spectrum when CuCl₂ was incubated with NAGE (line III), thus denoting chelation of Cu²⁺.

The reducing activity of the NAGE, relative to L-ascorbic acid (Fig. 3 insert), over a wide range of concentrations is shown in Fig. 3. Linear relationships denoting reducing power were obtained for both NAGE (y = 0.528x + 0.002, r² = 0.998) and ascorbic acid (y = 0.0027x + 0.0014, r² = 0.999). Compared with ascorbic acid, NAGE exhibited a limited reducing power. From both standard curves, it was calculated that 1 mg of the NAGE was equivalent to 20.3 ± 0.3 μg ascorbic acid.

The reaction of hydroxyl radical generated from Fenton reactants with DNA is shown in Fig. 4. A concentration-dependent DNA scission reaction was observed with Fe²⁺ (lanes 2–5), indicating a relationship between hydroxyl radical generation and concentration of Fe²⁺ according to the following scheme: Fe²⁺ + H₂O → OH⁻ + OH⁻ + Fe³⁺. The site-specific genotoxic activity of Fenton-induced hydroxyl radicals was characterized by a loss of supercoiled DNA and generation of damaged or nicked circular DNA. The addition of NAGE to the Fenton reactant conditions, with increasing concentrations of Fe²⁺, resulted in complete protection against DNA damage (Fig. 4, lanes 6–10), as reflected by the preservation of the supercoiled DNA and markedly reduced nicked circular DNA.

The ability of NAGE to suppress Cu²⁺-induced human LDL oxidation was assessed by the reduction in the human LDL TBARS, conjugated diene and fluorescence products (Figs 5a and 5b, respectively). The presence of NAGE in this reaction mixture produced a significant (P < 0.05) concentration-dependent reduction in Cu²⁺-induced LDL oxidation, as also evaluated by the decrease in electrophoretic mobility on agarose gel (Figs 5c and 5d). The noted inhibition of oxidized LDL on agarose gel corresponded to significant reductions in both TBARS and fluorescence products and, to a lesser extent, changes in conjugated dienes (Fig. 5a). The lower fluorescence readings signified protection of LDL apolipoprotein oxidation from NAGE and were significantly (P < 0.05) lower in oxidized LDL but higher (P < 0.05) than native LDL, indicating only partial protection against Cu²⁺-induced oxidation. Use of the fluorescence LDL endpoint indicators of peroxidation produced a sensitive assessment of antioxidant activity attributed to NAGE, and corresponded directly with LDL mobility changes that reflected the extent of inhibition of LDL oxidation on the basis of migration on agarose gel (Fig. 5d).

Suppression of DPPH stable radicals by GSH alone and in combination with 0.5 mg ml⁻¹ NAGE is shown in Fig. 6. A NAGE concentration of 0.5 mg ml⁻¹ produced a significant reduction (15%) in DPHH radical activity. GSH alone produced a minimal (8%) reduction in DPPH over a concentration range of 5–100 μM. The combination of NAGE extract with GSH over a wide range of GSH concentrations produced a synergistic scavenging effect on quenching DPHH radicals. Maximal ability to quench DPHH radicals was obtained with 0.5 mg ml⁻¹ NAGE and 25–100 μM GSH.

The observation that GSH was effective at scavenging DPPH radicals at a critical concentration confirms an antioxidant activity role to deactivate electrophilic free radicals. GSH is also an important component of the antioxidant enzymes, GSH-Px and glutathione reductase22, as well as being a critical component in redox cycling for
regenerating oxidized ascorbic acid that occurs as a consequence of the regeneration of oxidized α-tocopherol. In the present study, NAGE also effectively scavenged DPHH; however, when in the presence of GSH additional scavenging of DPPH radical was noted. This result denotes a potential degree of synergy between GSH and NAGE. It is noteworthy that GSH has previously been shown to reduce oxidized flavones, which supports our observation that potential important interactions could occur in vivo between these non-enzymatic antioxidant constituents in managing whole body oxidative stress. Similar results of potential synergy with GSH and cycrohepterophyllin, a prenylflavonoid isolated from leaves of Formosan Artocarpus heterophyllus, have also been reported.

Safety of ginseng

There are few reported cases of ginseng toxicity or descriptions of side effects attributed to either the quantity or quality of ginseng when taken at the recommended dosages. A careful evaluation of many of these reports has been published by Vogler et al. Early animal studies, conducted in dogs, reported no adverse effect of ginseng on body weight or blood chemistry. In mice, the LD₅₀ for ginseng ranges from 10 to 30 g kg⁻¹ (Ref. 17), with a lethal oral dose of purified ginseng as high as 5 g kg⁻¹ body weight. In a 2 year human study, 14 out of a total of 133 subjects were reported to experience side effects attributed to ginseng.
to long-term exposure of ginseng when consumed at levels up to 15 g day\(^{-1}\) (Ref. 63). Average intakes of ginseng were equivalent to consuming 650 mg ginseng capsules daily and produced side effects that included hypertension, gastrointestinal disturbances, insomnia and nervousness. The validity of these observations is difficult to evaluate because of the absence of a placebo treatment in the study and the fact that subjects were not controlled for other bioactive substance intake (e.g. caffeine). Moreover, as is the case with many studies with ginseng, the ginsenoside content of the ginseng consumed was not determined. Notwithstanding this, however, other subjects from this study who had consumed extremely high intakes of ginseng (e.g. greater than 15 g day\(^{-1}\)), showed symptoms of confusion and depression. This level of ginseng consumption far exceeds the German Commission E’s recommended daily intake of 1–2 g day\(^{-1}\) of Asian ginseng, containing 4–5% ginsenoside\(^{65}\).

Ginseng may contain an endocrine-like active substance which can affect neonate development\(^{66}\). In one study, oestrogen-like activity attributed to chronic ginseng use was reported to cause swollen and painful breasts\(^{67}\).

Ginseng–drug interactions have been observed in a few isolated situations, which include phenelzine, a monoamine oxidase inhibitor\(^{68}\), and warfarin\(^{69}\), an agent used to modulate blood viscosity factors. In both reports, there was little information that adequately characterized the prevalence and extent of risk attributed to this interaction. It is
noteworthy, however, that caution has been expressed concerning the use of Asian ginseng to combat acute stress, due to the fact that the hypertensive effect associated with these individuals is contra-indicated.70

Finally, with the antioxidant characterization of ginseng reported herein, no prooxidant activity of the NAGE was observed. The copper chelating activity and low reducing potential of the NAGE represented an interesting property not present for all bioactive plant compounds possessing antioxidant activity. Compounds such as ascorbic acid71–73 as well as polyphenolics, including myricetin74,75 and the catechins in green tea75, are effective metal chelators and thus possess antioxidant activity. Owing to their substantial reducing power, these compounds can also behave as prooxidant agents to carbohydrates, protein and DNA by reducing metal ions in redox reactions that are intrinsically involved in enhancing the rate of hydroxyl radical generation by the Haber–Weiss reaction76, resulting in eventual breakdown of these macromolecules. The high redox potential of ascorbic acid has been shown to accelerate reduction of Cu^{2+} to its lower valency Cu^{+} in aqueous medium and to promote accelerated DNA strand scission77. Our characterization of the NAGE in this study suggests that the formation of a Cu^{2+}–ginseng complex was sufficient to inhibit a further reaction with H_{2}O_{2} and subsequent generation of a hydroxyl radical induced prooxidant activity. Further confirmation of this suggestion was obtained with the site-specific 2-deoxyribose assay results shown in Fig. 7. Owing to the limited reducing power of NAGE, very little prooxidant activity was observed over the concentration range 0.25–2 mg ml\(^{-1}\) NAGE in the presence of a Cu^{2+}-mediated Fenton reaction. The formation of TBARS, derived from 2-deoxyribose fragment production and resulting in hydroxyl radical generated from the Fenton reaction was greatest with L-ascorbic acid and only minimally increased with higher North American ginseng concentrations.

Conclusions

Ginseng has been shown in many studies to possess biological activity, but only recently have the specific mechanisms underlying these biological activities been shown at both the molecular and cellular levels. An inherent difficulty in many studies was the use of undefined ginseng extracts, which precluded confirmation of findings and absolute assessment of efficacy and safety by subsequent studies whereby different sources of ginseng.
were employed. This limitation is particularly true for ginseng, as evidenced by the apparent differences in pharmacological effects noted between Panax ginseng and Panax quinquefolium, and the fact that these prominent species of ginseng vary characteristically from the standpoint of the complex mixture of numerous potentially bioactive constituents (e.g. ginsenosides). The implications that this has for commercial products were pointed out in a survey of 50 commercial ginseng preparations, from 11 different countries, in which greater than 90% of the preparations varied between 2 and 9% in total ginsenoside content and some preparations contained no ginsenosides. The availability of standardized extracts for both Asian and North American ginseng will assist greatly in advancing our knowledge on the role of this traditionally used herb as a dietary modulator of various physiological processes. The availability of standardized extracts of both Asian and North American ginseng will also complement the additional need for comparative, controlled double-blind human clinical studies that will assess the relative efficacy and safety of ginseng.

Acknowledgements

We wish to thank Dr. Micheal Li, Chai-Na-Ta Corp., Langley, British Columbia, for donation of the CNT-2000 North American ginseng extract. This work was supported by a NSERC strategic grant.

References

11 Marasco C, Vargas Ruiz R, Salas Villagomez A, Begona Infante C. Double blind study of a multivitamin complex

Fig. 7 Prooxidant assay. A modification of the method reported by Kitts et al. was used. Briefly, the reaction system contained 3.6 mM 2-deoxyribose, 0.1 mM CuCl₂, 1 mM H₂O₂, 0.1 mM EDTA as well as the sample. The reaction mixture was incubated at 37°C for 1 h, followed by mixing with an equal volume of 10% (w/v) TCA and 0.5% TBA. OD₅₃₂nm measurements were taken after samples were incubated at 100°C for 15 min. If absorbance readings taken at 532 nm were higher than that of treatment without ascorbic acid, prooxidation was confirmed. Values represent mean ± SEM (n = 8).

51 Kitts DD, Yuan YY, Wijewickreme AN, Thompson LU. Antioxidant activity of the flaxseed lignan secoisolaiciresinol.

58 Kobayashi M, Yoo YC, Maatsszawa K, et al. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2,