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Abstract

A two-bridge knot (or link) can be characterized by the so-called Schubert normal form Kpq where p
and q are positive coprime integers. Associated to Kpq there are the Conway polynomial VKp q(z) and
the normalized Alexander polynomial AKP,(I)- However, it has been open problem how ^Kpq(t) and
&KP, (') a r e expressed in terms of p and q. In this note, we will give explicit formulae for the Conway
polynomials and the normalized Alexander polynomials in the case of two-bridge knots and links. This
is done using elementary number theoretical functions in p and q.
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1. Introduction and statement of results

Let A" be a knot (or link) in K3, and let AK(t) be the normalized Alexander polynomial

(reduced when K is a link) for K. There is also the Conway polynomial V^(z) of

K in the variable z- The Conway polynomial is related to the Alexander polynomial

A HO by the equation:

(1-1) VK(rl'2-t1/2) = AK(t).

A two-bridge knot (or link) can be characterized by the so-called Schubert normal

form KPiq where p and q are positive coprime integers. (Figure 1 illustrates the

diagram #5,3.) The reader is referred to Burde-Zieschang [3] or Kawauchi [9] for more

detailed description of Kpq. It is known that Kpq is a knot if p is odd, respectively, a

two-component link if p is even. (Figure 2 illustrates the two-component'link KiX.)
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150 Shinji Fukuhara [2]

FIGURE 1. The knot K5ii.

Throughout this article, we use the notation Kpq for an oriented knot (or link)
which are represented by the diagram Kpq. Our main purpose of this note is to
express explicitly the Alexander polynomials and the Conway polynomials of Kpq in
terms of p and q. Explicit descriptions of these polynomials have been sought after by
many knot theorists (see [7,8] for algorithms of calculating the Alexander polynomials
of Kp<q). However, the problem has been rather intractable. One motivation stems
from the same problem for a torus knot Tpq of type (p, q). For Tpq, the Alexander
polynomial has a beautiful simple expression given as follows:

(t -1/2 _ tXll){t~pql2 — tpq/2)

Unfortunately, in the case of Kpq, one cannot hope to obtain such a nice expression
for the Alexander polynomial.

One of the reasons is the fact that Kpq is equivalent to Kpq+2p while Tpq is
not equivalent to Tpq+2p in general (this means that AKpq+2p{t) should coincide with
AKp<i(t) while ATpq+lp(t) and ATpq(t) can be independent).

In order to obtain explicit expressions for AKpq(t), we should look for a function
/ (p, q) in p and q satisfying the following equation:

(1.2) f(p,q)=f(p,q

It should be remarked that such a function is related to Dedekind symbols introduced
in [6]. This function should be of great interest from a number theoretical view point,
see, for example, [1, 10].
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FIGURE 2. The two-component link Kt i.

Hence we introduce functions e,, /x and vk as follows. First let us fix notation;
by [x], we denote the greatest integer not exceeding x e R.

DEFINITION 1.1. For integers i and k, we define e({p, q), n-(p, q) and vk(p, q) by

P-I p-\

> a n d vk{p, q) := I+

It can be checked easily that these functions satisfy (1.2). We also know that

vaip,q) = fi(p,q) + 1.
In what follows, we write simply e,, /x and vk instead of £,(p, q), ix(p, q) and

vk(p, q) to ease the notation. Though the reader should keep in mind that £,, ix and vk

do depend on p and q.
Furthermore, whenever we are dealing with a two-bridge knot Kp q, we may assume

without loss of generality that q is odd (as any two-bridge knot can be reduced to such
a case).

We can now give an explicit formula for (reduced) normalized Alexander polyno-
mial Ar . The results are formulated as follows:

THEOREM 1.2. (1) For a two-bridge knot KPA,

(1.3)
k=\
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(2) For a two-bridge link Kpq,

(1.4) A*M(r) = ±(r">2 - t»'2) - \(r"2 -11'2)

Next we will consider the Conway polynomial of Kpq. Note that the Alexan-
der polynomial can be derived easily from the Conway polynomial by substituting
t~l/2 — tl/1 for z. However, the other way around is not so easy. Thus, by the aid of
the Lucas polynomials, we will transform the Alexander polynomial to the Conway
polynomial (the definition of the Lucas polynomials will be given in Section 5). Our
result is formulated as follows:

THEOREM 1.3. (1) For a two-bridge knot Kp<q,

Vk

-ire* ' (jv*l/2-l/2-;T + l
fe |vt|/2+ 1/2+7 Vlv*|/2- 1/2

(2) For a two-bridge link Kpq,

k=\ j=0

Here we regard

when \fi\ = _/ = 0 (respectively \vk\ = j = 0).

Finally we present an alternative formula for VKpq(z) by describing its coefficients
explicitly. For a knot (or link) K, let a, (#•) denote the j th coefficient of the Conway
polynomial V^(z), that is,

7=0

Then a; (V^ ?) is expressed as follows:
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THEOREM 1.4. (1) For a two-bridge knot Kpq,

ao(Kp,q) = 1, a2J+l(Kp,q) = 0 (/ > 0),

1

22J+2(2j + 2)!
_m=0

p-\

-(2/+2)

(2) For a two-bridge link Kpq,

- 4m2)

[vl - (2m - I)2}
m=\

153

(j > 0).

1

+1)!

p-1

-(2/ +

Here we regard

f \ [v2
k - (2m - I)2} =

ra=l

when j = 0.

m=\

k=\ m=0

- (2m - I)2} =
m=\ m=0

0" > 0).

2. Some properties of numbers £,, /x and v̂

In order to prove the theorems we need several properties of numbers e,, /x and vk.

LEMMA 2.1. (1) For i such that 0 < i < p, ep_,- = £,.
(2) For i such that 0 < i < p, sp+i = —£,.

(3) ep = -L

PROOF. We recall the assumption that q is odd (namely ( - 1 ) ? = - 1 ) . We also
note that identities [-x] = -[x] - 1 and [n + x] = n + [x] hold for x e K \ Z and
n el. Then we have

(1) £p_,- = (
(2) £p + l = (

(3) e. = (-l)t"/"J = (-!)« = - ! . D
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The following identities can derived using Lemma 2.1.

LEMMA 2.2. (1) For k such that 0 <k < p, £ * ! , e< = M - £ ? J * e>-
(2) For k such that 0 < k < p,

k-\ t ,
M \ ~ ^ £* — 1 Vk 1

- I + E - + - 2 — 2 " 2 -

PROOF. (1) By Lemma 2.1 (1), we have
k-l p-\ k-\ p-\ p-k p-k

(2) Next applying (2) and (3) of Lemma 2.1, we obtain

k-\ ,
. ek- 1

2

*-1
i i

— I 1

f-j" —On J. yVJ -L^Vlllllld / . . J

l=k+l ~ /=1 2

- 1

3. The Wirtinger presentation for the knot (or link) group of Kp<t

In the next section we will obtain the Alexander polynomial A^p? applying Fox
calculus. To do so we first study the Wirtinger presentation for the knot (or link) group

of AT,,,. Let

i .— i>2 "i ' ' ' "2 "i ana u2 .— o2 oj • • • j [ o2

be words in Sx and S2. Put /?i := SiL1S2"1L71 and /?2 := SiZ^Sf'LJ1. From the
diagram Kpq like Figure 1 or Figure 2, the reader can easily read off the following
Wirtinger presentation (also refer to [3, page 208] and note that our relators R^ and R2

are conjugate elements of their relators).
When/? is odd, the knot group of Kpq is presented by G\ := (Si, S2 | R\). When/?

is even, the link group of Kpg is presented by G2 := (Si, S2 | R2).
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4. The Alexander polynomial of a two-bridge knot Kp<q

In this section we will obtain the normalized Alexander polynomial of a two-bridge
knot Kpq from the Wirtinger presentation, applying Fox calculus. From here to
Section 5, we assume p is odd so that Kpq is a knot. We use the following notation: let
a : 1F(S\, S2) —>• 1[t, t~l] be an abelianization map such that a{S\) = t, a(S2) — t.
We also use the symbol («)" instead of a(u).

Since G\ = (Si, S2 | R\) is the Wirtinger presentation of Kpq, we know both
(3/?i/3Si)a and {dR\/dS2)

a are Alexander polynomials. This follows from the theory
of Fox calculus (the reader can refer to [4] or [3, Chapter 9] for Alexander polynomials
and Fox calculus).

We introduce symbols Dx{t) and D2(t):

to emphasize that they are (Laurent) polynomials in t. Then both Dx{t) and D2{t) are
Alexander polynomials for Kpq (not normalized!). In the following lemma we obtain
explicit formulae for Dx{t) and D2(t).

P-\

LEMMA 4.1. (1) Di(t) = I + (t - 1) ^ ekt^''£'+(£k-l)/2.
k=\, k even

(2) D2(t) = -t» + (t - 1) Y et/
E?:'£'+(et"1>/2.

k=l. k odd

PROOF. By the definition of the free derivative 3/3Si, we have

' 3S7

\k=\, k even / k=\, k even

Similarly we have

k=\, k odd

Next we calculate Dx{t) — (3/?i/3Si)" as follows:

3s;
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Similarly, we have

n T rt —1 r — 1 \ a

* ' k=\, k odd

This completes the proof. •

Lemma 4.1 gives a description for the non-normalized Alexander polynomials
for Kpq. To find the normalized Alexander polynomials for Kpq, we need the
following two lemmas.

LEMMA4.2. Dx(t) = -D2(t).

PROOF. From the fundamental formula for free calculus ([2, Proposition 3.4]), we
have

Sending it by the abelianization map, we have

where we used a(R]) = 1.
Since ~l[t, ?"'] is an integral domain, we can cancel t — 1 in (4.1). Hence we have

proved the lemma. •

We study another relation between Dx{t) and D2(t).

LEMMA4.3 . Dx(i) = - t l

PROOF. By Lemma 2.1 and Lemma 2.2, we have

Jt-l p-k

e, + (sk - l)/2 = n - J2 e, + (ek- l)/2 (by Lemma 2.2 (1))

s, + (ep-k - l)/2 (by Lemma 2.1 (1)).
;=i
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Using these identities, we obtain

P-I

D, (0 = 1 + (t - 1) J2 e*fEf:'' ti+(ek'1)/2

k=\, k even

k=l, k even

1 + (t - 1) J2 £kt>
l-^"e'+(£l'-1)/2 (by Lemma 2.1 (1))

t=l, t odd

^{r" + ( i - r I ) J ] £tr^'£'-(£'-1)/2j
I k=\, k odd J

This completes the proof. •

Now we are ready to get the normalized Alexander polynomial for KPA. Set

(4.2) D{t):=r»'2Dx{t).

LEMMA 4.4. D(t) is the normalized Alexander polynomial. Namely, D{t) satisfies
D(rl) = D(t) and D(l) = 1.

PROOF. We know that D,(r) = -fMD2(f"') (Lemma 4.3). This implies £>i(r') =
-f~MD2(r). We also know D{(t) — —D2(t) by Lemma 4.2. Using these identities,
we have

D(rl) = t^Dxir1) = i*1'2 {-r"D2(0} = r"/2D,(0 = D(t).

Furthermore, we have D(l) = Di(l) = 1 which completes the proof. •

Lemma 4.4 shows that D(t) coincides with &Kpq- This is a nice result, but short
of our final goal. We wish to have an expression for A*-,,, with more symmetry
in t and t~l. We will proceed with calculation to find a more symmetric expression
of AK .

LEMMA 4.5.

P-I

( 4 . 3 ) 2D(t) = r M / 2 + r M / 2 + ( r - l ) £ ( - l ) * £ * '
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PROOF. We have

2D(t) = r^Diif) - t~^'1D1(f) (since Dx{t) = -D2{t))

k=l, k even

P-\

el2-{t-l) J2 skr^/2+^e'+^-i)/2 (by Lemma 4.1)
*=1, k odd

p - \

k=\

Before reaching the final form of A*:p?, we need further modification of (4.3).

LEMMA 4.6.

1 1 ""'
(4.4) D{t) = -(t^2 + e'1) - -{rx'2 -

PROOF. Applying (2) of Lemma 2.2, we have

in/,\ t—M/2 I tn/2 \ (t \ \
LL)\l) — X T I ~T \I — I)

p-\

= rM/2 + rM/2 _ ( r l / 2 _ ,1/2) ^ ( _ l ) t e t r - * / 2 .

t=l

This implies the lemma. D

Now we are ready to prove (1) of Theorem 1.2.

PROOF OF (1) OF THEOREM 1.2. From (4.4) and the fact that D(t) = D(rx), we
have

P-\

(4.5) 4D(t) = 2(rM/2 + rM/2) - ( r 1 / 2 - r1/2)

This gives us a more symmetric form (1.3) of AKP completing the proof. •
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5. Lucas polynomials

In this section we study Lucas polynomials. These polynomials are used to trans-
form the normalized Alexander polynomials to the Conway polynomials.

Let z = r 1 / 2 - t1/2 and Vn = (r1 / 2)" + ( - r 1 / 2 ) \ Then Vn is expressed as a
polynomial in z , say Vn(z), as follows:

[n/2]

(5.1) Vn(z) =

These polynomials are called Lucas polynomials and are characterized by

Vn(z) = zVH.i(z) + Vn-2(z) (V0(z) = 2, Vx(z) = z).

The reader can refer to, for example, [5] for basic properties of Lucas polynomials.
From (5.1) we obtain the following lemma.

LEMMA 5.1. Supposethatz = t~1/2 — tl/2. Then the following identities hold:

+7

-J.

Here we regard (2k/(k + j)) (*+•{) = 2 when k-j = 0.

The following identities are obtained easily from Lemma 5.1. These formulae are
not used in this paper; however, they are of interest on their own right.

COROLLARY 5.2. Let AK(t) = £*=o ak(t~k + tk) be the Alexander polynomial of
a knot K. Then the Conway polynomial V^(z) of K is

2k (k+j\zV

k=0 J=0-+JV~J

Now we obtain Conway polynomial of a two-bridge knot.

PROOF OF (1) OF THEOREM 1.3. Suppose that z = rl/2 - tl/2. Seeing that /x is
even and vk is odd (since p is odd), we have

1 _^2 ^ i _i/2 ]/2 ^ k _n/2 n / 2
D(t) = - ( t * + f ' ) - - { t I - t > ) 2 _ / - l ) e k ( t - t )
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4( f ; ~ r / ) t r ( ~ 1 } '

! P-I (Iwtl-lV
\—^ k \—^

k=\ j=0

(by Lemma 5.1)

1 ) t . ^ ^ / |vt | /2+l/2+A 2

t^ | | / 2 + l / 2 + A l t | / 2 - l / 2 - ; 7

This implies (1.5) completing the proof. •

To describe the coefficients of the Conway polynomials, we need the following two
lemmas. These lemmas can be shown by direct computation, and proofs are left to
the reader.

LEMMA 5.3. Let /z and j be integers such that j > 0. Then

LEMMA 5.4. Let v and j be integers such that j > 0. Then

v /M/2+1/2 + A v ^ [ 2 _ 2.

\v\/2+l/2 + j\\v\/2-l/2-j) 2̂ (2; +1) !^^ (m M "

Finally, we obtain the coefficients of the Conway polynomial of a two-bridge knot.

PROOF OF (1) OF THEOREM 1.4. From (1.5) and Lemmas 5.3 and 5.4, we have

= l
K" 2

IVil/2+1/2+7

.+ 1/2 + A 2j+2

-l/2-;T
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[13] Explicit formulae for two-bridge knot polynomials 161

, lMl/2 , j - \

j=0 y J '' m=0

Taking the (2/ + 2)th coefficient in the last expression, we obtain Theorem 1.4 (1). •

6. Polynomials of a two-bridge link Kp<9

In this section we assume that p is even, in which case Kpq is not a knot but a
two-component link. We will describe the Alexander and Conway polynomials. More
precisely, we give proofs of (2) of Theorem 1.2, Theorem 1.3 and Theorem 1.4. We
set

Then both E\ (t) and £2(0 are reduced Alexander polynomials for the two-bridge link
Kpq. They are calculated as:

p-i

LEMMA 6.1. (1) £,(?) = 1 - t» + (t - 1) £ skt^
:'e'+(e"-1)/2.

k=l, k even

(2) £2(r) = ( r - l ) ^ M & ' + ( £ ' - 1 ) / 2 .
*=1, i «W

PROOF. We take the free derivative d/dS\ of L2 and then abelianize it:

\Jb=l, k even

= E *
k=\, k even

Similarly, we have

952 / _ , . * „ «
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Next we calculate £,(r) = (dR2/dSl)
a as follows:

k=l, k even

Similarly, we have

^ - (s,L2SrV^£)

This completes the proof. •

Now we need two lemmas which show fundamental properties of E\ (t) and E2{t).

LEMMA 6.2. Ex(t) — —E2(t).

PROOF. The proof is the same as that of Lemma 4.2. •

Next we study another property of E2(t).

LEMMA 6.3. E2{t) = -t

PROOF. Recall that

Then we have

E2{t) =

=

(t-

(t-

E2(t) = (t-

P-\

i) 22, Skl

k=\, k odd

p - 1

i) Yl Ski
k=\, k odd

P

1) ]
k=\.

- 1

~v y

k odd

•(£t-l)/2

£,+(£t-D/2 (by Lemma 2.2 (1))
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P-\
= ( f - l ) J2 ep_ktn-T£«He,-t-i>/2 (by Lemma 2.1(1))

k=\, k odd

p - 1

= (t - 1) ^ £*'M~E'=1 £'+(£'"1)/2 (note that p is even)
i = l , k odd

= /*|(r-l) ? £r^-^/2-'/4
I *=1, t odd J

t=l, t odd

This completes the proof. •

Now we are ready to get the normalized Alexander polynomial for Kpq. We put
E(t) = -r^2

LEMMA 6.4. E{t) is the normalized Alexander polynomial. Namely, E{t) satisfies

E(t)
and \\m ^ J ^ = lk(KPiq),

where lk{Kp q) is the linking number of the oriented two-component link Kp q.

PROOF. We have

Furthermore, we have

l i m
,-1/2 _ ,1/2 - li™ ,-1/2 _ ,1/2

t=l, i odd

(I
i = l , it odd i = l , k odd

Then we can easily identify the last term YH2\ k odd e* ^ r s t w ^ n St=2i £2it-i» and then
with lk(Kpq) (refer to [3, page 185]). These imply that E(t) is normalized. •

The following form of E(t) is also useful.
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LEMMA 6.5.

(6.1) E(t) =

PROOF.

(6.2) 2E(t) = -i

I

x/2.
\

Shinji Fukuhara

1

2

l2E2(t) + r^2El(t)
p - 1

* = 1 , * odd

p - 1

fc=l, k even

e + r»<21

p - i

p-i

k=\

p-1

k=\

{-\)kskr^2.

-M/2

-t

Ef--;«.+ta-i)/3

[16]

^ ( _ 1 ) t f i / t r v t / 2 - i / 2 (by Lemma 2.2 (2))

(6.3) *-i

= r-M/2 _ ^/2 _ ( f-l/2 _ f l / 2 )

Now we are ready to prove (2) of Theorem 1.2.

PROOF OF (2) OF THEOREM 1.2. From (6.1) and the fact that E{t) = -E(r]), we
have

1 p~l

2E(t) = (r"/2 - t»/2) - - ( r 1 / 2 - rI/2) J](-l)*£t(r-Vl/2 + tVk'2).
k=\

This implies (1.4). D

Next we obtain the Conway polynomial of a two-bridge link.

PROOF OF (2) OF THEOREM 1.3. Suppose that z = t~x>2 — r1/2. Observing that ix is
odd and vk is even (since p is even), we have

1 1 "~l

E{t) = - ( r * / 2 - r*/2) - -(r"1/2 - r1/2) ^ ( - D ^ e ^ r ^ / 2 + f>'2)

1 1 " - 1

i i 1 / 2 - tl/2)
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[17] Explicit formulae for two-bridge knot polynomials 165

1/2 + A N / 2 - 1 / 2 -

rV+l

This implies (1.6). D

Finally, we prove (2) of Theorem 1.4.

PROOF OF (2) OF THEOREM 1.4. Suppose that z = r 1 / 2 - r1/2. Then we have,

_ l
Kp< 22 fe \ii\/2+l/2+j\\ii\/2-l/2-j

m=0

by Lemmas 5.3 and 5.4. Taking the (2/ + l)th coefficient in the last expression, we
obtain (2) of Theorem 1.4. •
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