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ABSTRACT. A time-dependent numerical model of temperate glacier Row without sliding is developed and 
applied to the quiescent phase of surge-type Variegated Glacier, Alaska. The model is based on a one-dimensional 
continuity equation but the transverse channel shape is explicitly included allowing the complex geometries of real 
glaciers to be modelled. Velocities and volume Ruxes are calculated from the glacier geometry. Transverse stress is 
taken into account by shape factors which are fitled to measurements of geometry and velocity and are chosen to 
be insensitive to changes in geometry. Longitudinal stress gradients are taken into account by use of a large-sca le 
surface slope. A Crank-Nicholson finite-difference approximation is used and it is unconditionally stable when a 
small contribution from the local slope is added to the average slope. 

Model parameters are fitted to extensive data collected on Variegated Glacier in 1973 and 1974. Predictions of 
the model over a four year interval agree well with field measurements. Predictions of the current quiescent phase 
(1965-84) indicate depth increases in the upper glacier of more than 75 m with a twenty-fold increase in the 
volume Rux. During thi s interval the base shear stress increases 40% in the upper glacier and decreases 20% in the 
lower glacier. During the mid to late quiescent phase, ice motion becomes more important than mass balance in 
the redi stribution of mass over the central region of the glacier. If normal Row were to persist , the predicted 
steady-state profile would be an average of 100 m deeper and 41 % more voluminous than in 1973. 

The predicted base shear-stress gradient is never negative enough to sati sfy Robin and Weertman 's (I973) 
condition for blockage of subglacial water Row. The annual rate of water production by dissipation of mechanical 
straining at the bed remains two orders of magnitude below that produced by summer surface melt. The predicted 
fractional increase in base stress during the quiescent phase is a maximum in the region believed to be the trigger 
zone of the surges. 

RESUME. Un modi!le numerique de l'ecoulement d'un glacier tempere et son application a la phase de repos 
d'ul1 glacier a crue. Un modele numerique a variable temporelle de I'ecoulement d 'un glacier tempere sans glisse­
ment a ete developpe et applique a la phase de repos du glacier a crue Variegated Glacier, Alaska. Le modele est 
base sur une equation de continuite a une dimension mais la forme des profils en travers du chenal est explicite­
ment prise en compte ce qui permet de reproduire les geometries complexes des glaciers reel s. Les vitesses et les 
debits sont ca!cules it partir de la forme du glacier. La contrainte transversale est prise en compte par des facteurs 
de forme qui sont adaptes aux mesures de geometrie et de vitesse et sont choisis pour et re insensibles aux change­
ments de geometrie. Les gradients de contrainte longitudinale sont pris en compte en utilisant une grande echelle 
de pente superficielle. On utili se une approximation aux differences finies de Crank- Nicholson et elle est toujours 
stable lorsqu'une petite variation de pente locale vient s'ajouter it la pente moyenne. 

Les parametres du modele sont ajustes grace aux abondantes donnees recueillies sur Variegated Glacier en 
1973 et 1974. Les previsions tirees du modele pour un intervalle de quatre ans concordent bien avec les mesures 
sur le terrain. Les previsions pour I'actuelle phase de repos (1965-84) indiquent des accroissements d 'epaisseur de 
la partie haute du glacier de plus de 75 m avec une multiplication par vingt du debit. Pendant cette periode la con­
trainte de cisaillement it la base augmente de 40% dans le haut du glacier et decro!t de 20% dans le bas. Pendant le 
milieu et la fin de la phase de repos le mouvement de la glace devient plus important que le bilan pour la redistribu­
tion des masses dans la region centra1e du glacier. Si I'ecoulement normal devait persister, le profil prevu au stade 
d'equilibre serait en moyenne de 100 m plus epais et de 41 % plus volumineux que celui de 1973. 

Le gradient prevu pour la contrainte de cisaillement it la base n'est jamais assez negatif pour sa tisfaire it la 
condition de Robin et Weertman (I973) pour le blocage de I'ecoulement d'eau sous-glaciaire. Le taux annuel de 
production d 'eau par dissipation d'energie mecanique le long du lit reste de deux ordres de grandeur en dessous de 
celui dil a la fusion estivale en surface. L'accroissement partiel prevu des efforts it la base est maximum dans la 
region que I'on croit etre celle du declenchement des crues subites. 
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ZUSAMMENFASS UNG. Ein numerisehes Model/fur das Fliessen/emperier/er Gle/seller und seine Anwendung 
auf die Rullephase eines ausbreehenden Gle/sellers. Fur den Fluss temperierter Gletscher ohne Gleiten wird ein 
zeitabhiingiges numerisches Modell entwickelt und auf die Ruhephase des ausbrechenden Variega ted Glacier, 
Alaska, angewandt. Das Modell beruht auf einer eindimensionalen Kontinuitiitsgleichung, enthiilt jedoch explizit 
das Querprofil des Gletscherbettes und erlaubt damit die Berucksichtigung der komplizierten Geometrie wirklicher 
Gletscher. Geschwindigkeiten und Massenfluss werden aus der Gletschergeometrie hergeleitet. Querspannungen 
werden durch Formparameter berucksichtigt, die sich aus Messungen der Geometrie und Geschwindigkeit 
ergeben und so gewiihlt werden , dass sie gegen Anderungen der Geometrie unempfindlich sind. Gradienten der 
Liingsspannungen werden aus der Oberfliichenneigung im grossen hergeleitet. Es wird eine Crank- Nichol son­
Niiherung mit finiten Differenzen angewandt. die ohne Einschrankung stabil ist. wenn kleine. lokale 
Neigungsiinderungern zur mittleren Neigung hinzugefugt werden. 

Die Modellparameter wurden den extensiven Daten angepasst, die am Variegated Glacier 1973 und 1974 
gewonnen wurden. Die Vorhersagen des Modells uber einen Zeitraum von vier l a hren stimmen gut mit den 
Feldbeobachtungen iiberein . Vorhersagen fUr die laufende Ruhephase (1965-84) lassen Dickenzunahmen von 
mehr als 75 m im Oberteil des Gletschers erwarten, verbunden mit einer 20-facllen Zunahme des Volumenflusses. 
In dieser Phase wiichst die Scherspannung am Untergrund im oberen Gletscher urn 40% an und nimmt im unteren 
Gletscher um 20% ab. Urn die Mitte und gegen das Ende der Ruhephase ist fur die Umverteilung del' Ei smassen 
im Zentralbereich des Gletschers die Eisbewegung von grosserer Bedeutung al s die Massenbilanz. Wurde die Nor­
malbewegung anhalten , so wiire das vorausberechnete stationiire Profil im Mittel 100 m dicker und 41 % 
voluminiiser als 1973 . 

Der berechnete Gradient der Scherspannung am Untergrund ist niemals so stark negati v, dass er die Bed­
ingung von Robin und Weertman (1973) fUr die Unterbrechung des subglazialen Wasserflusses erfUllen wiirde. 
Die lahresrate der Wasserproduktion durch Umwandlung mechanischer Spannungen am Gletscherbett bleibt 
zwei Grossenordnungen unter der Produktion von Oberfliichenschmelzwasser im Sommer. Die vo ra usberechnete 
anteilige Zunahme der Spannung am Untergrund wiihrend der Ruhephase hat ihr Maximum in jenem Gebiet. das 
fUr die Auslosezone der Ausbriiche gehalten wird . 

INTRODUCTION 

One of the primary goals of glacier dynamics is to predict the response of glaciers to climate 
variations. Nye (1960, 1963[a], [b)) was the first to attempt this in a systematic, quantitative 
way. He made a perturbation analysis of a one-dimensional equation obtained by integrating the 
continuity equation over the transverse cross-section area. His analytical studies examined the 
response of a glacier to small departures from the steady state. Subsequent models have usually 
relied on computers to solve a more complex set of equations. Models developed by Campbell 
and Rasmussen (1969), Rasmussen and Campbell (1973), and Mahaffy (1976), solved a two­
dimensional equation obtained by vertical integration of the continuity equation. This technique 
is useful in modelling two-dimensional surface features and ice sheets. Budd (1975) has 
developed a one-dimensional numerical model than can undergo cyclic variations simulating 
surge behavior through the effect of a basal shear-stress boundary condition sensitive to lubrica­
tion by basal melting. 

The model developed in this paper is designed to follow the details of a flow field more 
carefully than has been achieved in past models. In a strict mathematical sense, the model is one­
dimensional but the transverse shape of the channel is parameterized by shape factors to include 
its important effect on response behavior. The values of these shape factors are determined from 
the measured motion and corresponding geometry of the glacier at one time. The development of 
the model is such that these shape factors are insensitive to changes in the glacier surface and 
represent a considerable improvement over the parameterization used by Nye (I960) when the 
changes in geometry are large. 

Longitudinal stress gradients are approximately accounted for by using a surface slope 
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averaged over a distance many times the glacier depth in the calculation of the base shear stress 
(Budd, 1968). Because no theory of basal sliding yet proposed (Lliboutry, 1968 ; Weertman, 
1964; Kamb, 1970) has been able accurately to predict sliding velocities from a known glacier 
geometry, sliding is ignored in this model. 

To insure numerical stability of the finite difference equations, a small local slope contribution 
must be added to the larger-scale average slope. The resulting set of equations is unconditionally 
stable ; no restrictions are placed on either the time increment or the grid interval. No smoothing 
of the elevation profile is ever required (Budd and Jenssen, [1975 D. 

The model is applied to the quiescent phase of the surge-type Variegated Glacier, Alaska. 
The surge phase of this glacier cannot be simulated with this model because sliding is neglected. 
The large magnitude of the geometry changes that have been measured during part of the 
quiescent phase provide a favorable test of the model. In addition, the relative importance of 
mass balance and ice motion in these geometry changes can be examined quantitatively. By 
modelling the entire quiescent phase, the temporal changes in various geophysical parameters 
can be predicted and results compared with some proposed ideas on surge release mechanisms. 

TH E NUMERICAL MODEL 

Continuity equation 

The fundamental equation of the model is the continuity equation integrated over the 
transverse cross-sectional area to achieve the one-dimensional form given by Nye (l963[b D. 

as oQ . 
-+-=aW at ox (I) 

where S is the cross-sectional area, Q the volume flux , a the mass balance (ice-equivalent units), 
and W the surface width. The grid system chosen is Eulerian, defined by points Xi fixed in space 
(see Fig. 1). The one-dimensional axis is curvilinear following the central ftowline of the glacier. 
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Fig. I . Coordinate system. Glacier geometry is specified by bed elevations, Y i and ice depths, Hi at coordinates 
XI. Changes in ice depth are determined from continuity equation using calculated volume f luxes 
Qi± 1/ 2 , mass balance ai , and channel shape (not shown). 
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A Crank-Nicholson finite-difference formulation was used to approximate Equation (I). It 
has the following form: 

S;1+ 1_ S;m (Qr:~)2 + Q;"!-1 /2) - (Q;~~)2 + Q;~ 1/2) 
----+ --'------'-------'-------'----

!It X;+I -X; _ I 
(2) 

where the subscripts refer to the grid point and the superscripts refer to the time step 
(time = In !It). The volume flux (and velocity) are not calculated at the grid points X;, but rather 
at the mid-points of segments between grid points, x; ± 1/ 2 (Fig. I). The grid spacing can be vari­
able but should not vary rapidly. Equation (1) is one-dimensional if S, Q, a, and W depend on 
known constants and a single variable. The independent variable is vertical ice depth, which, 
along with the fixed bedrock configuration, defines the glacier geometry. 

Glacier geometry and mass balance 

The surface width is expressed as 

W;(H;)=D;Hi!2 +E;H; (3) 

where DI and El are constants to be specified and H; is the vertical ice depth. Equation 3 
represents the linear combination of channels with a parabolic and V-shaped cross-section 
respectively. The cross-sectional area is related to ice depth by integrating Equation (3) to give 

(4) 

The case F; *- 0 corresponds to a grid point where Equations (3) and (4) define a channel 
shape over a limited range of HI' Although S;(HI = 0) *- 0 in this case, the fit will be better within 
the intended range of depths than if F; = O. Specifying the central bedrock elevation Y; at each 
grid point completes the detailed description of the glacier channel. 

The mass balance may be specified as a function of position, elevation, and time as 

a; = a(H; + Y;, X, t). (5) 

Flux distribution 

The principal problem is to relate the volume flux to the depth distribution. Assuming the 
glacier deforms only by simple shear and the surface slope ex is small and nearly parallel to the 
bed, the base stress is 

Tb =pg sin ex H (6) 

and the surface velocity is 

(7) 

(Nye, 1952). Here p is ice density, g the gravitational acceleration, and A and n are parameters in 
a power-type ice flow law (Glen, 1955; Nye, 1957), Ub is the sliding velocity, and H is the ice 
depth normal to the surface. In this model, Ub is assumed negligible. Drag along the valley walls 
also helps support the glacier. Nye (1965) took this effect into account by modifying the base 
shear stress in Equation 6 by a multiplicative factor f This factor is referred to here as the 
"velocity shape factor" and has values between zero and unity. 
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This theory neglects the effects of longitudinal stress gradients on the ice motion. Budd 
(1968) derived a complex expression for the basal shear stress that explicitly included the effect 
of longitudinal stress gradients, but not all terms of the expression could be evaluated from the 
glacier geometry alone. Budd argued that this expression is simplified somewhat when averaged 
over a longitudinal distance of five to ten times the depth but the evaluation of certain terms still 
cannot be done rigorously. Using a still longer averaging length (10 to 20 times the depth) the 
expression reduces to the form of Equation (6). Using field data from Variegated Glacier, 
Bindschadler (unpublished) concluded that the expression 

rb = Jpg sin a H (6') 

where the averaging of slope was over a distance of 8 to 16 times the depth , provided calculated 
values of surface velocity (Equation (7» which were as accurate as those it was possible to 
obtain with the more complex expressions. 

The volume flux can be calculated from 

Q=J*usS (8) 

where Q is the volume flux, S is the cross-section area , andJ* is the ratio of velocity averaged 
over S to the center-line surface velocity, referred to here as the "flux shape factor". Based on 
numerical calculations of cross-section flow by Nye (1965), J and 1* (and thus their product 
1* In in Equation (8» are insensitive to changes in geometry. Once I and J* are determined, 
they may be assumed to remain constant in time without introducing significant errors into the 
calculations. 

For the numerical calculations, the velocity and flux (Equations (7) and (8» are calculated 
from the following set of finite difference equations: 

a i +I/2=tan - I{[(H; + Y;)-(HI + I + YI +I)]!(XI+ I - XI)}, (9) 

a l+ 1/2 = tan - I {[(Hk + Yk) - (H, + Y,))/(XI - Xk)}, (10) 

2A 
u; + 1/2 =-- (.lipglsin al + 1/2IY[cos a;+ 1/2 (HI + H; + 1)/ 2]n + I sign (ai+ 1/2), (11) 

n + I 

QI+ 1/2 = Ji* 1(S; + SI+ I) cos al+ 1/2UI + 1/2, (12) 

where the large-scale surface slope is averaged from Xk to XI' The cosine of the local slope (Equa­
tion (9» appears in Equations (11) and (12) to convert the vertical depths HI to surface-normal 
depths but is strictly valid only when surface and bed are parallel. Velocity and flux have the 
same sign as a but not, necessarily , a. Thus local regions of up-glacier slope without up-glacier 
flow are allowed. 

Boundary conditions 

Two boundary conditions must be specified: one at the head, the other at the terminus. Three 
general types have been developed for the model and are illustrated in Figure 2. The first is a con­
stant flux condition where the volume flux into the first section (or out of the last section) of the 
glacier is held constant. The second is a deforming wedge at either the head or the terminus. The 
conditions within this wedge are that volume is conserved while the volume flux vanishes when 
the ice depth vanishes. The slope of the wedge and the terminus position are determined by the 
glacier dynamics and vary in time. The final possible boundary is an ice divide at the glacier 
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Fig. 2. Boundary conditions developedjor model. See textjor description ojeach case. 

head. In this case a second ice body is considered to be flowing in the opposite direction from the 
glacier head. The volume flux feeding this second glacier is a specified fraction k of the volume 
flux feeding the modeled glacier. A symmetric ice divide corresponds to k= - l. The details of 
each type of boundary are discussed in Bindschadler (unpublished). 

Method o/solution 

Equations (2) through (5) and (9) through (12) represent the complete set of equations that are 
solved on a computer. Due to the non-linearity of the equation set, the depth profile at the 
unknown time step cannot be solved exactly and a Newton-Raphson predictor-corrector scheme 
(McCracken and Dorn, 1964) is used to solve Equation (2) by iteration to the desired accuracy. 
The practical accuracy of the solution is constrained by the accuracy of the field measurements. 

The numerical stability of this set of equations has been examined by both theoretical 
analysis assuming n = 1 and experimentally with n ). 1. When the velocity and flux (Equations 
(11) and (12» depend only on the local slope, i.e. a [ + 1/2 = ai + 1/ 2, the system is unconditionally 
stable. If the large-scale slope in Equation (11) is replaced by a constant, i.e. non-diffusive flow, 
the system is marginally stable; errors neither grow nor decay. However, with the use of the 
large-scale slope in Equation (11), the system becomes unconditionally unstable. 

To use this system of equations, then, either the bedrock and surface profiles must be con­
siderably smoothed initially and smoothed frequently during the computations (see Budd and 
Jensen, [1975]) or some other means of restoring stability must be found . By replacing the large­
scale slope in Equation (11) by a weighted linear combination of the unstable large-scale slope 
and stable local slope (Equation (9», stability can be restored and we can still maintain use of a 
large-scale slope to account for longitudinal stress gradients. Thus, Equation (11) becomes 

where 

(13) 
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The quantity ( ai+ 1/2) is referred to here as the "effective slope". Theoretically determined, 
the allowed values of f/J depend slightly on the length of the large-scale average but an upper 
bound of 0.8 is characteristic (see Bindschadler, unpublished, figure 5.4). This bound was verified 
by experimental runs of the model. Although the use of this effective slope is primarily to restore 
numerical stability, it is also more realistic to use a combination of averaging scales rather than 
to rely on a single averaging scale. Use of a single averaging scale results in the peculiar behavior 
that any surface feature (a sawtooth wave, for example) with a periodicity equal to the averaging 
length would produce a constant surface slope and_ thus tend to be permanent and not diffuse 
with time. 

The numerical stability of this revised system of equations is unconditional ; any time step or 
grid interval , however large, is permissible. The practical limitation is of course that the finite 
difference method only approximates the differential equation (Equation (I». The difference 
between the true and numerical solutions, called the truncation error, can be shown to 
be O(l'!.t 2

, I'!.x2
). More details concerning stability and errors are given by Bindschadler 

(unpublished). 

COMPARISON OF MODEL PREDICTIONS AND ANALYTICAL THEORY 

To establish that the numerical calculations could accurately simulate glacier behavior, 
various test cases were considered. In all test cases a straight parabolic channel (D = 
57.7 m 1/2, E = 0, F = 0) was used with a uniform bed slope of 5° and a uniform grid spacing of 
200 m. Glen 's (1955) values of the flow parameters (A = 0.148 bar - n year - I and n=4.2) were 
assumed. Both f and f* were set to 0.55; values typical of valley glaciers (Nye, 1965 ; 
Bindschadler and others, 1977). 

Steady-state test glacier 

In the first set of tests an altitude-dependent mass balance, a symmetric ice divide at the 
head, and a wedge at the terminus were specified (see Fig. 2). No large-scale surface slope was 
used (i.e. f/J = 0 in Equation (13». The bed slope was increased locally near the head (see Fig. 3). 
A glacier of initially arbitrary shape was allowed to adjust to the steady-state configuration 
shown in Figure 3. In this configuration, volume was shown to be conserved to within 1 % over 
most of the glacier and errors in the velocity determination arising from the linear interpolations 
between grids (see Equations (11 ') and (12» were also 1 % or less. With a different grid the same 
steady-state configuration was achieved, confirming that this configuration was determined by 
the mass balance and channel geometry rather than the grid. 

Perturbationsfrom steady state 

This steady-state glacier was then used to study the dynamic behavior of the model further. 
Two perturbations of the steady state were examined: addition of a uniform (I m) slab, and a 
uniform mass balance increase of + 0.1 m year - I. The test glacier's response in each experiment 
was compared to the analytical treatments of Nye (1963 [b D. Figure 4 shows the results of each 
experiment. Although precise quantitative comparison with the analytical treatment was not 
possible (the numerical model presented more complex situations), qualitatively the two methods 
agreed very well. 

A more quantitative comparison was possible with the second set of tests where only a 
section of an ideal glacier was considered. The section was of uniform thickness (300 m), the 
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Fig. 3. Steady-state configurationfor test glacier model with diffusion and t/J=O. Upper plot is longitudinal profiles of 
centre-line bed and ice-surface elevations (vertical exaggeration, 5: I). Lower plot shows longitudinal profiles of 
depth , volumeflux, and center-line surface velocity. 

mass balance was zero everywhere, and the volume flux into, out of, and at each point within the 
section was the same. Thus the section was in a steady state. No large-scale slope averaging was 
used (</J = 0). A small perturbation was added to the surface and its behavior was followed in 
time. Two cases were considered: non-diffusive flow where the effective surface slope is constant 
in time (the variations of flux depending only on the depth variations); and diffusive flow where 
the effect of slope variations is included. In both cases waves were expected. 

The analytical prediction of wave velocity is easy to make based on the work of Nye (i 965). 
For the parabolic case, Equation (12) becomes 

Q=k (sin aYHn + 5/ 2 (14) 

where k represents a combination of constants. If the surface slope is constant, the kinematic 
wave velocity is 

aQ Q aH 
Co =-=(n + 5/ 2)- - . as H as 

(I5) 

By rewriting Equation (12), 

Q=J*usS 
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Fig. 4. Temporal response oJ test glacier (Fig. 3) to: (a) addition oJ one meter slab at t= O years, and (b) uniform 
mass-balance increase oJ 0.1 m year- I (ice equivalent). Depths are shown as deviationsJrom equilibrium depths 
(Fig. 3). EQL marks equilibrium-line position. 
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and, recalling Equations (3) and (4), 

s= jDH 3/
2 = jWH 

the kinematic wave velocity is 

Co = (n + ~)jj* Us = 2.46 Us (16) 

for the values used here (n = 4.2, j* = 0.55). By a different method Nye (1965) reached a similar 
result. To have ignored the effect of width in the above analysis would have led to a predicted 
kinematic wave velocity of (n + l)us = 5.2 u" more than 100% too large. This illustrates the 
importance of using a realistic two-dimensional channel cross-section. 

The results of this set of numerical calculations are shown in Figures 5 and 6. The perturba­
tion is a Gaussian wave one meter high (0.3% of the total depth) with a 1 200 m half-width. 
Figure 5 presents the non-diffusive case and corresponds exactly to the above analytical 
analysis. Here the wave travels along the surface at a velocity of 117 m year - I without diffusing. 
The surface velocity of the ice is 48 m year - I; the ratio is 2.46 as predicted above. The 
instability appearing behind the perturbation in Figure 5 is a result of the marginal stability of the 
equations when there is no slope variation in the determination of flux. Small positive errors in 

]1 
:x: 
I-
0.. 
IJJ 
o 

I 

I 

I 

I 

I 

Fig. 5. Motion oJ Gaussian hump on uniform slab without diffusion. Depths are expressed as deviations from 
equilibrium depth (300 mJ. Successive profiles are vertically offset. Dashed line shows velocity oJ hump maximum 
is I I 7 ± 2 m year - 1. 
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Fig. 6. Motion oJGaussian hump on uniform slab with diffusion . Depths are expressed as deviationsJrom equilibrium 
depth (JOO m). Successive profiles are vertically offset. Dashed line shows velocity oJ hump max imum is 
120 ± 2 m year- I. 

the depth form regions of higher velocity which become progressively deeper and faster. This 
unstable behavior was always observed whenever there was no diffusion used. 

When diffusion was introduced, i.e. non-constant surface slope, Figure 6 shows the marked 
difference in behavior of the wave. The velocity of the wave crest is nearly unchanged 
(120 m year - I in this case) but the perturbation has diffused rapidly. In addition, the rate of 
diffusion agrees with diffusion theory. Considered separately from the wave velocity, the initial 
perturbation should have the following profile: 

hi =~expr(-x )2 ~l Vi 1 200 t 

at a later time (Bindschadler, unpublished, p. 132). Thus after twenty years, the wave should be 
0.26 m high with a half-width of 4 630 m: from Figure 6 a height of 0 .26 m and a half-width of 
4 600 m were measured. An important property of glacier behavior becomes strikingly clear 
when comparing Figures 5 and 6: although diffusion does not markedly alter the kinematic wave 
velocity, it is responsible for transmitting the margins of the perturbation down-glacier (and 
possibly even up-glacier) at speeds much higher than the kinematic wave velocity. Thus for the 
dynamic experiment shown in Figure 4a, the duration of the unstable response of the lower 
glacier is greatly curtailed because the leading edge of the wave (whose arrival restores stability; 
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Nye, 1960) travels down-glacier at a speed much higher than the kinematic wave velocity. This 
also has the effect of dampening the intensity of the whipcrack-like behavior of the terminus 
described by Nye (1960). 

ApPLICATION OF MODEL TO VARIEGATED GLACIER 

Background 

Variegated Glacier has a well documented surge history with a period of roughly 20 years 
(Post, 1969). The last surge occurred some time between August 1964 and August 1965 so the 
next surge is expected in about 1984. Through the quiescent phase this glacier undergoes large 
changes in its geometry making it a favorable test case for the numerical model. In addition , 
extensive data collection over several years (Bindschadler and others, 1977) provides the 
opportunity to parametrize the model accurately and to compare the model predictions with 
field measurements. Since this glacier is temperate (Bindschadler and others, 1976) and sliding is 
thought to contribute less than 5% of the total annual motion during 1973 (Bindschadler and 
others, 1978), the model can be applied. 

Parameterization 

The longitudinal line of markers established in 1973 (Bindschadler and others, 1977, fig. I) 
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provided a convenient center-line axis and grid spacing (~x=250 m). In the accumulation basin 
some additional grid points were added where stakes were absent. In all, 76 grid points were used 
over a di stance of 18.8 km. The 1973-74 seismic reflection survey provided ice depths every 
500 m from Section F (at 5.1 km) to 1.2 km below Section B (Fig. 7). Detailed transverse profiles 
were completed at the six sections denoted F, EF, E, D , C , and B in Figure 7 (see Bindschadler 
and others, 1977, fig. 3). These data, along with maps of the exposed valley walls, allowed the 
pa rameters Yj (bedrock elevation), D j, Et. and F j (Equations (3) and (4)) to be determined. 
Figure 8 summarizes the mass-balance data used in the model. 

Velocity shape/actors 

The values of the velocity shape factors;; were estimated by two methods. The first used 
the numerical calculations of Nye (1965) for rectilinear ice flow through a parabolic section 
assuming no sliding and no longitudinal stress gradients . His tabulated values of / versus the 
half-width to depth ratio for n = 3 were interpolated to estimate / at each midpoint of the grid 
from measured values of width and depth . The second method used Equation (11') to match the 
geometry to the velocity. The September 1973 elevation profile was used along with the annual 
velocity from September 1973 to September 1974 (estimated in the upper glacier and the ter­
minal lobe). The averaging distance was two kilometers and rP = 0.8 for the effective slope (Equa­
tion (13)). Figure 9 compares the profiles of ;; determined by the two methods. Two profiles 
from the latter method are included for two different choices of the flow-law parameters 
(n = 4.2, A = 0.148 bar - n year -I, Glen , 1955, and n = 3, A =0.0817 bar - n year - I, Nye, 1953). 
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A value of J greater than unity is unrealistic and indicates that either the velocity or the depth 
was poorly estimated above 3.1 km and below 16 km. A similar comparison of these two 
methods between Sections Band F using only the two kilometer average of the surface slope 
(q;= 1) and Glen's (1955) values of A and n appears in Bindschadler and others (1977, fig. 7). 
These two figures show that the high-frequency variation of Jvalues from the second method in 
Figure 9 is caused by the inclusion of the more rapidly varying local surface slope in Equation 
(13). Both analyses show similar discrepancies on the larger scale (especially from Section C to 
Section E) between the Jvalues estimated from Nye (1965) and Equation (11 '). This difference is 
attributed to the presence of longitudinal stress gradients which are ignored in the first method 
but which are accounted for in the second, although not perfectly, by the longitudinal averaging 
of the surface slope. Additional factors which might have contributed to the discrepancies are the 
non-parabolic shape of the channel and non-zero sliding rates. 

Accurate values of Jare important because of the non-linearity of Equation (11). To support 
the assumption used in this model that J is time independent, Bindschandler (unpublished, fig. 
7.8) calculated another profile of f values based on the measured geometry and motion of 
Variegated Glacier in 1976 and showed that the variation from the 1973 values was small. 

Flux shapeJactors 

The final parameter to be estimated is the profile of flux shape factor J*. Three different 
methods were used. The first was to use the values of J* versus the half-width to depth ratio 
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(and interpolations between them) calculated by Nye (1965). The second was to estimate Q by 
using the seismically measured cross-section and the measured surface velocity averaged over 
the width , which Nye (I965) showed was nearly equal to the velocity averaged over the section 
area, and to apply Equation (8) to calculate f*. This method was possible only at the six lettered 
sections. The third method used field measurements of elevation change and mass balance (over 
the 1973- 74 balance year) and Equation (I) to obtain a longitudinal profile of aQ/ax which was 
then integrated along the distance of the glacier. Because neither the elevation change nor the 
mass balance was well known at either end of the glacier, a large offset error in the calculated 
volume flux was expected. The longitudinal variation of Q over the central half of the glacier fits 
the estimates of Q at the individual sections (second method above) exceptionally well, especially 
after a slight rotation (- 5 x 105 m3 year - I km-I) of the Q profile. The physical meaning of 
such a rotation was that a systematic error of either W(I':t.H/ I':t.t) or a W existed. 

Figure 10 presents the estimates of f* by all of these methods. The first method gives nearly 
constant values for the central part of the glacier and is less than the individual section values 
estimated by the second method except for Section E. The differences between these two 
methods may be a result of non-zero longitudinal stress gradients and non-parabolic cross sec­
tions. The third method gives a much larger variation of f* which agrees well with values for the 
individual section. The large discrepancy at Section 8 is not a major concern because the surface 
velocity and flux are so low in this region. The discontinuity at 6.1 km is a result of the entrance 
of a tributary to the mainstream and is discussed below. A final observation is that in the region 
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between 7.6 and 11.6 km, the trend of decreasing f* with distance corresponds to a region of 
positive longitudinal stress gradients and when the longitudinal stress gradients turn negative, the 
trend in f* reverses also (See Bindschadler, unpublished , fig. 3.1). Whether this is coincidence or 
not is unknown. A freehand f* profile following that produced by the third method but 
matching the values at the six sections was the profile used in the predictions of the next section. 

The entrance of a majority tributary alters the otherwise one-dimensional character of the 
glacier causing a discon tinuity in the one-dimensional Aux profile. Lacking sufficient information 
on the flow of the tributary, a simple parametrization of thi s tributary was sought. Because the 
accumulation basins of the mainstream and tributary are adjacent and cover a similar range of 
altitudes and because the tributary also participates in the surge, the tributary volume Aux was 
simply scaled to the mainstream volume flux just above the conAuence. Based on 1973 data the 
tributary flux was estimated to be 44% of the mainstream Aux just up-stream of the conAuence. 
Initial runs of the model showed that this value did not produce any large irregularities in the pre­
dicted depth changes in the vicinity of the conAuence. This ratio was assumed constant for all 
model runs. 

Boundary conditions 

A constant Aux at the head was specified. This is justified by the fact that the upper glacier 
does not participate in the surge. Thus, considering the large depth changes which occur over the 
rest of the glacier, this upper region can be assumed to be in steady state. The lower portion of 
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Variegated Glacier consists of a lobe of stagnant, debris-covered ice. Both the velocity and mass 
balance reach negli gible values well up-glacier from the terminus and the specific boundary con­
dition used does not affect the solution o ver an y significant part of the glacier. A maximum 
all owable residual of 10 m 2 year - 1 in Equation (2) was chosen for the calculations. Thi s 
correspo nds to a 0.0 I m year - 1 uncertainty in the mass balance over a one kilo meter width . A 
time step of O. l year was used. 

Test of model prediction and data 

To test the accuracy of thi s parameterization, the model was run for three years with an 
initial configuration corresponding to the measured September 1973 elevation profile. The result­
ing predictions of depth change were compared with those actually measured in September 1976 
(Figure 11). The agreement is quite good. On the lower glacier the disagreement may be due to a 
poo rl y parameterized mass balance which overestimates the insulating effect of the extensive 
rock cover in thi s region. This is shallow, stagnant ice and has little effect on the behavior of the 
model. Near Section F the scatter of the data is too large to locate the position of maximum 
depth change. A more active tributary would rai se the predicted maximum. The more general 
systematic error in Figure 11 is a reflection of a systematic error between field measurements of 
surface elevation change and mass balance (especially in 1974- 75) (see Bindschadler, 
unpublished, fig. 2.11). 
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PREDICTED ADJUSTMENT OF V ARIEGATED GLACIER 

o 

The model is now used to make predictions about possible future , and past, configurations 
of Variegated Glacier. 

1973 to 1984 

Of major concern is the configuration of this glacier just before the next s urge. The model 
was run for eleven years, from 1973 to 1984, the best estimate of the time of the next surge. 
Figures 12, 13, and 14 show the predicted condition of the glacier at these times. Only one 1984 
profile is shown in each figure, yet a number of models using the various profiles of f, f* and 
flow parameters discussed in the last section were run . The profiles shown in Figures 12, 13 , and 
14 used values of f fit to the measured surface velocity (Fig. 9) and the estimated f* values 
given by the heavy solid line in Figure 10, but the differences in the predicted depth changes 
using different profiles of f and f* were small (see Bindschadler, unpublished , fi g. 8.1). In 
Figure 12, the reference surface is as measured in June 1973 while the initial condition for the 
model is the September 1973 surface. This demonstrates the large magnitude of depth changes 
expected over the last half of the quiescent phase relative to one summer's ablation. From Figure 
13 it can be seen that the dominant tendency is to smooth the flux profile with time. The glacier 
responds quickly in regions of large flux gradients (Equation (I )). Depending on the longitudinal 
variation of the channel cross-section and J * (see Equation (I 2)) this smoothing mayor may 
not smooth the surface velocity (Fig. 14). 

https://doi.org/10.3189/S0022143000011618 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011618


QUIESCENT PHASE OF A SURGE -TYPE GLACIER 

350 r---~~-'---'----.-----~---r--~---------. 

300 

0::: 

~250 
:L 

>-
~ 200 
u 
o 
--l 

!;!:; 150 
w 
u 
a: 
~100 
~ 
(f) 

50 

15 10 
DISTRNCE (KM ) 

5 

Fig. 14 . Predicted center-line velocity profilesJor deplh profi les shown in Figure 12. 

1965 to 1973 

o 

257 

Although the model cannot be run backwards in time (the diffusion term in Equation (I I) 
would produce instabilities), the glacier profile in 1965 just after the last surge can still be 
estimated. By beginning with a 1965 profile the model predictions for 1973 can be compared 
with the actual measurements. By adjusting the 1965 estimate after each run to compensate for 
differences between the 1973 predictions and measurements and maintain smoothness, an 
estimate of the broad-scale features of the 1965 profile can be obtained (Fig. 12). 

Over the region where the bedrock elevation is known, this 1965 estimate produced a 
maximum error of - 5 m in the 1973 prediction with most points within ± 2 m of the measured 
1973 profile. Figures 13 and 14 include the corresponding profiles of volume flux and surface 
velocity. Figure 14 shows that the ice in the reservoir area becomes nearly stagnant immediately 
following a surge. 

Figures 12 through 14 illustrate the predicted changes of Variegated Glacier during a full 
quiescent phase. A maximum depth increase of 80 m is predicted in the reservoir area and a 
depth decrease of 50 m in the receiving area. The region of zero depth change is near Section E, 
not far from the mass-balance equilibrium line. An earlier estimate of this boundary for the 
1964- 65 surge based on aerial photographs placed it much lower on the glacier ; somewhere 
below Section C (Bindschadler and others, 1977). 

If the surge expected in 1984 transformed the 1984 profile to the 1965 estimate, the average 
elevation gain below Section E would be about 30 m. The approximate gain in volume in this 
region would be 2.5 x 108 m 3

. If this volume flowed through section E in a one-year surge, the 
flux would be a fifty -fold increase from the 1973 value. Since the actual surge probably occurs in 
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less than one year, surge velocities probably reach 100 times the 1973 value or about 
360 m year - I. 

Base shear stress 

From each depth profile the corresponding profile of base shear stress can be calculated from 

rb = jpg sin aH (I 7) 

where the slope-depth product is averaged over two kilometers to partially account for 
longitudinal stress gradients. Using values of jfrom Nye's (1965) numerical calculations (which 
assumed no basal slip, no longitudinal stress gradients, and a parabolic bed) shown in Figure 9, 
values of rb were calculated at each center-line position where the depth was known (about every 
500 m). This profile is smoother than the one calculated from the velocity profile (which also 
includes the local slope variations). The choice is not crucial since the following analysis will con­
centrate on changes of rb with time. The smoothed profiles of rb corresponding to the predicted 
geometries for a number of dates are shown in Figure 15. During the surge cycle a large, almost 
consant increase in rb occurs above Section E. Below 12 km rb decreases by, again, an almost 
constant amount. In between the temporal variation is more complex. 

Steady state 

This model cannot simulate the surge itself due to the absence of any sliding contribution to 
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the velocity. During the quiescent phase the glacier attempts to reach a steady-state configura­
tion but this process is interrupted by a surge. However, the model can simulate this approach to 
steady state assuming this unstable behavior were not to occur. The specific steady-state con­
figuration depends on the mass balance. In this model mass balance is a function of distance and 
not altitude, so the computed steady state may be slightly under-estimated. Using the same 
parametrization as before, the model was run for ISO years by which time the depths were 
changing by a negligible amount (less than ± 0.01 m year - I). The profiles of depth change, 
volume flux, surface velocity, and base shear stress for 21, 5 I, and ISO years after 1973 are 
incl uded in Figures 12, 13, 14, and 15. The model predicts that the steady-state configuration 
would be much thicker than that at any time during the quiescent phase. The maximum depth 
would be 520 m (Section E). The steady-state volume flux (Fig. 13) equals the balance flux 
everywhere by definition. For a periodically surging glacier, this equality must hold when 
integrated over a complete surge cycle. Thus the balance flux must be higher than the volume 
flux throughout the quiescent phase but less than the fluxes realized during the surge. The pre­
dicted steady-state velocity profile bears little resemblance to the velocity profile at any time 
during the quiescent phase (Fig. 14). The double peak (at 4.8 and 6.8 km) is still present but the 
maximum velocity of 310 m year - 1 would occur much further down-glacier. The predicted base 
shear stress (Fig. 15) reaches a maximum of nearly two bars; maintaining the same general 
spatial variation as in 1973 but about 0.7 bar higher. 

The volume of the glacier in 1973 was calculated as 3.43 x 109 m3
. The 1965 estimate was 

I % lower. In 1984 the volume had increased less than 3%. These volume changes are negligible 
considering the accuracy limits of the model (about 1 %) and possible errors in the assumed mass 
balance. The steady-state volume, on the other hand, is 41 % greater than in 1973. This increase 
in volume begins slowly because the integral of mass balance over the glacier is close to zero and 
the ice is relatively stagnant everywhere. Eventually, the ice in the accumulation region becomes 
thick enough to transport an increasing volume of ice to the lower glacier. This transition from 
stagnant to active ice is examined in more detail below. 

How a non-negligible sliding rate affects these predictions cannot be examined quantitatively. 
Additional depth increases (decreases) would occur when the longitudinal gradient of sliding 
velocity has a high negative (positive) value. The indication from field measurements is that, in 
the later stages of the quiescent phase, sliding is becoming more important, yet because the 
inferred longitudinal variation of sliding is similar to that of the velocity due to internal 
deformation, no large deviations in the general behavior of the predictions made here are 
expected. 

Relative importance offlow and mass balance 

The temporal changes in depth that have been predicted for Variegated Glacier are a result of 
two processes: mass balance and ice motion. For a surge-type glacier the relative importance of 
each process varies through the surge cycle. During the surge, ice motion is most important, 
presumably through the action of fast sliding, while immediately following a surge, mass balance 
has been assumed to dominate (Robin and Weertman, 1973). To examine the relative 
importance of mass balance and motion quantitatively, a parameter F is defined as 

1
1 ~Q I . 

F= W fu -Ial· (18) 
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Fig. 16. Profiles of F parameter (Equation (/ 8)) f or depth profiles shown in Figure 12: -- -, - 8(/ 965) ; - --. 
0(/973);---, +11(/984); ---, +21;-·-· -, +150 years since 1973, and ~, -Ial. 

The units of F are meters year - 1; the lower bound is -Ial and is independent of time. A positive 
(negative) F signifies a region where fl ow of the ice is more (less) important than mass balance in 
determining the change of ice depth. 

Figure 16 presents profiles of Ffor five different times between 1965 and steady state (F = O). 
The profile of - Ial is included to illustrate the size of 1(11 W)(~QI ~x) 1 everywhere. The 
succession of profiles shows the formation of a single F -wave that grows and spreads out as it 
travels down the glacier. Within this " wave" , flow is the more important factor in depth changes. 
In 1965 mass balance dominates. The two positive peaks in 1965 are due to the sharp 
boundaries of the reservoir area (Fig. 13) and are probably fictitious due to the sensiti vity of Q to 
errors in either depth or surface slope. By 1973, flow has become more important than mass 
balance only in the vicinity of Section EF. In the final stages of the quiescent phase the region of 
flow-dominated depth adjustments has grown considerably, extending from Section EF to 
Section D, and within it F has increased in magnitude. Assuming no surge were to occur and 
that sliding remain negligible, the growth and movement of this F -wave continues: Behind the 
wave the relative importance of flow decreases and eventually steady state is achieved. There is 
no evidence that more than one wave ever forms. 150 years after 1973, F is near zero 
everywhere except near the terminus . 

DISCU SSION OF SURGE RELEASE MECHANISMS 

Quantitative measures of the base shear stress , and its variation in time and space, permit a 
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limited number of surge release theories to be tested. One theory which can be tested is that by 
Robin and Weertman (1973). Briefly, this theory uses the idea that if the glacier is supported by 
normal stresses on an uneven bed, the lowest normal pressures occur on the down-glacier side of 
bumps in the bedrock and it is in these low-pressure regions that the subglacial water collects, 
draining from one low-pressure pocket to another. According to sliding theories, the magnitude 
of the pressure deviation across a bump is directly proportional to the base shear stress and 
inversely proportional to the bed roughness (Kamb, 1970, equation (123)). Thus, in a region 
where a negative base-stress gradient exists (i.e. base stress decreases down-glacier), the 
magnitude of the pressure deviation around each bump will also decrease down-glacier. This will 
cause a contribution to the pressure gradient between water pockets which decreases up-glacier, 
opposing the normal down-glacier flow of water. If large enough, this gradient could balance the 
gravitational forces thus blocking the drainage of water. Water accumulating up-glacier would 
eventually lubricate the bed enough to initiate a surge. According to Robin and Weertman (1973, 
equation (I 3)), the condition for this to occur is 

or - ox > d)I /2(n: 2G(l[piga + (pw - Pi )gB] (19) 

where Pi and Pw are ice and water density, g is gravitational acceleration, a and fJ are surface and 
bed slope respectively, and ~ and G are parameters used by Kamb (1970) to describe the bed 
roughness and effect on r of the local variations in effective viscosity associated with the bumps. 
To obtain a lower bound for the right-hand side of Equation (19) the lowest value of ~ given by 
Kamb (1970, table 2), 0.007, and the corresponding value of G, 1.5 (Kamb, 1970, fig. 4), were 
used. Values for this expression were calculated every 500 m from the measured 1973 and 
predicted 1984 geometries along with the corresponding base-stress gradients (see Figure 17). 
The inequality required by Robin and Weertman is never satisfied anywhere on the glacier. More 
significantly, the changes from 1973 to 1984 are small for both terms of Equation (I9). This 
strongly suggests that at no time during the later quiescent phase does this type of " pressure 
dam" occur. 

Robin and Weertman hypothesized that mass balance dominated the changing geometry 
during the quiescent phase and thus r would increase (decrease) in the reservoir (receiving) area 
with a zone of growing negative base-stress gradient in between, which they believe would be the 
trigger zone. The results of the model predict that flow plays a major role in the redistribution of 
mass in the mid-to-late quiescent phase (Fig. 16). This prevents the growth of a large base-stress 
gradient. Further, there seems to be no reason to expect the development of the largest negative 
base-stress gradient where the change in base stress is zero as do Robin and Weertman. This 
region of zero change in base-stress gradient (around 11 to 12 km) is much lower than the trigger 
zone suspected by Bindschadler and others (1977), near section EF. Nevertheless, it is 
conceivable that the negative base-stress effect may be a very local effect. The resolution of 
Figure 17 is not particularly good due to the local variability of depth (and f). It remains 
possible that locally large gradients exist but are beyond the resolution of either Figure 17 or the 
model. 

Another model of surge release has been proposed by Budd (1975). He hypothesizes that 
water produced by the straining of the basal ice layers and sliding lowers the base stress locally 
and allows an increase in the sliding rate. The efficiency of this lubricating process is 
hypothesized to depend on a single parameter, the "lubrication factor," and if it is large enough 
both sliding rate and water production can increase in a positive feedback loop to produce 
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required fO blockflow of basal lVater (Equation / 9). 

surges. In this theory , the critical regions of a glacier are those where Tb u (rate of energy 
di ssipation) is high. Since base stress varies much less than velocity, the critical areas correspond 
to regions of high velocity. The maximum velocity predicted in 1984 is in the broad region 
between Sections EF and F where the maximum energy dissipated is O.6W m - 2

• This location 
agrees in general with the position of the trigger zone suspected by Bindschadler and others 
(1977). This theory, however, ignores the possible additional lubrication effects of water entering 
the glacier from the upper surface by melt water and rainfall. During summer this additional 
water far exceeds the volume produced internally and at the bed and is believed to be responsible 
for the increased velocity of the glacier during the summer months (Bindschadler and others, 
1978). 

Additional support for expecting the surge to begin near the vicinity of Section EF comes 
from examination of the fractional increase in base stress over the glacier during the complete 
quiescent phase. This fractional change was calculated using the 1973 values of base stress as 
the reference, i.e. 

the fractional change is (Tt - T1973)/T1973 

where t was either 1965 or 1984. Figure 18 shows that just down-glacier of Section EF the base 
stress increased dramatically during the quiescent phase. The non-linearity of the flow law 
(Equation (6)) amplifies the corresponding increase in deformation. Without a more reliable 
sliding law the effect of this increase upon sliding can only be assumed, but it is likely to be large 
as well. 
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Fig. 18. Fraclional change in base shear slress (Fig. 15)from 1973 101 965 andfrom 1973 10 1984. 

SUMMARY 

The model presented here has enabled a number of important insights into glacier behavior. 
Studies of test glaciers confirm the sensitive response behavior of the terminus to small 
perturbations of the glacier (Fig. 4) and illustrate the modifications to the motion of kinematic 
waves resulting from diffusion (which quickly spreads the wave out ; see Figs 5 and 6) and the 
valley walls (which slow the wave down ; see Equation (16)). The application of the model to 
Variegated Glacier demonstrates how one can use actual field measurements to determine the 
model parameters accurately (Figs 9 and 10). The fact that this parameterization is insensitive to 
change in the glacier geometry emphasizes the advantage of this particular model. The large 
changes that occur allow a careful study of how a real glacier far out of balance with its climate 
responds (Fig. 16) and provide predictions which can be compared with field measurements 
(Figs 12, 13 , and 14). Finally , the surge-type character of Variegated Glacier permits the testing 
of some theories of surge release using the predictions of the model (Fig. 17) as well as the 
calculation of various dynamic parameters, such as base shear stress (Fig. IS), and the temporal 
changes of these parameters (Fig. 18) which may be important in determining surge behavior. 
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