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Abstract. Extremely strong magnetic fields of the order of 10'° G are required to explain
the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is
expected to play an important role for the dynamics of core-collapse supernovae, and in the
presence of rapid rotation may power superluminous supernovae and hypernovae associated to
long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure
and most likely requires an amplification over many orders of magnitude in the protoneutron
star. One of the most promising agents is the magnetorotational instability (MRI), which can
in principle amplify exponentially fast a weak initial magnetic field to a dynamically relevant
strength. We describe our current understanding of the MRI in protoneutron stars and show
recent results on its dependence on physical conditions specific to protoneutron stars such as
neutrino radiation, strong buoyancy effects and large magnetic Prandtl number.
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1. Introduction

The delayed injection of energy due to the spin down of a fast rotating, highly mag-
netized neutron star is the most popular model to explain a class of superluminous
supernovae (e.g. Kasen & Bildsten 2010; Inserra et al. 2013). The birth of such millisec-
ond magnetars is furthermore a potential central engine for long gamma-ray bursts and
hypernovae (e.g. Duncan & Thompson 1992; Metzger et al. 2011; Obergaulinger & Aloy
2017). One of the most fundamental and open question in these models is the origin of the
strong magnetic field that is invoked. The most studied mechanism capable of generating
such a strong magnetic field is the growth of the magnetorotational instability (MRI)
in the protoneutron star (Akiyama et al. 2003; Masada et al. 2007; Obergaulinger et al.
2009; Sawai & Yamada 2014; Guilet et al. 2015; Guilet & Miiller 2015; Rembiasz et al.
2016a,b; Mosta et al. 2016). In the following we review several aspects of the physics
of the MRI in the physical conditions relevant to protoneutron stars, by describing its
linear growth (Section 2) and its non-linear dynamics (Section 3).

119

https://doi.org/10.1017/51743921317004732 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921317004732

120 J. Guilet et al.

fast rotation

h (G)
S o

—

o
—_
w

B field strengt

— —
o O
—_ —_
- N

1 2 3 4
radius (10° cm)

Figure 1. Different regimes of MRI growth as a function of radius and magnetic field strength
in a fast rotating PNS model at ¢t = 170ms post-bounce (from Guilet et al. 2015). See the
text for a description of the different regimes. The parameter range used in the simulations by
Obergaulinger et al. (2009) is shown in red. The regime labelled as “too slow” corresponds to
growth rates lower than 10s7™".

2. Linear growth of the MRI

Although it is too often neglected in numerical simulations, neutrino radiation can have
a dramatic impact on the linear growth of the MRI. This was shown by Guilet et al. (2015)
by applying analytical results for the linear growth of the MRI to a numerical model of a
protoneutron star (PNS). In Guilet et al. (2015), we have shown that, depending on the
physical conditions, the MRI growth can occur in three main different regimes (Fig. 1):

e Viscous regime (dark blue color in Fig. 1) : on length-scales longer than the neutrino
mean free path, neutrino viscosity significantly affects the growth of the MRI if E, =

% < 1, where vy is the Alfvén velocity, v the viscosity induced by neutrinos and €
the rotation angular frequency. The growth of the MRI is then slower and takes place at
longer wavelengths compared to the ideal regime. In the viscous regime, the wavelength of
the most unstable mode is independent of the magnetic field strength, while the growth
rate is proportional to the magnetic field strength (Fig. 2). As a result, a minimum
magnetic field strength of ~10'2 G is required for the MRI to grow on sufficiently short
time-scales.

e Drag regime (light blue color in Fig. 1) : on length-scales shorter than the neutrino
mean free path, neutrino radiation exerts a drag force —I'v, where v is the fluid velocity
perturbation and I' ~ 6 x 10° (T//10 MeV)® s~! is a damping rate. This drag has a signifi-
cant impact on the MRI if the damping rate is larger than the rotation angular frequency
(T > Q). In this regime, the growth rate of the most unstable mode is independent of the
magnetic field strength, but is reduced by a factor of I'/Q2 compared to the ideal regime
(Fig. 2). The wavelength of the most unstable mode is not much affected by the neutrino
drag.

e Ideal regime (orange color in Fig. 1) : this is the classical MRI regime which occurs
when neutrino viscosity or drag are negligible. The growth rate of the MRI is then a
fraction of the angular frequency, independent of the magnetic field strength, while the
most unstable wavelength is proportional to the magnetic field strength.
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Figure 2. Maximum growth rate of the MRI in the viscous regime (left panel) and in the drag
regime (right panel). Left panel: the solid line shows the MRI growth rate taking into account
neutrino viscosity, while the dotted line shows the ideal MHD limit. The dashed line shows
equation (15) of Guilet et al. (2015), which is valid in the very viscous regime (E, < 1). Right
panel: Solid lines show the MRI growth rate including the impact of neutrino drag, while dotted
lines show the growth rate in the ideal MHD limit. Black and red colors represent, respectively,
a profile of fast rotation and a ten times slower rotation (see Guilet et al. 2015 for details).
Finally, the dashed line shows the (somewhat arbitrary) minimum growth rate below which the
growth is labelled as “too slow” in Fig. 1.

Fig. 1 shows where these three regimes apply, as a function of magnetic field strength
and radius in the PNS (note that qualitatively similar results were obtained by Guilet
et al. (2017) in the context of neutron star mergers). Three regions in the PNS can be
distinguished:

e Deep inside the PNS, the relevant MRI regime is the viscous MRI. The MRI can grow
on sufficiently short time-scales if the initial magnetic field is above a critical strength.

e At intermediate radii, MRI growth can take place both in the viscous regime at
wavelengths longer than the neutrino mean free path, and in the drag regime at length-
scales shorter than the mean free path. Since the growth rate in the viscous regime is
proportional to the magnetic field strength, the growth is faster in the viscous regime
above a critical magnetic field strength while it is faster in the drag regime for weaker
magnetic fields. In addition, in-between these regimes, the MRI growth occurs in a mixed
regime (shown in green in Fig. 1) where electron neutrinos are diffusing and thus induce
a viscosity, while the other species are free streaming and exert a drag.

e Near the PNS surface, the viscous regime is irrelevant because the neutrino mean
free path is longer than the wavelength of the MRI. Furthermore, in this region the
neutrino drag does not affect much the growth of the MRI because the damping rate is
smaller than the angular frequency, i.e. I' < Q. As a consequence the MRI growth takes
place in the ideal regime without much impact of neutrino radiation.

For the sake of simplicity and in order to show the impact of neutrinos in a clear way,
this analysis neglected the effect of buoyancy. As shown analytically by Menou et al.
(2004) and Masada et al. (2007) and confirmed by numerical simulations in Guilet &
Miiller (2015), entropy and composition gradients can act against the MRI, but this is
alleviated by the diffusion due to neutrinos.

3. Non-linear dynamics of the MRI

In order to know the efficiency of magnetic field amplification, numerical simulations of
the non-linear dynamics driven by the MRI are necessary. These simulations have so far
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Figure 3. Snapshots of two simulations of a local model of the MRI in the viscous regime using
the Boussinesq approximation (from Guilet & Miiller 2015). The left column corresponds to a
buoyantly unstable flow with N?/Q? = —1 while the right column corresponds to a buoyantly
stable flow with N?/Q* = 10. The two rows show the azimuthal magnetic field (top) and
azimuthal velocity (bottom). Note that we adjusted the color scales to the level of turbulence,
i.e. they are different for the two columns.

mostly been performed in local or semi-global models describing a small portion of the
PNS (e.g. Obergaulinger et al. 2009; Masada et al. 2012; Guilet et al. 2015; Rembiasz
et al. 2016a,b). The first phase of MRI growth is often dominated by channel flows,
which are the fastest growing MRI modes in the presence of a poloidal magnetic field.
These modes, which are uniform in the horizontal direction, are approximate non-linear
solutions and are therefore potentially able to grow well into the non-linear regime. Their
growth is terminated when parasitic instabilities (either the Kelvin-Helmholtz instability
or resistive tearing modes) are able to destroy their structures (Rembiasz et al. 2016a,b).
By studying in detail this process with two different numerical codes, Rembiasz et al.
(2016b) have been able to show that channel modes can only amplify the magnetic field
by a factor ~10 under the physical conditions prevailing in a PNS. A further process such
as a turbulent MRI-driven dynamo is therefore necessary to reach very strong magnetic
fields.

In Guilet & Miiller (2015), we have studied the turbulent phase following the disruption
of the channel modes, taking for the first time into account both the viscosity and diffusion
due to neutrinos and the buoyancy force due to entropy/composition gradients. This was
made possible owing to the use of the Boussinesq approximation, which we showed to be
well suited to a local model of a PNS. In addition to drastically reducing the computing
time this approximation avoids artifacts at the boundaries caused by global gradients
in fully compressible simulations. Fig. 3 shows snapshots of the turbulent phase in a
buoyantly unstable case (left panel) and a buoyantly stable case (right panel). While the
buoyantly unstable dynamics is turbulent and largely non-axisymmetric, the buoyantly
stable dynamics contains more large-scale axisymmetric structures. A channel flow at the
largest scale available in the box can be distinguished even during the turbulent phase,
which is further illustrated in Fig. 4 by the horizontally averaged space-time diagram (left

https://doi.org/10.1017/51743921317004732 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921317004732

Magnetar formation 123

Pe=100
0.5 NN 0.01
I~r f v X magnetic
N0 0 % Q +  kinetic
Mn r' 10 x O thermal
05 001 EEXXxX
0.1 5 - Ty X _>|<_ * * X X
(0]
o Y% § o T+ + + +
_ O
.04 107 ODpoob O O a
0.02
o B 107
X Maxwell
002 ¢ 10 + Reynolds
02 S 10 x0O O buoyancy
c éQ O total
0 By % 5 QQQ
2 10°
02 E o "THER g g g
002 B , 5 ®QQ
3 10°l 4+ 2 9
o 6 ©
4
! 10
) 500 1000 002 -2 0 2 4 6 8 10
ime (ms) N2

Figure 4. Left panel: Quasi-stationary channel flow for N?/Q? = 10 and high thermal diffusion
Pe = 100. The five panels show space time diagrams (from top to bottom) of the horizontally
averaged radial velocity, azimuthal velocity, radial magnetic field, azimuthal magnetic field, and
buoyancy variable. Right panel: Time and volume averages of the turbulent energy densities (in
units of 2 x 10?2 ergecm ™), and energy density injection rates (in units of 2 x 10*? ergs™ cm™*)
as a function of the dimensionless buoyancy parameter N?/Q?. They show the magnitude of
magnetic (red x), kinetic (blue +), and thermal (black squares) energies in the top panel, and
energy injection rates due to Maxwell stress (X symbols), Reynolds stress (+ signs), buoyancy
force work (circles), and sum of the three (squares) in the bottom panel. Positive injection rates
are shown in red color, while negative ones (i.e. energy is removed from turbulent motions) are
shown in blue.

panel). Fig. 4 (right panel) furthermore shows the kinetic, magnetic and thermal energies
and energy injection rates as a function of the dimensionless buoyancy parameter N2 /Q?
(where N is the Brunt-Viisild frequency). The magnetic energy decreases with N2/
but, interestingly, it becomes almost constant in the stable buoyancy regime (N2 > 0)
suggesting an efficient magnetic field amplification even in the presence of a strong, stable
stratification.

While these simulations were able to use realistic values for the viscosity due to neu-
trinos, they have the shortcoming of vastly overestimating the resistivity (like all other
simulations, be it by including it explicitly like here or by suffering from a large numerical
resistivity (Rembiasz et al. 2016)). Preliminary results show that this is likely to cause a
significant underestimate of the efficiency of magnetic field amplification, thus confirming
the strong dependence of the MRI on the magnetic Prandtl number (the ratio of viscosity
to resistivity) known in the context of accretion disks (e.g. Fromang et al. 2007).
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4. Perspectives

The presence of structures on the largest scales described by the local models of Sec-
tion 3 stresses the necessity of global models encompassing the whole PNS. Such models
are extremely challenging computationally because it is necessary to resolve the very
small length-scales where MRI grows. The closest to a global model was published by
Mosta et al. (2015) who simulated one eighth of a PNS (in an octant symmetry) and
claimed to obtain an MRI-driven dynamo. Even this extremely computationally inten-
sive simulation could not, however, answer the fundamental question of the origin of
magnetars dipolar magnetic fields because it was actually initialized with a dipolar mag-
netic field strong enough to lead to magnetar formation by simple flux conservation.
More numerical simulations of global models of PNSs are therefore necessary to establish
firmly whether the MRI can generate a sufficiently strong dipolar magnetic to explain
the birth of millisecond magnetars. We are currently making steps in this direction by
developing numerical models of idealized PNSs in quasi-incompressible approximations
(Boussinesq or anelastic approximations). By drastically reducing the computational re-
quirements, these approximations should enable insights into the fundamental physical
process generating the dipolar magnetic field.
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