# THE RANK OF THE SUM OF TWO RECTANGULAR MATRICES 

BY
IAN S. MURPHY
In what follows, the transposed complex conjugate of a complex rectangular matrix $D$ is denoted by $D^{*}$ and the rank of $D$ by $r(D)$. Meyer [1] proved the following result using generalized inverses:

Theorem. Let $A$ and $B$ be complex $m \times n$ matrices such that $A B^{*}=B^{*} A=0$. Then $r(A+B)=r(A)+r(B)$.

Below we prove this result by repeated use of the fact that for every complex $m \times n$ matrix $D$ we have $r(D)=r\left(D^{*} D\right)=r\left(D D^{*}\right)$ (e.g. See [2] Theorem 5.5.4).
Proof. Note that $A B^{*}=B^{*} A=A^{*} B=B A^{*}=0$. Consider the $m \times 2 n$ partitioned matrix $C=\left[\begin{array}{ll}A & B\end{array}\right]$.

$$
\begin{aligned}
r(C)=r\left(C^{*} C\right) & =r\left(\left[\begin{array}{l}
A^{*} \\
B^{*}
\end{array}\right]\left[\begin{array}{ll}
A & B
\end{array}\right]\right)=r\left(\left[\begin{array}{cc}
A^{*} A & 0 \\
0 & B^{*} B
\end{array}\right]\right) \\
& =r\left(A^{*} A\right)+r\left(B^{*} B\right)=r(A)+r(B)
\end{aligned}
$$

Also

$$
\begin{aligned}
r(C) & =r\left(C C^{*}\right)=r\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
A^{*} \\
B^{*}
\end{array}\right]\right)=r\left(A A^{*}+B B^{*}\right) \\
& =r\left(A A^{*}+A B^{*}+B A^{*}+B B^{*}\right)=r\left((A+B)(A+B)^{*}\right) \\
& =r(A+B) .
\end{aligned}
$$

Hence

$$
r(A+B)=r(A)+r(B)
$$

## References

1. C. D. Meyer, On the rank of the sum of two rectangular matrices, Canad. Math. Bull. 12 (1969), 508.
2. L. Mirsky, An Introduction to linear algebra, Oxford, 1955.

University of Edinburgh,
Edinburgh, Scotland

