J. Austral. Math. Soc. (Series A) 27 (1979), 163-166

A NOTE ON THE CONJUGACY OF CARTAN SUBALGEBRAS

DAVID J. WINTER

(Received 3 May 1978)

Communicated by D. E. Taylor

Abstract

The conjugacy of Cartan subalgebras of a Lie algebra L over an algebraically closed field under the connected automorphism group G of L is inherited by those G-stable ideals B for which B/C_i is restrictable for some hypercenter C_i of B. Consequently, if L is a restrictable Lie algebra such that L/C_i is restrictable for some hypercenter C_i of L, and if the Lie algebra of Aut L contains ad L, then the Cartan subalgebras of L are conjugate under G. (The techniques here apply in particular to Lie algebras of characteristic 0 and classical Lie algebras, showing how the conjugacy of Cartan subalgebras.)

Subject classification (Amer. Math. Soc. (MOS) 1970): 17 B 40, 17 B 45, 20 G 15.

The conjugacy of Cartan subalgebras over algebraically closed fields of characteristic 0 does not carry over to characteristic p > 0, since there are instances of a Lie algebra having Cartan subalgebras with different dimensions. However, we do have the following theorem for algebraic Lie algebras $\mathbf{G} = \text{Lie } G$ over an algebraically closed field k of characteristic $p \ge 0$.

THEOREM 1 (Humphreys (1967)). The Cartan subalgebras of the Lie algebra $\mathbf{G} = Lie \ G$ of a connected algebraic group G are all conjugate under AdG.

The purpose of this note is to show that Theorem 1 together with Theorem 2 (below) can be used to establish the conjugacy of Cartan subalgebras of a Lie

This research was supported by the National Science Foundation.

Throughout the paper, the ground field is an algebraically closed field k of characteristic $p \ge 0$.

DEFINITION 1. A Lie algebra L over k is *restrictable* if either p = 0 or p > 0 and $(ad_L L)^p \subset ad_L L$. An ideal B of L is a *restrictable ideal* of L if B is restrictable as a Lie algebra.

Restrictable Lie algebras are just those Lie algebras which can be given the structure of a restricted Lie algebra (Jacobson (1968)). The condition 'restrictable ideal' used here is much weaker than the condition 'restricted ideal' in restricted Lie algebras.

THEOREM 2 (Winter (1970)). Let L be a restrictable Lie algebra with restrictable ideal B. Then every Cartan subalgebra of B is the Fitting null space $B_0(ad(H \cap B))$ in B of $ad(H \cap B)$ for some Cartan subalgebra H of L.

DEFINITION 2. The *i*th hypercenter C_i of L is defined recursively by $C_0 = \{0\}$ and $C_{i+1} = \{x \in L \mid [x, L] \subset C_i\}$ for i = 1, 2, ...

PROPOSITION 1. Every Cartan subalgebra \mathbf{H} of a Lie algebra \mathbf{L} over k contains all of the hypercenters of \mathbf{L} .

PROOF. We can assume that the center C_1 of L is nonzero (otherwise the hypercenters are all 0). Since H contains C_1 and H/C_1 is a Cartan subalgebra of L/C_1 (for example, see Theorem 3 below), H/C_1 contains the hypercenters of L/C_1 , by induction, so that H contains the hypercenters of L.

The following theorem, due to Barnes and, later, Block, is proved in Winter (1972), p. 127.

THEOREM 3. Let $\varphi: \mathbf{L}_1 \to \mathbf{L}_2$ be a surjective homomorphism of Lie algebras over k. Then for every Cartan subalgebra H of \mathbf{L}_1 , $\varphi(\mathbf{H})$ is a Cartan subalgebra of \mathbf{L}_2 . Moreover, every Cartan subalgebra of \mathbf{L}_2 is of the form $\varphi(\mathbf{H})$ for some Cartan subalgebra H of \mathbf{L}_1 .

THEOREM 4. Let L be a restrictable Lie algebra, B an ideal of L such that B/C_i is restrictable for some hypercenter C_i of B. Then if G is a group of automorphisms of L stabilizing B and if any two Cartan subalgebras of L are conjugate under G, then any two Cartan subalgebras of B are conjugate under G. **PROOF.** Define L_i , B_i recursively by $L_0 = L$, $B_0 = B$ and

$$\mathbf{L}_{j+1} = \mathrm{ad}_{\mathbf{B}_j} \mathbf{L}_j = \{ \mathrm{ad} \ x |_{\mathbf{B}_j} | \ x \in \mathbf{L}_j \}, \quad \mathbf{B}_{j+1} = \mathrm{ad}_{\mathbf{B}_j} \mathbf{B}_j = \{ \mathrm{ad} \ x |_{\mathbf{B}_j} | \ x \in \mathbf{B}_j \}.$$

Then L_i is restrictable. And, since the ideal B_i of L_i is isomorphic to B/C_i , B_i is also restrictable. Thus, any Cartan subalgebra of B_i has the form $B_{i0}(ad(H \cap B_i))$ for some Cartan subalgebra H of L_i (Theorem 2). Since any two Cartan subalgebras of L_i are conjugate under the induced action of G on L_i (as one easily sees using Theorem 3), it follows that any two Cartan subalgebras of B_i are conjugate under the induced action of G on B_i . But then any two Cartan subalgebras of B are conjugate under G, since the Cartan subalgebras of B contain C_i (by Proposition 1) and B_i is isomorphic to B/C_i (see Theorem 3).

COROLLARY 1. Let $\mathbf{G} = \text{Lie } G$ where G is a connected algebraic group. Let \mathbf{B} be an Ad G-stable ideal of \mathbf{G} such that \mathbf{B}/\mathbf{C}_i is restrictable for some hypercenter \mathbf{C}_i of of \mathbf{B} . Then the Cartan subalgebras of \mathbf{B} are conjugate under AdG.

PROOF. By Theorem 1, this follows immediately from Theorem 4.

COROLLARY 2. Let L be a Lie algebra such that adL is contained in the Lie algebra of the connected automorphism group G of L. Suppose that L/C_i is restrictable for some hypercenter C_i of L. Then the Cartan subalgebras of L are conjugate under G.

PROOF. Apply Corollary 1 to $\mathbf{G} = \text{Lie } G$ and ad L to show that the Cartan subalgebras of ad L are conjugate under Ad G, whence the Cartan subalgebras of L are conjugate under G.

The conjugacy of the Cartan subalgebras of a Lie algebra of characteristic 0 follows immediately from Corollary 2.

To illustrate Theorem 4 and to show that it is more general than Theorem 1, we now give a simple proof of the conjugacy of Cartan subalgebras of classical Lie algebras based on Corollary 1.

THEOREM 5 (Seligman (1957)). Let L be a classical Lie algebra of characteristic p > 3. Then the Cartan subalgebras of L are conjugate under the connected automorphism group of L.

PROOF. L has the form $L = [G, G]/C_1$ where C_1 is the center of [G, G] (for example see Humphreys (1967), p. 22). Since L is restrictable by Seligman (1967), p. 48, Corollary 1 applies to B = [G, G]. Thus, the Cartan subalgebras of [G, G] are conjugate under G, whence the Cartan subalgebras of $L = [G, G]/C_1$ are conjugate under the connected automorphism group of L.

[3]

References

- C. Chevalley (1951), Théorie des groupes de Lie, Tome 2 (Hermann, Paris).
- J. Humphreys (1967), Algebraic groups and modular Lie algebras, Memoirs of the Amer. Math. Soc. 71, 1-76.
- N. Jacobson (1962), Lie algebras (Interscience, New York).
- G. Seligman (1957), Some remarks on classical Lie algebras, J. Math. Mech. 6, 549-558.
- G. Seligman (1978), Modular Lie algebras (Ergenbnisse 40, Springer-Verlag, New York).
- D. J. Winter (1970), 'Cartan subalgebras of a Lie algebra and its ideals', *Pacific J. Math.* 33 (2), 537-541.
- D. J. Winter (1972), Abstract Lie algebras (Mass. Inst. Tech. Press).

Department of Mathematics University of Michigan Ann Arbor, Michigan 48104 U.S.A.