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Abstract

For a finite group G, denote by µ(G) the degree of a minimal permutation representation of G. We call G
exceptional if there is a normal subgroup N E G with µ(G/N) > µ(G). To complete the work of Easdown
and Praeger [‘On minimal faithful permutation representations of finite groups’, Bull. Aust. Math. Soc.
38(2) (1988), 207–220], for all primes p ≥ 3, we describe an exceptional group of order p5 and prove that
no exceptional group of order p4 exists.
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1. Introduction

For a finite group G, denote by µ(G) the degree of a minimal permutation
representation of G. We call G exceptional if there is a normal subgroup N E G with
µ(G/N) > µ(G). In this case N and G/N are called a distinguished subgroup and a
distinguished quotient of G, respectively.

Easdown and Praeger [1] prove that an exceptional 2-group of least order is of order
25 and give examples of exceptional groups of order 25. They note the existence of
an exceptional group of order p6 for any prime p and raise the question whether an
exceptional group of order p5 exists. In this note, for all primes p ≥ 3, we describe an
exceptional group of order p5 and prove that no exceptional group of order p4 exists.

2. There are no exceptional groups of order p4

Easdown and Praeger [1] deal with the case p = 2. Fix a prime p ≥ 3.
Easdown and Praeger note that distinguished quotients cannot be cyclic or

elementary abelian. If G is a p-group of order at most p3 then for any nontrivial N EG
we have |G/N| ≤ p2, which implies that G/N is either cyclic or elementary abelian, so
not distinguished. Therefore any exceptional p-group G has order at least p4.

For the remainder of this section, assume that G is exceptional of order p4 with N
a distinguished subgroup of G. Similar to the argument above, if |N| > p then G/N is
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either cyclic or elementary abelian and therefore not distinguished, so we must have
|N| = p. Fix a minimal faithful permutation representation of G, ρ : G→ Sym(X), with
orbits X1, . . . , Xk, so that µ(G) =

∑k
i=1 |Xi|.

Lemma 2.1. |Xi| = p2 for each i.

Proof. By [1, Lemma 1.2], N acts intransitively and nontrivially on each Xi. The
orbit–stabiliser theorem tells us that |Xi| divides |G| = p4. If |Xi| = p then the action of
N on Xi would either be transitive or trivial, so |Xi| ≥ p2. Also, as N is distinguished,
|Xi| ≤ µ(G) < µ(G/N). The action of G/N on itself by right multiplication gives
µ(G/N) ≤ |G/N|, so |Xi| < µ(G/N) ≤ |G/N| = p3. Hence |Xi| = p2. �

Theorem 2.2. There are no exceptional groups of order p4.

Proof. Since |Xi| = p2 for each i, we must have µ(G) ≥ p2. Using |G/N| = p3, we
consider the five possible isomorphism classes of G/N, which can be found, for
example, in [2].

As noted by Easdown and Praeger, distinguished quotients cannot be cyclic or
elementary abelian. This excludes G/N � Cp ×Cp ×Cp and G/N � Cp3 .

If G/N � Cp2 o Cp with generators x, y and xy = x1+p, then 〈y〉 is a core-free
subgroup of G/N (for example, yx−1

= yxyx−1 = yxp). Therefore G/N acts faithfully
on the right cosets of 〈y〉, giving µ(G/N) ≤ [G/N : 〈y〉] = p2 ≤ µ(G), so N is not
distinguished.

If G/N � (Cp × Cp) o Cp with generators x, y, z and xz = xy, yz = y, then 〈x〉 is a
core-free subgroup of G/N. As in the last case, this implies that N is not distinguished.

So we are left with G/N � Cp2 × Cp. The minimal degree for abelian groups is
well known (see, for example, [1]). In this case µ(G/N) = p2 + p. Consider the
preimage H of Cp2 in G. Since N is central and Cp2 is cyclic, H is abelian of order
p3 containing an element of order p2. This means H � Cp3 or H � Cp2 ×Cp. In either
case µ(G) ≥ µ(H) ≥ p2 + p = µ(G/N) so N is not distinguished. �

3. An exceptional group of order p5

Fix a prime p ≥ 3. For this section, let G be the group generated by g, h subject to
the relations

gp2
= hp2

= [g, h]p = 1,
[[g, h], g] = [[g, h], h] = gp.

Also, let N be the subgroup generated by gphp. We show that |G| = p5, N ≤ Z(G),
µ(G) ≤ 2p2 and µ(G/N) = p3. Thus G is exceptional with distinguished subgroup N.
For p = 2, two exceptional groups of order p5 exist and are given in [1].

Proposition 3.1. G can be identified with (Cp2 o Cp) o Cp2 where the two copies of
Cp2 are generated by g and h respectively, and Cp is generated by [g, h]. In particular,
|G| = p5.
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Proof. Straightforward calculations give g[g,h] = g[g, [g, h]] = g[[g, h], g]−1, so the
relations on G give g[g,h] = g1−p. Thus [g, h] normalises 〈g〉. Moreover, 〈[g, h]〉 is
simple and [g, h] does not commute with g, so 〈[g, h]〉 ∩ 〈g〉 is trivial and 〈g, [g, h]〉 �
Cp2 oCp.

A similar calculation gives gh = g[g, h] and [g, h]h = [g, h][[g, h], h] = [g, h]gp. To
see that 〈g, [g, h]〉 ∩ 〈h〉 is trivial, notice that G/〈g, [g, h]〉 has generator h and relations
hp2
= 1, so hp < 〈g, [g, h]〉. Hence G � (Cp2 oCp) oCp2 . �

Proposition 3.2. 〈gp, hp〉 = Z(G). In particular, N ≤ Z(G).

Proof. We begin by showing that gp ∈ Z(G). Using the identification in
Proposition 3.1, it is a standard result that Z(Cp2 o Cp) = 〈gp〉. (To see this, one can
check that gp ∈ Z(Cp2 oCp), then note that |Z(Cp2 oCp)| = p otherwise Cp2 oCp would
be abelian.) Now, Z(Cp2 oCp) = 〈gp〉 is characteristic in Cp2 oCp, so fixed by h under
conjugation. There are no automorphisms of 〈gp〉 of order p, so h must commute
with gp. Therefore gp ∈ Z(G).

We show by induction on i that ghi
= g[g, h]ig(1/2)i(i−1)p. Therefore ghp

= g and
hp ∈ Z(G). Recall from the proof of Proposition 3.1 that [g, h]h = [g, h]gp. Then

ghi+1
= (g[g, h]ig(1/2)i(i−1)p)h

= gh([g, h]i)hg(1/2)i(i−1)p

= g[g, h]i+1gipg(1/2)i(i−1)p

= g[g, h]i+1g(1/2)i(i+1)p.

For 〈gp, hp〉 = Z(G), consider G/〈gp, hp〉. It is easy to see that this is isomorphic
to (Cp × Cp) o Cp, where the generators of the Cp are the images of g, [g, h] and h.
Following a similar argument as for Cp2 oCp, it follows that Z(G/〈gp,hp〉) is the cyclic
group generated by the image of [g, h]. If |Z(G)| > p2 then this implies [g, h] ∈ Z(G),
but this is not true (for example, [[g, h], h] = gp). So Z(G) = 〈gp, hp〉. �

Proposition 3.3. µ(G) ≤ 2p2.

Proof. To show this, we describe a faithful representation of G of degree 2p2.
Let H1 = 〈g, [g, h]〉 and H2 = 〈gh−1, [g, h]〉. Consider the natural action of G on

the set of right cosets G/H1 tG/H2. This is faithful if and only if coreG(H1 ∩ H2) is
trivial.

Recall from the proof of Proposition 3.2 that G/Z(G) = (Cp × Cp) o Cp. It is a
standard result that this group has exponent p, so (gh−1)p ∈ Z(G). Following the
identification in Proposition 3.1, (gh−1)p is nontrivial as its image in G/(Cp2 × Cp)
is nontrivial, so gh−1 has order p2.

From the above, it follows that H1 ∩ H2 = 〈[g, h]〉 so coreG(H1 ∩ H2) is trivial, and
that |H1| = |H2| = p3 so |G/H1 tG/H2| = 2p2 as required. �
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Proposition 3.4. µ(G/N) = p3.

Proof. The quotient G/N can be described with generators a = Ng, b = Nh and
relations

ap2
= bp2

= apbp = [a, b]p = 1,
[[a, b], a] = [[a, b], b] = ap.

Following an argument similar to the calculation of Z(G) in the proof of
Proposition 3.2, Z(G/N) = 〈ap〉. Since any normal subgroup of a p-group intersects
the centre nontrivially, this means any nontrivial normal subgroup of G/N contains
Z(G/N). Therefore any minimal representation of G/N is given by the coset action of
G/N on some core-free subgroup of G/N of largest order.

Suppose that K is some such subgroup. Noting that 〈[a, b]〉 is core-free, we must
have |K| ≥ p. If K meets 〈a〉 or 〈b〉 nontrivially then it meets Z(G/N) nontrivially.

Consider K ∩ 〈a, [a, b]〉, this must be trivial or cyclic of order p. If it is trivial
then K is isomorphic to its image in (G/N)/〈a, [a, b]〉 which has order p, so µ(G) =
[G : K] = p3. So suppose that K ∩ 〈a, [a, b]〉 is generated by ai[a, b] j for some i, j.
If p - i then, using aa−1b = a[a, b] and [a, b]a−1b = [a, b], we can find an appropriate
conjugate of K in G containing ai, contradicting the fact that K is core-free. Therefore
K ∩ 〈a, [a,b]〉 = 〈aip[a,b]〉 for some i. Since [a,b]b = [a,b]ap, we may consider instead
Kbp−i

, so we may assume that K ∩ 〈a, [a, b]〉 = 〈[a, b]〉.
Now suppose that K > 〈[a, b]〉. If |K| = p3 then K is maximal and therefore

normal in G/N, contrary to assumption. Therefore |K| = p2, so K is abelian. In
particular, K ≤ CG/N([a, b]). Clearly [a, b], ap ∈ CG/N([a, b]) and it is easy to check
that ab−1 ∈ CG/N([a, b]), so CG/N([a, b]) = 〈[a, b], ab−1, ap〉 and K = 〈[a, b], ab−1x〉 for
some x ∈ Z(G/N).

It is noted as a result of Corollary 12.3.1 in [2] that if |H| = pk for some group H with
k ≤ p then H is regular. That is, if u, v ∈ H then (uv)p = upvpcp for some c ∈ [H,H].
For p ≥ 5 we may apply this to G, noting that [G,G] = 〈[a, b], ap〉 � Cp ×Cp, to obtain
(ab−1)p = apb−p = ap2

. In the case p = 3 we can calculate (ab−1)3 as follows:

ab = a[a, b]
ab2
= ab[a, b]b

= a[a, b]2a3

(ab−1)3 = aabab2
b−3

= a2[a, b]a[a, b]a3b−3

= a3[a, b]a[a, b]a3b−3

= a3[a, b]a3[a, b]a3b−3 = b−3.

In either case, (ab−1x)p = (ab−1)p < 〈[a, b]〉, contradicting the earlier result that
|K| = p2. Therefore K = 〈[a, b]〉 and µ(G/N) = [G : K] = p3. �
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