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ABSTRACT. Accurate knowledge of the spatial distribution of the mass balance of temperate glaciers
is essential for a better understanding of the physical processes controlling the mass balance and for
the monitoring of water resources. In relation to albedo variations, the shortwave radiation budget is a
controlling variable of the surface energy balance of glaciers. Remotely sensed albedo observations are
here assimilated in a snowpack model to improve the modeling of the spatial distribution of the glacier
mass balance. The albedo observations are integrated in the snowpack simulation using a variational
data assimilation scheme that modifies the surface grain conditions. The study shows that mesoscale
meteorological variables and MODIS-derived albedo maps can be used to obtain a good reconstruction
of the annual mass balance on Glacier de Saint-Sorlin, French Alps, on a 100m××100m grid. Five
hydrological years within the 2000–10 decade are tested. The accuracy of the method is estimated from
comparison with field measurements. Sensitivity to roughness lengths and winter precipitation fields is
investigated. Results demonstrate the potential contribution of remote-sensing data and variational data
assimilation to further improve the understanding and monitoring of the mass balance of snowpacks
and temperate glaciers.

1. INTRODUCTION
Data assimilation has been widely used in meteorology and
oceanography. It has proven to be an effective method for
improving knowledge of the past, present and future state of
the atmosphere and ocean. Assimilation of observations from
very different sources improves operational weather forecasts
and allows reanalysis of the state of the atmosphere and
oceans over the past century (e.g. Courtier and others, 1998;
Uppala and others, 2005).
Recently, data assimilation has begun to be used in

glaciology. For instance, Arthern and Gudmundsson (2010)
show that the basal friction parameter of ice sheets can be
inferred using an inverse method, based on measurements
of surface velocity. Several authors have also studied the
assimilation of remotely sensed data in the scope of
hydrological modeling (e.g. Andreadis and Lettenmaier,
2006; Slater and Clark, 2006; Durand and others, 2008;
De Lannoy and others, 2010; Toure and others, 2011).
These studies have demonstrated the positive impact of
assimilating remotely sensed data on snowpack modeling
and hydrological forecasting.
Data assimilation is a technique that allows a priori

information on the state of a system to be combined with
newer information, observations in our case (Fig. 1). The a
priori information is often, and is usually referred to as, a
guessed field. An a posteriori state is then developed from
mixing the guess and the observed fields, i.e. the analysis. In
this study, the guess field is known from model simulations.
The mixing of the two sources of information is done
according to the error statistics (model and observations) and
to a direct relationship, which can be nonlinear, between
the observed variables and the vector that describes the
model state.

Accurate knowledge of the spatially distributed mass
balance of temperate glaciers is crucial for a better
understanding of the physical processes controlling the mass
balance, water-resource monitoring and reanalysis of past
surface energy balances (SEBs). This knowledge is presently
limited by a lack of observations. The temperate glacier SEB
is mainly explained by the solar radiation budget during
the ablation season (Sicart and others, 2008). In addition,
variations of the solar radiation budget (shortwave radiation
balance) are governed by variations of surface albedo (Sicart
and others, 2008). Note that glacier surface albedo has a
high spatial and temporal variability, with values extending
from 0.15 for dirty ice to 0.9 for new snow (Oerlemans
and Knap, 1998). Albedo can be observed using satellite
sensors (Dozier and others, 2009). Consequently, albedo is a
good candidate for assimilation in a snow model to improve
simulation of glacier mass balances.
Over recent years, several studies have focused on the

simulation of spatially distributed glacier mass balances
(e.g. Hock, 2005; Andersen and others, 2010; Giesen
and Oerlemans, 2010). Mass-balance models vary from
simple temperature-index models to so-called energy-
balance models (Hock, 2005), that evaluate the surface
energy fluxes in detail. The latter approach is used in
this study, since it allows detailed evaluation of each flux
involved in the SEB and direct estimation of mass balance.
Modeling snowpack variations with time is generally a

difficult step. Existing snow models have been reviewed and
their performance compared by Essery and others (1999),
Essery and Etchevers (2004) and Etchevers and others (2004).
All these authors have pointed out the major influence of the
albedo parameterization on the final mass-balance estimates.
Klok and Oerlemans (2002) and Hock and Holmgren (2005)
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Fig. 1. Simplified schematic view of the methodology used to reconstruct the spatial distribution of the glacier mass balance.

used models to simulate spatially distributed mass balances
with two different albedo parameterizations and, once again,
emphasized the crucial role of this variable.
Gerbaux and others (2005), Lejeune and others (2007)

and Lejeune (2009) developed a spatially distributed version
of the CROCUS snow model (Brun and others, 1989,
1992). Gerbaux and others (2005) tested the model on
Glacier de Saint-Sorlin, French Alps, the test site in this
study. As input, they used meteorological variables from the
SAFRANmeteorological analysis system (Durand and others,
1993). SAFRAN disaggregates large-scale meteorological
analysis and observations in the French Alps. Lejeune and
others (2007) and Lejeune (2009) tested the model on the
Glaciar Zongo (Bolivia) basin, carefully parameterizing the
albedo in the case of shallow snow cover and using input
meteorological data from automatic weather stations (AWSs).
All these studies point out the importance of the albedo

scheme, the difficulties encountered in its parameterization
and the complexity of comprehensive albedo field measure-
ments, due to high spatio-temporal variability (Pedersen and
Winther, 2005; Gardner and Sharp, 2010). Some processes,
such as those determining the snowline position, the albedo
reduction at the end of the ablation season due to dust and
algae accumulation, and the elevation of the rain/snow limit,
are especially difficult to model but have a strong impact on
the final mass-balance estimates. For this reason, we attempt
to assimilate, in the SEB model, observed glacier albedo from
remote-sensing data to better account for all these processes
and thereby improve the mass-balance estimates.

1.1. Intent of the study
In this study, the spatially distributed version of CROCUS
adapted to glaciers by Gerbaux and others (2005) is
tested for assimilation of the albedo observations from
spatial (Moderate Resolution Imaging Spectroradiometer,
MODIS) and terrestrial (digital photographs) remote-sensing
measurements using a variational data assimilation scheme
(Bouttier and Courtier, 2002).
The following section describes the study site, the albedo

maps and the meteorological data. The methodology is then
explained in detail. Section 4 introduces the results and
provides details about the variational method at one point of
the Col de Porte study site. The impact of the assimilation on
the simulation of Glacier de Saint-Sorlin spatially distributed
mass balance over five hydrological years selected within the
2000–10 decade is then presented and the results discussed.

2. STUDY SITE AND DATA
2.1. Col de Porte
Col de Porte is a test site of Météo-France located at
1326ma.s.l. in the Chartreuse area, near Grenoble, France
(Brun and others, 1989, 1992). This site was chosen for
its comprehensive set of meteorological and snow-profile
(weekly) observations, which are used for preliminary tests
and validation of the method developed in this study.

2.2. Glacier de Saint-Sorlin
Glacier de Saint-Sorlin (Fig. 2) is located in the French Alps
(Grandes Rousses area) at 45.10◦N, 6.10◦ E. It is a small
temperate glacier covering an area of ∼3 km2. The tongue
is at 2700ma.s.l. and the top reaches the Pic de l’Etendard
(3463ma.s.l.). The glacier mass balance has been measured
since 1956 (Vincent and others, 2000; Vincent, 2002).
Numerous dynamic modeling and climate studies have been
conducted on this glacier (e.g. Le Meur and Vincent, 2003;
Le Meur and others, 2007). Detailed information on this site
can be found at http://www-lgge.ujf-grenoble.fr/ServiceObs.
Two types of measurements available on this glacier are

used in this study:

Automatic weather stations
A permanent AWS (AWSmoraine) has operated since
2005 on the moraine near the hut (Fig. 2). It pro-
vides half-hourly measurements of air temperature,
relative humidity, wind speed and direction, along
with downward and upward, longwave and shortwave
radiations. Additionally, a complete SEB measurement
station (SEB2006) was set up on the glacier during summer
2006 (Sicart and others, 2008; Six and others, 2009). The
SEB2006 station measured the turbulent fluxes of sensible
and latent heat using an eddy covariance method. A
Campbell CSAT-3 sonic anemometer and a LI-COR LI-
7500 infrared gas analyzer were installed 2m above
the glacier surface. A Campbell CR1000 data logger
recorded the wind, temperature and water-vapor data
at 20Hz frequency. The eddy covariance data were
processed with the EdiRe software. During summer 2008
and 2009, temporary radiation measurement stations
(AWSabla,2008 and AWSaccu,2008 during summer 2008 and
AWSabla,2009 during summer 2009) measured surface
albedo using Kipp & Zonen CNR1 and CMP3 devices
in the accumulation and ablation zones of the glacier.
The locations of these AWSs are shown in Figure 2.

Mass-balance measurements
Stakes are used to measure the mass balance at different
points of the glacier using the direct glaciological method
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Fig. 2. Digital elevation model of Glacier de Saint-Sorlin. The outline of the glacier in 2003 is indicated by black stars. The locations of
temporary and permanent AWSs are indicated by white crosses. Black dots, crosses, circles and diamonds represent stakes for mass-balance
measurements for the four sections mentioned at the top. The SEB measurement station during summer 2006, SEB2006, was located near
AWSabla,2008

(Cogley and Adams, 1998). Locations of the 33 stakes for
summer 2008 are indicated as an example in Figure 2.
The global estimated accuracy of the annual mass-
balance measurement with stakes is±20 cmw.e. (Cogley
and Adams, 1998). For discussion purposes, the stakes
are divided into four networks: the ablation area (dia-
monds), the intermediate zone (dots), the dense network
(circles) characterized by rugged topography, and the
accumulation zone (crosses) (Fig. 2). During the ablation
season, intermediate mass-balance measurements are
made approximately every 15 days.

2.3. Albedo maps derived from remote-sensing data
The albedo maps used in this study are derived from two data
sources: terrestrial photographs (Dumont and others, 2011)
and MODIS data, based on the work of Sirguey and others
(2009). Two terrestrial digital cameras have automatically
taken photographs of the glacier from the hut (Fig. 2) since
summer 2008, allowing estimation of surface albedo at a
spatial resolution of 10m. The root-mean-square error (rmse)
from comparison with field measurements made during
two summers is <0.07 on the broadband albedo value
(Dumont and others, 2011). The method developed for the
photographs is also applied to MODIS data at a spatial
resolution of 250m and the estimated broadband albedo
rmse is 0.06 compared with the field measurements for the
same period.
Table 1 provides an overview of the albedo maps used

in the assimilation scheme for the five hydrological years
selected in this study from the 2000–10 decade. The studied
hydrological years were selected for the following reasons.
The years 2000/01 and 2002/03 were selected because

they represent extreme events for the glacier during the
decade (positive annual mass balance and strongly negative
mass balance, respectively). The year 2005/06 was chosen
because the complete SEB measurement station was set up
on the glacier during summer 2006 and the two last years
were selected because terrestrial photographs of the glacier
were available for this period.

2.4. Meteorological data (SAFRAN)
The objective of this study is to develop a method that can
be used on a large set of glaciers. The selected input data are
therefore taken from disaggregation of a large-scale analysis
and observations, as explained below.
SAFRAN is an original meteorological analysis system,

designed to provide input meteorological data to snow
models used in mountainous areas. It estimates the hourly
values of temperature, wind speed, relative humidity, precipi-
tation amount and phase, direct and diffuse solar radiation,

Table 1. Overview of the albedo maps available for assimilation
for each hydrological year. Data are chosen during the ablation
period (May to October). The albedo maps are derived from MODIS
data (250m spatial resolution) or from terrestrial photographs (10m
spatial resolution) (Dumont and others, 2011)

Hydrological year MODIS albedo maps Photograph albedo maps

2000/01 20
2002/03 17
2005/06 15
2007/08 16 11
2008/09 20 19
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nebulosity (global cloudiness) and longwave downward flux
(Durand and others, 1993). The meteorological variables are
given at 300m elevation steps and for the seven possible
orientations north, east, southeast, northeast, southwest, west
and flat (i.e. no orientation). They are representative of
different mountainous regions in France, with areas varying
from 400 to 1000 km2. For this study, data for the Massif
des Grandes Rousses were selected and linearly interpolated
on a 100m resolution grid of the digital elevation map of
Glacier de Saint-Sorlin, according to the method described
by Gerbaux and others (2005). Multiple reflections from
adjacent mountains were not taken into account for either
shortwave or longwave radiation. Shading was taken into
account, but only for shortwave radiation.
SAFRAN estimates have been previously compared with

measurements at AWSmoraine for three hydrological years
(2005/06, 2007/08 and 2008/09). This comparison shows
that temperature, relative humidity and shortwave incident
radiation estimates are in good agreement with AWS meas-
urements. The determination coefficients are, respectively,
0.98, 0.77 and 0.79 for hourly values. The comparison is
less convincing for wind speed and longwave downward
radiation. The AWS is located on the top of a hill, which
implies a difference between the measured and estimated
wind speed. This difference is due to local orographic
features which are not taken into account in SAFRAN
estimates. The longwave downward radiation is strongly
influenced by local nebulosity. We found that SAFRAN
overestimates the longwave radiation in cases of low
nebulosity (positive bias of 17Wm−2 for the three years) and
we therefore implemented a simple correction of SAFRAN
longwave downward radiation as a function of nebulosity.
The use of SAFRAN precipitation fields leads to under-

estimation of the winter snow accumulation (difference of
scale and topography effects). Precipitation amounts are
consequently adjusted. This adjustment is based on the work
of Gerbaux and others (2005), i.e. using measurements of
winter accumulation from stake readings. Fourteen years of
winter mass-balance measurements (1995–2009) were used
to compute the multiplication factors that allow reconstruc-
tion of the spatial distribution of winter accumulation over
all these years. The multiplication factors are interpolated
linearly with respect to latitude and longitude over the
whole glacier. The impact of the interpolation method was
tested and the mean difference between linear and cubic
interpolation was found to be <1mmw.e. for 1 year over
the whole glacier (maximum value 8 cmw.e.). We therefore
used the linear interpolation method.
For the five hydrological years, the corrected precipitation

field provides an unbiased estimation of winter accumu-
lation. The rmse is 0.20mw.e. with respect to 132 stake
measurements. The mean multiplication factor is found to be
1.64 over the whole glacier. For comparison, Gerbaux and
others (2005) found a factor of 1.5 for the whole glacier and
Gottardi (2009) found a value of 1.6 for solid precipitation
in this massif. The precipitation correction factor takes into
account the difference of scale (glacier vs massif) and the
high-altitude effects on the precipitation field estimates.

3. METHODOLOGY
This section describes the methodology used to assimilate
albedo data in the simulated snowpack. The method
developed is based on the spatially distributed version of

CROCUS adapted to Glacier de Saint-Sorlin (Gerbaux and
others, 2005). Figure 1 gives a schematic overview of the
method.

3.1. CROCUS, a brief overview
The CROCUS snow model was developed by Brun and
others (1989, 1992) for operational avalanche forecasting.
CROCUS is a one-dimensional snowpack model driven by
meteorological variables alone and models each layer of the
snowpack. Each layer is characterized by its temperature,
density, liquid water content, depth, a historical variable
for grain metamorphism and grain variables including size,
sphericity and dendricity (Brun and others, 1992). Dendricity
varies from 1 to 0 and describes the fraction of original
precipitated crystal forms still present in the snowpack.
Sphericity varies from 0 for completely faceted grains to 1
for rounded particles. Given the objective of the present
study, we detail only the representation of turbulent fluxes
and albedo in the model.

3.1.1. Turbulent flux representation
CROCUS uses a bulk formulation for turbulent fluxes (Martin
and Lejeune, 1998). All roughness lengths, i.e. moisture and
temperature in the CROCUSmodel, are assumed to be equal
to an effective roughness length, z0 (Martin and Lejeune,
1998). This assumption is not invalidated by Andreas (1987),
who shows that the moisture and temperature roughness
lengths are only slightly different over all Reynolds numbers.
In this study, z0 is 3mm for snow and 6mm for ice, which
is consistent with measurements over glaciers given by
Martin (1975), Greuell and Smeets (2001) and Brock and
others (2006). These roughness lengths are not considered as
accurate physical values, but as effective ones, i.e. they are
used to slightly tune the mass-balance model while keeping
a realistic value.

3.1.2. Albedo scheme
The snow albedo is parameterized as a function of the surface
layer age, which is an implicit way to take into account the
effect of impurities and of the optical grain size (Brun and
others, 1992). The optical grain size is computed from grain
variables (Willemet, 2008). The albedo is split into three
spectral bands, αi : [0.3–0.8], [0.8–1.5] and [1.5–2.8]μm,
for energy-balance purposes. In the operational version, the
visible albedo, α1, over the first spectral band stands between
0.7 and 1. The visible albedo decreases as a function of the
optical diameter and the age of the layer up to a limit of
90 days, and is bounded to a minimum value of 0.7 for snow
(Brun and others, 1992). In this study, the minimum albedo
value in the first spectral band is set to 0.6, to be able to
represent firn and very old snow with a high light-absorbing
impurity content, in the late summer in the upper zone of
the glacier. Paterson (1994) cited a similar mean broadband
firn albedo of 0.53.
The albedo of ice is simulated as a constant. In the

operational version of CROCUS, α1,ice = 0.45, α2,ice = 0.30
and α3,ice = 0.1 (Brun and others, 1992). On Glacier de
Saint-Sorlin, Gerbaux and others (2005) used [0.23, 0.16,
0.05], based on measurements performed on the glacier.
The latter values were used in this study because they give,
without albedo assimilation, the best agreement between the
simulated and measured mass balance.
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In addition, the parameterization to take into account ice
albedo for shallow snowpacks is adapted from the work of
Wagnon and others (2009).

3.2. Variational assimilation of snow albedo data
The observed albedo is assimilated in CROCUS using a
variational data assimilation scheme (Bouttier and Courtier,
2002). This scheme modifies the simulated surface layer
according to both the albedo observations and the first
simulated (‘guess’) surface layer grains that are not linearly
linked. It takes into account modeling and observation errors.
This means that the significance given in the analysis to
the observations and to the guess state is a function of the
observation errror statistics and of the model error statistics,
respectively. In other words, the smaller the observation error
variances, the closer the analysis to the observations. The
governing equations of the data assimilation scheme are
given in the Appendix.

3.2.1. Observation operator, H
The data assimilation scheme relies on the capacity to
simulate observations from the current state variables of the
model. In our case, H is the observation operator, which
estimates the albedo from simulated snow/ice surface layer
characteristics (snow grain size, dendricity and sphericity,
age, etc.). The albedo value is deduced from the optical
grain radius, which is itself computed from the grain shape
variables. Our observation operator is therefore composed
of two successive elementary operators. They are built from
the CROCUS routines.
Because CROCUS is a thermodynamic model, many

thresholds are used in its implementation. Consequently we
first need to implement a C∞-observation operator, i.e. an
observation operator that has a derivative at all orders. This
is done by replacing the thresholds by a hyperbolic tangent
function. The differences between the original version of
H and the class C∞-version are smaller than 10−6 albedo
units, regardless of whether the dendritic or non-dendritic
case is chosen. Then a derivation of the code provides
the linearized observation operator. From this linearized
observation operator, the adjoint operator is implemented.
This linear adjoint operator converts a small variation of
the albedo values in terms of surface grain characteristics.
A gradient test (Eqn (A2)) and verification of scalar product
equality (Eqn (A3)) were performed.

3.2.2. Error covariance matrix estimation
A delicate problem in the implementation of a data
assimilation scheme is the estimation of error covariance
matrices (Desroziers and others, 2005). The values of these
matrices are of crucial importance, since they determine
the respective weights of the observations and the guess
in the analysis. The guess error variances, i.e. the diagonal
of the error covariance matrix, were computed using the
difference between observed snow surface characteristics
and CROCUSno assim results during one winter season at
Col de Porte (2007/08). CROCUSno assim was then run using
disturbed SAFRAN variables as input. The disturbed SAFRAN
variables are SAFRAN estimates without assimilation of the
observations from AWSs in the mountainous areas. The
comparison between the CROCUS output in the case of
disturbed meteorological variables and reference SAFRAN
variables gives an estimate of the guess error covariances.
The guess error covariance matrix is then well defined.

There is more uncertainty in the computation of the
observation error covariance matrix, R. This matrix is
estimated using the evaluation of accuracy of the albedo
retrieval methods presented by Dumont and others (2011).
This matrix also needs to take into account the modeling
errors of H, especially for the impurity effect. Since only
broadband field measurements were available to estimate
the error of the remotely sensed albedo, we were only able
to determine accurately the broadband observation error
variance. The effect of changing the magnitude of R has been
investigated. When multiplying R by 10−2, i.e. decreasing
the observation error variance to an unrealistically low value,
no significant changes were seen in the analysis. By contrast,
when Rwas multiplied by 104, i.e. increasing the observation
error variances to an unrealistically high value, the analysis
was closer to the guess than in the reference case.

3.2.3. Optimization
The surface layer grains are characterized by a state vector
x = (x1, x2, x3), where x1 is the dendricity, x2 the sphericity
and x3 the grain size. This state vector is bounded (Brun and
others, 1992, fig. 1). In order to find the optimal surface grain
state vector, xa, i.e. the vector that minimizes the distance
both to the observed albedo and to the guess surface grain
variables (CROCUS output), the cost function, J(x), defined in
Eqn (A4) is minimized. To the classical formulation of the cost
function we add a smooth constraint term Jc(x) (Eqn (A4)),

Jc(x) = η1J1(x1) + η2J2(x2) + η3J3(x3) (1)

where J1(x1) = 1
2 {tanh [K1 (x1 + 0.1)] + 1} x21 , J2(x2) =

1
2

( x2−50
50

)8
and J3(x3) = 1

2

( x3−0.00245
0.00245

)8
. These functions are

chosen so as to maintain x inside its variation range.
We use an iterative algorithm to find the optimal state

vector. The first gradient descent is performed using ηi =
0,∀i ∈ 1, 2, 3, i.e. without any constraint. Then, if the
resulting state vector is not in the variation range, ηi are
updated increasingly, i.e. the constraints become stronger
until the optimal state vector enters its variation range.
Once the optimal state vector has been found, the surface

layer grain variables are replaced by the values of xa.

3.3. Strategy for composite snow/ice cases
The assimilation scheme described above is only usable if
the albedo and the surface layer characteristics are linked
through a non-constant relationship. In the CROCUS model,
the ice is simulated with a constant albedo. Consequently,
in cases where the observations or the guess surface layer
can be classified as ice, the variational scheme is no longer
usable.
Thus we had to implement different assimilation strategies,

corresponding to four different cases. These cases are defined
by comparing remotely sensed albedo observations and
modeled surface layer grain variables:

Case 1: The observed albedo is larger than the ice albedo
and the modeled surface layer is snow. In this case a
variational assimilation method is used to modify surface
grain variables.

Case 2: The observed albedo is larger than the ice albedo
and the surface layer is ice. In this case a forcing strategy
is used. A layer of new snow is added over the ice surface
layer with density and temperature corresponding to the
meteorological variables.
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Fig. 3. Temporal evolution of the three components of the state vector for the surface layer (grain variables) of the snowpack during winter
2007/08 at Col de Porte. The solid line represents the CROCUSno assim simulation and the gray dotted line represents the CROCUSassim
simulation. The crosses are observations of the snowpack used in the data assimilation scheme. The dark circles are the analysis state vector
after each assimilation. The lower chart represents the evolution of the optical diameter which is used in CROCUS to compute the albedo.

Case 3: The observed albedo is smaller than the ice
albedo and the surface layer is ice. In this case a forcing
strategy is used and the ice albedo is replaced by the
observed values.

Case 4: The observed albedo is smaller than the ice
albedo and the surface layer is snow. In this case a forcing
strategy is used. The snow layers are removed from the
simulated snowpack and the ice albedo is replaced by
the observed value.

The ice vs snow albedo threshold for the observation is set
to 0.35 for band 1, since it corresponds to the maximum ice
albedo value measured on the glacier during summer cam-
paigns 2008 and 2009 (relatively clean ice). The distinction
between snow and ice for the simulated surface layer is based
on the density threshold of 850 kgm−3 given by CROCUS.
In the following, the methodology described in this section

will be referred as CROCUSassim while the reference run,
without albedo data assimilation, will be referred to as
CROCUSno assim.

4. RESULTS
4.1. Test at one point
The performance of the data assimilation scheme was first
evaluated at one point on the Col de Porte site (Brun and
others, 1989).
Two types of data assimilation experiments were carried

out. First, a CROCUSno assim simulation was used as a refer-
ence and the observed albedos were calculated from weekly
observed snow characteristics at Col de Porte over two winter

seasons (2006/07 and 2007/08). Secondly, a CROCUSno assim
simulation with disturbed meteorological input (as for
the computation of the guess error covariance matrix)
was taken as the reference state and a CROCUSno assim
simulated snowpack with reference SAFRAN input gave
the observed state vector. This second virtual (i.e. not
based on real observations) experiment was carried out for
one winter season, 2007/08. Both experiments aimed at
a formal validation of the adjoint technique and a better
understanding of the behavior of the adjoint model with
respect to the grain characteristics.
The analysis error variances for the two experiments

described above were evaluated at each assimilation step
using the inverse of the Hessian of the cost function (Eqn (A8))
(Bouttier and Courtier, 2002). The analysis error variances
were systematically smaller than guess error variances for
both experiments.
Figure 3 illustrates the results obtained for the first experi-

ment for winter 2007/08. It presents the three components of
the state vector (grain variables) and the optical diameter over
the winter season 2007/08 (11 November 2007 to 26 April
2008) for CROCUSno assim (solid line) and CROCUSassim
(dotted line). Observation and analysis state vectors are
also indicated for each snow observation. The average time
during winter 2007/08 over which CROCUSno assim and
CROCUSassim paths were distinct, was 4.5 days, which gives
us an idea of the spin-up time of the model. Figure 3 also
shows that the analysed optical diameter is closer to the
observations than the guess diameter, expect for 22 January.
The analysed grain variables are closer to the observations
than the guess ones, except for 17, 22, 30 January.
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Fig. 4. Comparison between the measured and simulated SEBs at the location of the SEB measurement station during summer 2006 (close
to AWSabla,2008 in Fig. 2). (a) Net shortwave radiation, (b) net longwave radiation, (c) sensible heat flux, (d) latent heat flux and (e) sum of
the atmospheric fluxes. The dashed curve shows the measured flux. The black curve is the flux simulated with CROCUSno assim and the
gray curve is the flux simulated with CROCUSassim using MODIS data. The vertical bars indicate measurement uncertainties. Events 1, 2
and 3 are indicated for discussion purposes. The measurements are presented by Six and others (2009).

We also compared the simulated snow water equivalent
(SWE) and snow depth with in situ measurements made
over winter season 2007/08. The mean snow-depth rmse
with respect to daily measured values is 0.089m for
CROCUSassim and 0.104m for CROCUSno assim. The mean
observed value during the winter is 0.588m. For SWE, the
mean observed value is 255mm and the rmse is 52mmw.e.
for CROCUSassim and 53mmw.e. for CROCUSno assim. The
SWE rmse were computed using daily measurements over
the winter.

4.2. Glacier de Saint-Sorlin spatially distributed mass
balance
We now attempt to evaluate whether it is possible to
use CROCUSassim with SAFRAN input and the observed
albedo maps to simulate the glacier spatially distributed
mass balance on a 100m × 100m grid. This section
presents the simulation of energy fluxes, albedo and
spatially distributed mass balance with CROCUSno assim and
CROCUSassim compared with field measurements.

4.2.1. SEB simulation at one point
Figure 4 and Table 2 compare the simulated energy
fluxes with the energy fluxes estimated from measurements
at the SEB2006 location over 50 days in summer 2006.
SEB2006 is located close to AWSabla,2008 in Figure 2. The
simulations were done without assimilation of albedo data
(CROCUSno assim, black curve) and with assimilation of
MODIS data (CROCUSassim, gray curve). The shortwave
radiation budget, SWnet, is the main source of error and
error variability for the SEB simulation over this period. SWnet

explains most of the difference between measurement and
simulation up to event 1 in Figure 4 (27 July) and also for
event 2 (8 August). Considering the simulated and measured
albedo values (not presented here), we note that bias on
the albedo is the main contributor to the difference in the
shortwave radiation budget.
The longwave radiation budget does not show any major

bias, but the error variability is significant (Table 2). For
turbulent fluxes, the difference between measured and
simulated fluxes explains most of event 3 on 20 August.
During the considered period, the bias on H seems to
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Fig. 5. Measured vs simulated broadband albedo at AWSabla,2009 during summer 2009 (Fig. 2). The dotted curve plots the measurements
obtained using the Kipp & Zonen CNR1 device. The vertical bars are an estimate of the uncertainties. The gray curve shows the results
of the CROCUSno assim simulation. The black curve shows the results of the CROCUSassim simulation with assimilation of MODIS albedo
maps. The gray crossed curve shows the results of the CROCUSassim simulation with assimilation of albedo maps derived from terrestrial
photographs. The ice albedo is set at [0.23, 0.16, 0.05] at the beginning of each simulation.

compensate for the bias on LE. The sum of H and LE is
positive for measurements and simulation, except for 3 days.
Consequently, they are mainly an energy source for the
glacier surface. For CROCUSassim the bias and rmse on
the SWnet and SEB are smaller than for CROCUSno assim, but
are still significant.

4.2.2. Albedo estimates
Figure 5 shows the evolution of the measured and simulated
broadband albedo during summer 2009 at AWSabla,2009.
The simulations were run with CROCUSno assim (gray
curve), CROCUSassim with MODIS maps (black curve) and
CROCUSassim with terrestrial photograph maps (gray crossed
curve). The albedo simulated with CROCUSassim is closer

Table 2. Comparison between measured and simulated surface daily
energy fluxes at location SEB2006 (close to AWSabla,2008 in Fig. 2)
for 50 days (Fig. 4). SWnet is the shortwave radiation budget, LWnet
the longwave radiation budget, H the sensible heat flux and LE the
latent heat flux. ΔQ is the SEB expressed as the sum of the four
previous fluxes. μAWS and σAWS are, respectively, the mean and
standard deviation of the daily value over the whole measurement
period. m is the mean daily bias between measured and simulated
fluxes in case of CROCUSno assim (subscript ‘na’) and CROCUSassim
(subscript ‘a’). r is the root-mean-square deviation between daily
measured and simulated fluxes. The simulations are done using
SAFRAN/CROCUSno assim (without albedo data assimilation) and
SAFRAN/CROCUSassim (with assimilation of MODIS data)

Flux μAWS σAWS mna rna ma ra
Wm−2 Wm−2 Wm−2 Wm−2 Wm−2 Wm−2

SWnet 161.5 59.3 −30.6 59.3 −9.5 50.6
LWnet −32.9 21.0 3.2 26.4 3.2 26.4
H 33.0 29.14 −5.5 28.9 −5.1 28.7
LE −7.9 19.7 20.2 26.6 18.3 25.1

ΔQ 154 64.8 −12.7 48.1 6.9 46.1

to the measured albedo than the albedo simulated with
CROCUSno assim. Nevertheless, the agreement between the
simulated and the measured albedo is far from perfect and
the temporal variability is not well captured. The first day
when the surbface is ice (albedo <0.35) is 2 July for the
measurements, 12 July for CROCUSassim with photographs,
22 July for CROCUSassim with MODIS and 13 August
for CROCUSno assim. After 22 July the albedo simulated
with CROCUSassim is within the estimated accuracy of the
measurements. During the first period in which the surface
is snowy, the simulated albedo is systematically higher than
the measurements.
The simulated and observed albedo maps of the glacier

were also compared. Figure 6 gives an example of these
maps and of the observed albedo for 14 June 2009. Old
snow albedo (the lower part of the glacier in the figure)
is overestimated by at least 0.05 in the simulation. The
albedo map simulated with assimilation of the terrestrial
photographs shows more variability than the albedo maps
simulated with assimilation of MODIS data.

4.2.3. Spatially distributed mass balance
Figures 7 and 8 and Table 3 compare simulated and
measured mass balance for each of the five hydrological
years at each stake location on the glacier. Over the
whole period, 145 annual mass-balance measurements were
available on the glacier and were compared with the
simulated values. CROCUSno assim-simulated mass balance
has a positive bias of 0.53mw.e. for these years. The results
for CROCUSassim with MODIS data assimilation are not
significantly biased and the rmse is 0.48mw.e. compared
with the field measurements. The largest difference is
found for years 2002/03 and 2007/08. In addition, the
assimilation of the terrestrial photographs improves the
results for 2007/08 but has hardly any effect on 2008/09.
Lastly, Figure 8 shows that the stakes located in the dense
network have the largest rmse.
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Fig. 6. Glacier albedo maps: (a) CROCUSno assim; (b) CROCUSassim with assimilation of MODIS and photographs albedo; (c) CROCUSassim
from MODIS; and (d) CROCUSassim from photographs. The albedo values are for 14 June 2009. The CROCUS-derived maps were taken
just after the assimilation of the albedo observations.

5. DISCUSSION
5.1. General performance of the method
The results described for the data assimilation scheme show
that albedo assimilation improves the snowpack simulation.
The analysis error variances are systematically smaller than
the guess error variances. During winter 2007/08 at Col de
Porte (Fig. 3), there are three cases for which the analysis state
vector is not closer to the observations than the guess state
vector (17, 22 and 30 January). It snowed on 22 January,
so the modifications induced by the assimilation were
immediately erased by new snow. On 17 and 30 January the
analysed optical diameter is closer to the observations than
the guess, but this is not the case for the state vector. This
illustrates the fact that we are trying to advect information
that is contained in one variable (albedo or optical diameter)
to three grain variables. In general, the information seems
to be correctly reported to the grain variables but it is
not systematic. In both cases, the grain size decreased but
there was no effect on the dendricity. This emphasizes the
need for a more physical albedo parameterization to further
improve the impact of the assimilation. The SWE and snow
depth estimates during winter 2007/08 are closer to field
measurements for CROCUSassim than for CROCUSno assim.
The assimilation impact is small since CROCUSno assim was
already very close to measurements. In addition, Figure 3
shows that the spin-up time of the model is a few days.
This means that the period of the assimilation has to be
short (no more than a few days) to have a significant impact
on the simulation (at least during winter at Col de Porte).

In this study, the albedo observations are available for a
much longer period (Table 1). Nevertheless, using a mixed
assimilation/forcing algorithm improves the performance

Table 3. Comparison between measured and simulated annual
mass balance for the five hydrological years. μs(σs) is the mean
annual mass balance and its standard deviation (measured values)
for all the stakes. mC and rmseC are the bias and rmse when
comparing measurements with annual mass balances simulated by
CROCUSno assim for all stakes. mC,a and rmseC,a are the bias and
rmse when comparing measurements with annual mass balances
simulated by CROCUSassim for all stakes. All these results are given
for assimilation of MODIS albedo maps, except for values in italics
for years 2007/08 and 2008/09, which are for assimilation of albedo
maps derived from terrestrial photographs. ’Stakes’ gives the number
of stakes used for each year

Year μs(σs) mC rmseC mC,a rmseC,a Stakes
mw.e. mw.e. mw.e. mw.e. mw.e.

2000/01 0.05(0.82) 0.26 0.48 −0.00 0.44 20
2002/03 −3.37(0.69) −0.42 0.68 −0.54 0.66 19
2005/06 −1.87(0.92) 0.16 0.46 −0.02 0.50 36
2007/08 −2.23(0.71) 1.25 1.14 0.40 0.75 33

0.13 0.69
2008/09 −3.53(0.68) 0.70 0.83 −0.05 0.41 35

0.04 0.42

Total 0.53 0.81 0.07 0.48 143
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Fig. 7. Comparison between the measured and simulated mass
balance for the five hydrological years without assimilation. The
mass balance is cumulated over each hydrological year from the
first measurement at the beginning of the ablation period to the
last measurement at its end. The simulations were done using
CROCUSno assim. The different symbols indicate the different zones
of the glacier as shown in Figure 2. The linear regression analysis
gives 0.85x + 0.39 with r2 = 0.88.

of the algorithm despite the large temporal resolution of
available observations.
Comparison of the CROCUSno assim simulated and meas-

ured SEB at one point shows that the main error can be
attributed to the simulated value of albedo and that errors in
the other fluxes can be significant. Improving the shortwave
radiation budget does not allow complete correction of the
whole SEB and can unbalance some errors whichwould have
otherwise been compensated for by the present features and
performance characteristics of the CROCUS model. Error in
turbulent fluxes can be attributed to the parameterization
itself, in particular the input wind speed or the selected
roughness length, which may not be representative of the
surface at the beginning of July. During this period, the
measurement station was located not far from the snowline.
In the neighborhood of the snowline, snow/ice patches and
meltwater channels appear and the roughness lengths can
vary significantly.
Nevertheless, the comparison between the simulated

and measured albedo shows that assimilation improves
the simulation. In Figure 5, first ice appearance is more
consistent for CROCUSassim than for CROCUSno assim. This
underestimated melt rate (or overestimated accumulation)
at the beginning of the ablation season for CROCUSno assim
may be attributed to the use of a mean correction factor
for precipitation. The simulated precipitation field may
indeed induce an over-accumulation at the beginning of
the ablation season for this year. Assimilating the albedo
data corrects this effect without the need for in situ
precipitation measurements. Old-melting-snow albedo is
nonetheless overestimated in the CROCUSassim simulation.
This may be due to the setting of a minimum value in the
albedo parameterization. This parameterization has been
developed for the winter seasonal snowpack and may

Ablation area
Dense network 
Central zone 
Accumulation area

-6 -2-3-4-5 43 2 0 0-1  1 1
-6

-5

-4

-3

-2

-1

 0 0

 1

 2 2

4

3

Measured cumulative mass balance (m w.e.)

Si
m

u
la

te
d

 c
u

m
u

la
ti

ve
 m

as
s 

b
al

an
ce

 (m
 w

.e
.)

Fig. 8. Comparison between the measured and simulated mass
balance for the five hydrological years. The mass balance is
cumulated over each hydrological year from the first measurement
at the beginning of the ablation period to the last measurement
at its end. The simulations were done using CROCUSassim with
assimilation of MODIS albedo maps. The different symbols indicate
the different zones of the glacier, as shown in Figure 2. The linear
regression analysis gives 0.97x + 0.11 with r2 = 0.93.

not be able to represent old dirty wet snow and firn. In
Figure 5, the temporal variability of the measured albedo
is poorly reproduced on the simulated albedo. This might be
explained by the fact that there is only about one available
albedo map per week, which is not temporally sufficient
information considering the spin-up time of the model. The
remaining difference between the observed and simulated
snow albedo in June 2009 cannot be attributed to a too-small
value of the observation covariance matrix, as explained
above (Section 3.2.2).
The assimilation of albedo observations in the model

largely improved the simulation of the spatially distributed
mass balance for the five studied hydrological years. It
provides an unbiased estimation of spatially distributed mass
balance with a rmse <0.5mw.e., whereas the simulation
without assimilation shows a positive bias of 0.53mw.e.
This positive bias can be attributed to an albedo positive
feedback mechanism. At least for years 2000/01, 2007/08
and 2008/09, the albedo is overestimated at the beginning
of the ablation season, leading to underestimation of the
amount of absorbed shortwave radiation in the snowpack.
The snowmelt is therefore also underestimated, which, in
turn, amplifies the overestimation of the albedo. This effect
is corrected when assimilating albedo observations for years
2000/01 and 2008/09. For 2007/08, MODIS data spatial
resolution seems to be insufficient and only assimilation
of terrestrial photographs allows correct simulation of the
spatially distributed mass balance, through a more precise
implicit knowledge of the snowline position captured by the
assimilation scheme. Part of this positive bias and albedo
positive feedback might be due to an insufficient description
of the effect of impurities on the albedo parameterization
implemented in the H operator included in the CROCUS
snow model. Assimilating albedo observation helps to
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reduce the effect of this shortcoming. However, we believe
that using a more accurate albedo parameterization (e.g.
as described by Gardner and Sharp, 2010) would improve
the simulated mass balance but would require additional
information about the impurity content and its evolution.
This impurity knowledge is implicitly contained in the albedo
observations and would be transferred to the simulated
snowpack using such an assimilation technique.
Year 2002/03 is an exception, since assimilating al-

bedo slightly decreases the accuracy of the simulation. A
comparison between the meteorological variables for each
summer of the five years, shows that the wind speed and
temperature values were maximum and nebulosity minimum
for 2002/03. These facts can explain the overestimated
melt. First, this meteorological situation implies that the
turbulent fluxes have a greater effect. For example, during
a similar period (hot and sunny) in summer 2006, turbulent
fluxes derived from measurements reached 21% of the
sum of the atmospheric fluxes at SEB2006 (Six and others,
2009). Consequently, errors in the estimation of these fluxes
(Table 2) may have a greater weight on the SEB. Secondly, as
discussed above, longwave radiation estimates for SAFRAN
are overestimated in the case of low nebulosity. Although a
correction has been applied, it may not be sufficient for this
case and can also lead to melt overestimation.
The results shown in Figure 8 indicate that mass-balance

estimates on the dense network have the largest rmse. The
dense network is characterized by rugged topography and
stakes are located ∼40m apart. The model grid is 100m ×
100m. Thus, in this area of the glacier, the mass-balance
spatial variability depicted by the stakes is smaller than that
which can be reached by the model.
Furthermore, using albedo maps with 10m instead of

250m resolution improves the simulation for year 2007/08
but has hardly any effect on year 2008/09. The simulation
for year 2008/09 was already good using MODIS data (bias
−0.05mw.e.) and we believe that the accuracy limit of the
model had already been reached. Adding additional spatial
information about the albedo value does not improve the
simulation in such a case.

5.2. Precipitation correction
A mean precipitation correction factor may be used for the
whole glacier, instead of a detailed map, when applying
the method to a large set of glaciers. We ran the mass-
balance simulation for the five hydrological years using a
mean correction factor of 1.64 instead of the map. The results
show that the estimation of the annual mass balance is still
unbiased (0.06mw.e). The rmse with respect to the 145
measured mass-balance values is now 0.54mw.e., instead
of 0.48mw.e. with the map. Using the mean factor slightly
reduced the accuracy of the estimates but the simulation of
the spatially distributed mass balance was still reasonable.
This effect must also be investigated on larger glaciers where
the mass-balance variations over the glacier are higher. In
that case, it may be necessary to use different multiplication
factors over the glacier.
In addition, we used the same multiplication factor for

winter and summer precipitation, ignoring the phase of
the precipitation. The correction factor could be different
and closer to that for liquid precipitation (Gottardi, 2009).
Nonetheless, the rain heat flux is known to be of minor
importance for the total SEB on glaciers in the Alps
(Hock, 2005).

5.3. Roughness lengths
Finally, two constant roughness lengths were used in this
study, one for ice and one for snow. As discussed in Section
3, these values cannot be fully considered as physical values
but as effective ones. The spatial and temporal variability
of roughness lengths is important at the glacier surface.
Measured values vary from 0.1mm for fresh snow (Brock and
others, 2006) to 30mm for penitents (Wagnon and others,
1999). The surface macro-roughness (snow/ice patches,
meltwater channels and crevices) has the largest influence on
the value of the roughness length. In this study, we evaluate
the influence of roughness length variations on the simulated
melt rate. An illustration is given in Figure 9, which presents
the impact of the variation in snow and ice roughness lengths
on the simulated mass balance at one point. The results show
that changing the snow roughness length has more effect on
the simulated mass balance than changing the ice roughness
length. Indeed when the snow roughness length varies from
1 to 10mm, the simulated mass balance at the end of
the summer decreases 20%, whereas the same variation in
the ice roughness length only causes a decrease of 9% in the
simulated mass balance. The snow roughness length affects
the melting rate of the winter snowpack and, consequently,
determines snowline position. It could therefore be useful in
further work to use different roughness lengths, depending
on the snow age and depth.

6. CONCLUSIONS AND PERSPECTIVES
Mesoscale meteorological variables used with the CROCUS
snow model and assimilation of albedo observations from
MODIS and/or terrestrial photographs provide a reasonable
estimation of the spatially distributed mass balance of a
glacier in the French Alps. The estimates are unbiased, with a
rmse <0.5mw.e. over the five hydrological years. This study
is the first attempt to assimilate albedo observations in order
to numerically simulate the high-resolution distribution of
the SEB of an alpine glacier. It demonstrates the potential
contribution of remote-sensing data to the improvement of
snowpack and glacier mass-balance simulation.
The method described here can be used on a large set

of glaciers to estimate the spatial distribution of temperate
glacier mass balance simply by combining remotely sensed
albedo observations with a numerical snow energy-balance
model. It is applicable to the seasonal snow cover on larger
areas. The present limitations of the method are the accuracy
of the knowledge of precipitation fields and the tuning of
the roughness lengths. Finer precipitation fields will soon
be routinely available (Seity and others, 2011). Concerning
the snow roughness lengths, research is still in progress,
but this study provides a first guess for their determination.
For temperate glaciers, we believe the roughness length can
be tuned using only one value of the specific annual mass
balance. For the seasonal snow cover, realistic profiles of
the snowpack are nowadays provided by CROCUS, using a
unique roughness length over the Alps which can be used as
a first guess (Durand and others, 1999). Another limitation
is that the albedo parameterization used in this study has
no explicit formulation for the snow impurity content and
uses non-continuous grain variables. Work is in progress to
implement a more physical parameterization of the albedo
in CROCUS, and we believe such parameterization would
further improve the impact of the assimilation scheme.
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Fig. 9. Effect of variation in snow and ice roughness lengths on the simulated mass balance. These simulations were run with CROCUSno assim
at the location of SEB2006 (close to AWSabla,2008 in Fig. 2) for 2005/06. The solid and dotted curves show the effect of snow roughness
length variations. The dashed curves present the effect of ice roughness length variations.

Using an energy-balance approach gives better quantifica-
tion of the different fluxes involved in the snowpack or glacier
mass balance. In addition, such a variational approach is
consistent with theoretical sensitivity analysis to determine,
for example, which parameters are the most important in the
model. A possible application might be the determination
of the most important solar spectral band in the model
formulation.
Furthermore, this variational method could be used to

take into account effects that are not yet accurately par-
ameterized, such as snow impurity content and snowdrifts.
Impurity effects on snow albedo are mainly found in the first
spectral band (Warren, 1982). Assimilating this spectral band
introduces information about the impurity content of the
observed snowpack. Consequently, impurity content can be
considered as a variable in the snowpack simulation model.
Similarly, it is known that snowdrifting by wind changes
snow albedo (Domine and others, 2009). Changes in
albedo due to wind can be detected through remote-sensing
data and therefore could be included in the snowpack
simulation model (Corripio, 2004). More generally, such
methods have strong potential in ice and snow modeling,
in that they add various sources of information to the
simulation.
Lastly, albedo was a first choice for testing the effect of

variational data assimilation in a snowpack model. Other
remote-sensing variables that provide information on the
surface or on the whole snowpack, such as snow water
equivalent, depth, surface temperature and specific surface
area, could be assimilated in the snow model using a similar
scheme and further improve the results.
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Le Meur E, Gerbaux M, Schäfer M and Vincent C (2007)
Disappearance of an Alpine glacier over the 21st Century
simulated from modeling its future surface mass balance. Earth
Planet. Sci. Lett., 261(3–4), 367–374

Lejeune Y (2009) Apports des modèles de neige CROCUS et de sol
ISBA à l’étude du bilan glaciologique d’un glacier tropical et du
bilan hydrologique de son bassin versant. (PhD thesis, Université
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APPENDIX: VARIATIONAL DATA ASSIMILATION
METHOD, DEFINITIONS
This Appendix gives definitions that are essential to under-
stand the methodology (Bouttier and Courtier, 2002).
Let x = (x1, x2, x3) be the surface grain variables vector

and y = (α1,α2,α3) be the vector composed of the three
spectral bands of albedo.
Let B be the model space (grain variables) and O the

observation space (albedo).

A.1. Observation operators
We define H, the observation operator, as y = H[x]. In the
absence of any modeling error, this operator would generate
the albedo value, y, if both observations and state vectors
were perfect.
The linearized observation operator at x0, H, is defined as

H [x] = H [x0] +H(x − x0) + ◦ (‖x − x0‖O
)

(A1)

Consequently, H is the true linearized operator of H if

∀ x, dx, limε→0

∣∣∣∣1− H[x + εdx]−H[x]
H(εdx)

∣∣∣∣ = 0 (A2)

The adjoint observation operator, H×, is defined as

∀ x, y, 〈
H×y, x

〉
B = 〈y,Hx〉O (A3)

A.2. Errors and error covariances
If ε represents the error vector, then E = (ε− ε)(ε− ε)T is the
error covariance matrix. xb is the guess state vector given as
a priori information by the model, xt is the true state vector,
y is the vector of observations and xa is the analysis model
state (after assimilation).

εb = xb − xt is the guess error with covariances B. It is
the estimation error of the guess state and

ε0 = y −H[xt] is the observation error with covariances
R. It contains the error in the observation process, errors
due to the scale difference between observations and the
model and due to the design of H and discretization
errors that prevent xt from being a true state

εa = xa − xt is the analysis error with covariances A. It is
the estimation error of the analysis state which has to be
minimized.

A.3. Optimization
Using the variational method implies that we define a cost
function, J, in the model space. The analysis state vector, xa,
is then defined as the state vector that minimizes this cost
function:

xa such that J(xa) = minx∈B(J(x)); J(x) = Jo(x) + Jb(x) + Jc(x
(A4)

Jb(x) = ‖x− xb‖2B is the guess term, Jo(x) = ‖y−H[x]‖2O the
observation term and Jc(x) the constraint term that prevents
xa from escaping from its validity domain.
From Eqn (A4), we can calculate ∇J and ∇2J:

∇J(x) = 2B−1(x− xb) + 2H×R−1
(
y−H[x])+∇Jc(x) (A5)

∇2J(x) = 2B−1 + 2H×R−1H +∇2Jc(x) (A6)

To estimate xa, we use a popular gradient descent algorithm:

xa = limn→∞xn , xn+1 = xn +
(
∇2J(xn )

)−1
∇J(xn ). (A7)

Note that the analysis error covariance matrix,A, is directly
linked to the Hessian of J:

A =
(
1
2
∇2J(x)

)−1
(A8)
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