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THE HARDY SPACE IP ON MANIFOLDS 
AND SUBMANIFOLDS 

ROBERT S. STRICHARTZ 

1. Introduction. It is well-known that the space L1^) of integrable 
functions on Euclidean space fails to be preserved by singular integral opera­
tors. As a result the rather large Lp theory of partial differential equations also 
fails for p = 1. Since L1 is such a natural space, many substitute spaces have 
been considered. One of the most interesting of these is the space we will 
denote by H1^71) of integrable functions whose Riesz transforms are integ­
rable. Recall the Riesz transforms Ri, . . . , Rn are defined via the Fourier 
transform by 

Wte) = ||/(a 
These are the w-dimensional analogues of the Hilbert transform (if n = 1 then 
Ri is the Hilbert transform). 

Now Stein [6] has shown that H1 (Rn) is preserved by all sufficiently smooth 
singular integral operators. In this paper we use that result to extend the basic 
LP results used in the theory of elliptic boundary value problems to the class 
H1. We will show that iJ^R*) is locally preserved by pseudo-differential 
operators of order zero. This enables us to give an invariant definition of 
Hl(M) where M is any compact Cœ manifold without boundary: Hl(M) is 
the space of a l l / G LX(M) such that Tf G Ll(M) for every pseudo-differential 
operator T of order zero. We may also define Sobolev spaces Ha

l(M) of 
distributions having a derivatives in Hl(M). 

Next we characterize the restrictions of functions in Ha
l(M) to open sub-

manifolds and lower dimensional submanifolds. After simple reductions of 
these problems to the Euclidean case our main results are as follows: 

(1) A function f(x, t) 6 L^R 1 " 1 X (0, oo)) is the restriction of an Hl(Rn) 
function if and only if the odd reflection 

F(x, 0 = //(*» 0 if ^ > 0 
\-f(x, - 0 if ^ < 0 

i s in f f^R") -
(2) A function in ^/a

1(Rw) with a ^ 1 has a well-defined restriction to any 
hyperplane. Furthermore if a > 1 the exact class of such restrictions is the 
Besov space A (a — 1; 1, 1). The case a = 1 remains open. 
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916 ROBERT S. STRICHARTZ 

We will use freely without reference material found in Stein [6]. Most of our 
arguments are elementary, but they are based on two deep theorems of Stein 
and Fefrerman (Theorems A and B below). 

It is a great pleasure to acknowledge the assistance of my wife in proving 
Lemma 2. 

2. The definition of Hl(M). We consider IP(Rn) as a Banach space with 
norm 

ll/IUi = ll/lli+ Ê Wil l -
3=1 

We use the following result contained in Stein [6, p. 232]: 

THEOREM A. Let m(Ç) G Lœ(Rn) be Cn+1 away from the origin and satisfy 

(1) | | £ | H ( d M ) a ^ ( £ ) | = M for \a\ ^ n + 1. 

Then the multiplier transformation Tf*(Ç) = w (£)/(£) is bounded on H1^71) 
with norm dominated by a multiple of M. 

It is a simple matter to obtain from this an analogous local result for pseudo-
differential operators of order zero. 

THEOREM 1. Let p(x,£) £ Cœ(Rw X Rw) have compact support in the x-
variable and satisfy 

(2) \(d/dè)"(d/dxyp(x,l;)\ = Ma,p(l+ |£|)-'«i/0r \<*\ £ n + 1, |0| £ n. 

Then the operator 

Tf(x) =fe«Mx,t)Km 

is bounded from Hl(J^n) to L^R71) with a norm depending only on the Ma^ and 
the support of p(x, £). 

Proof. We will show in fact that 

r^lr etxMy, *)/(*)# dxSc\\f\\H. 

Indeed by Sobolev's inequality 

\dy. sup [e^piy^tfiml ^ E f fe^id/dyfpiy,^)^ 

lie other hand by Theorei 

f\feix-i(d/dyfp(y,£)JXm 

On the other hand by Theorem A we have 

=g csup sup W\d/dkT(d/dyYp{y,Ç)\ \\f\\Hu 
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Integrating with respect to y we obtain 

[ sup feix-tp(y,t)f(Odii\dx 

g c f E sup s U p | f | , " l ( a M r ( d / 3 y ) V ( y , « | d y | | / | | H l . 

The integrand vanishes for y outside the support of p(y, £) and is bounded 
because of (2), so the integral is finite. 

At this point it is convenient to handle the problem of localizing H1 func­
tions. Note that multiplying by a function in C°°Com(Rw) will not preserve the 
class H1 because all functions in H1 must have total integral zero. The next 
lemma says in effect that this is the only difficulty. 

LEMMA 1. Let f(x) 6 L^-ÇR?) have compact support and total integral zero. If 
the Riesz transforms Rjf(x) are integrable on a neighbourhood of the support off, 
thenf e H^R"). 

Proof. We must show that Rjf(x) is integrable over the set of x whose dis­
tance to the support of / exceeds e. Using the formula 

Rjf(x) = cP.V.j^JyJj+1f(y)dy 

we see that RJ is bounded on this set. For large values of x we use the fact 
that f f{y)dy = 0 to write 

Rjfix) = cj(|*'_~yfii - ffi)f(y)dy 

and apply the mean value theorem to estimate 

m^^c^r-1 jj\y\\f(y)\dy 

which is integrable. 

We are now in a position to define HX(M) for a compact C°° manifold with­
out boundary M. We fix a smooth measure dx on M equivalent to Lebesgue 
measure in every coordinate system. Let {<£>*} be a C°° partition of unity 
subordinate to a covering by coordinate neighbourhoods and let ypt be a C°° 
function supported in a coordinate neighbourhood satisfying \pi<pi = <pt. We 
define Hl(M) to be the subspace of L1{M) of functions/ for which \l/iRj(<Pif) 
is integrable for all i,j. Here the Riesz transform Rj is taken with respect to 
the local coordinate system. The norm on H1^) is 

l ! / l l i + E Z l l ^ ^ W ) l l i . 
i 3 

https://doi.org/10.4153/CJM-1972-091-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-091-5


918 ROBERT S. STRICHARTZ 

This definition appears to depend on the choice of the partition of unity and 
the local coordinates, but we shall see that in fact it does not. 

Let us recall briefly the definition of pseudo-differential operators [3]. An 
operator T: Cœ (M) —» Cœ (M) is called a pseudo-differential operator of order r 
if \l/tT((pif) is given in local coordinates by 

where 
p(x,£) G Cœ(RnX Rn) 

satisfies 

(3) \(d/dlt)"(d/dxyp(?c, f)| £ Majd + 1^1)^1 

for all a and /3, and (1 — \f/i)T((pif) is given by 

f K(x,y)f(y)dy 
*J M 

where K G Cœ(M X M). 

THEOREM V. If T is a pseudo-differential operator of order zero, then T is a 
bounded operator on Hl(M). 

Proof. Since f—+\piRj (<pif ) is also a pseudo-differential operator of order 
zero, and these form an algebra under composition, it suffices to show 
11Tf ||i S c\\f\\Hi. Now 

Tf = E tiTterf) + E (1 - ti)T(vif), 
i i 

so it suffices to estimate each term separately. We have easily 

IKi-^rWMIi-sci i / i ix 
so it remains to estimate ypiT^if). 

Now ytf in local coordinates need not be in H1, but this is easily remedied. 
We consider cptf + g where g is chosen to make the total integral zero in local 
coordinates, and ^ f C°°com with support on the set where \pi = 1. Easy 
estimates show \f/iRjg G L1, so by the hypotheses and Lemma 1 we have 
<Ptf + & £ Hl(Rn) in local coordinates (it is clear we may also choose g so that 

AW<f + g\\**C\\\f\\l + Z ||lM?,(*<f)||l 

Applying Theorem 1 we obtain 

IhMW + ^ H x ^ d i ^ + siUi. 
But | \$tTg\ |i can be easily estimated in terms of g and its derivatives, so we have 

l l ^ ^ < / ) l l i ^ c ( | | / | | i + Z ||iMe,W)||i 
as desired. 

• 
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COROLLARY. A function f belongs to H1 (M) if and only if f G Ll(M) and 
Tf G Ll(M) for every pseudo-differential operator T of order zero. 

Proof. If / G H1 (M) then Tf G Ll(M) by Theorem 1'. For the converse we 
have only to observe that /—> iptRjiVif) is a pseudo-differential operator of 
order zero. 

We may now define the space Ha
l(M) for any real a to be the image of 

Hl(M) under any invertible elliptic pseudo-differential operator of order —a. 
Equivalently, / G HJ(M) if and only if Tf G Ll(M) for every pseudo-
differential operator T of order a. 

3. Restr ic t ions and extensions. Let us denote points in Rw by (x, t) 
with x G Rw-1 and t G -R1. Let g(x) be a real-valued function on i ^ _ 1 which is 
uniformly Lipschitz, \g(x) — g(y)\ ^ A\x — y\. Let fiCRn be the set of 
points where t > g(x). We define H1^!) to be the set of restrictions to 12 of 
functions in if^R7*). We give i7x(12) the natural norm 

\\f\\Hi = mî{\\F\\Hi:FeHi(R») and f | 0 = / } . 

Suitably interpreted, the above definitions make sense for n — \ where 
12 = \t : t > g} and g is a constant. 

THEOREM 2. Le* £ : L 1 ^ ) -> L^R*) 6e the odd reflection 

'f(x,t)> ift>g(x) 
Ef(x,t) {_f{x^g(x) _ t)i ift<g(x) 

(since the boundary t = g(x) has measure zero we need not define Ef there). Then 
f G H1 (SI) if and only if Ef G i r ( R " ) , and \\Ef \\Hi ^ cC4)| |/ | |*i. 

To prove the theorem we make use of Fefferman's characterization of the 
dual space of H^R") [2]. We denote by BMO(RK) the space of functions of 
bounded mean oscillation on Kn defined as follows: an element of BMO(Rw) is 
an equivalence class of locally integrable functions, modulo constant functions, 
satisfying 

(4) ^jQ\m-aQ\dx£M 

for some constant aQ and every cube Q C Kn. The norm is the least such M. 
It is clear that the optimal value for aQ is the mean value of/ on the cube Q. 

THEOREM B [2]. The dual space of ^(R?1) is BMO(Rw) under the usual 
pairing and with an equivalent norm. 

The restriction problem for BMO is easier to deal with than for H1. Let us 
first observe that (4) holds for a larger class of sets. In fact we have 

(5) ^)§Jf(x)-aD\dxSbM 
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for some constant aD for every set D with the property that there exists a 
cube Q 2 D such that m(Q) ^ bm(D). Indeed we need only set aD = aQ and 
observe 

We call such sets D ^-quasicubes. We may then define BMO&(Q) to be the set 
of equivalence classes of locally integrable functions on 12 for which (5) holds 
for every &-quasicube contained in 12. 

LEMMA 2. There exists a constant depending only on n and A such that the 
following three conditions are equivalent {with norm equivalence) : 

(i) / G BMO&(12) for some b ^ c; 
(ii) there exists F G BMO(Rw) such that F\Q = / ; 

(hi) E'f G BMO(Rw), where E' is the even reflection 

Fu(r A = //(*,0, iit> g(x) 
*JV't} \ / ( * , 2 * ( * ) - 0 , \it<g{x). 

Proof. Clearly (hi) => (ii) => (i) so it suffices to show (i) =» (iii). The gist 
of the argument is that because g satisfies a Lipschitz condition the reflection 
of a cube is a fr-quasicube. 

Let Q be any cube lying outside 12, and let D = {(x,/) : (x, 2g(x) — t) G (?}. 
We have m{D) = nt(Q), D ÇZ 12 and 

I \E'f(x, t) — a\dxdt = —Tyrr I | / (x, /) — a\dxdt 
m(Q) 

so to establish (4) for Q it suffices to show that D is a fr-quasicube. Now suppose 
Q is the cube {(x, t) : |x^ — 3^| ^ r and |/ — s\ ^ r}. Then m(Ç) = (2r)n. Let 
(x, 2g(x) - t) £ D. Then |x;- - ^ | ^ r and |2g(x) - / - (2g(y) - s)\ ^ 
r + 2|g(x) — g(y)\ S Y + 2A y/nr so D is contained in the cube with diameter 
2r(l + 2 V?^4) and centre (y, 2g(y) — s). Thus D is a è-quasicube if 
b è (1 + 2Vw4) B . 

Finally we must verify (4) for cubes Q meeting the boundary of 12. In this 
case we show by similar reasoning that the set D which is the union of Q Pi 12 
with the reflection of Q P\ —12 is a 6-quasicube for sufficiently large b. We then 
have 

™TQ)JQ
 |JE ' /(X '

 l) " a^d%dt ~ m^QjS» I /(X ' /} " a^d%dt ~ 2bM' 
Proof of Theorem 2. L e t / G H1®) and let F G H^R") with F\Q = f and 

||^||fl-i ^ 2 | | / | | H i . First we claim that F may be approximated in i7x(Rw) 
norm by bounded functions of compact support. For if not there would exist 
a non-constant function h G BMO(Rw) such that jh(x)F(x)dx = 0 for every 
F G i^(R w ) which is bounded with compact support. But Lemma 1 together 
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with simple estimates shows that any bounded function with compact support 
and total integral zero is in Hl(Rn). Thus we may choose F(x) to show that h 
is constant, a contradiction. 

Let \\Fk — F\\Hi ^ k~l with Fk bounded with compact support. Let 
fk = Fk\Q. Then Efk —> Ef in L \ so it suffices to show Efk is Cauchy in i î1(Rn) 
norm, and \\Efk\\Hi ^ c\\Fk\\Hi. 

Now observe that Efk is bounded with compact support and total integral 
zero, so Efk £ iT(Rw) . Thus 

{/• \\Efk\\Hi ^ sup J J A E / * : | | * I I B M O ^ 1 

Now we write h = h± + h2 where hi = E' (h\£l). In view of Lemma 2 we have 
| |*I| |BMO ^ C||A||BMO hence also ||A2||BMO ^ (c + 1)| |A||BMO. But since h is 
even and Efk is odd we have fhi(x, t)Efk(x, i)dxdt = 0. Thus 

JhEfk = jh2Efk = jh2Fk 

since h2 vanishes off 12. Thus HE/^H^i ^ cll^H^i and similarly 

P ( / * - / i ) | | * i £ c\\Fk - F,\\HL 

Remark. If n = 1 and 12 = {t > 0}, the condition that Ef Ç i f ^R 1 ) is 
equivalent to f £ ^(0, oo ) and 

P.V. r-2-^—2f(t)dt Ç L ^ o o ) . 

For n > 1 there does not appear to be any simpler way to formulate the 
condition. 

It is now a routine matter to generalize Theorem 2. If G is any open subset 
of M we may define Hl(G) to be the space of restrictions to G of functions in 
Hl(M). 

COROLLARY 1. If the boundary of G is a compact Lipschitz manifold then there 
exists a bounded linear extension map E : Hl(G) -^>Hl(M) so that f Ç Hl(G) 
if and only if Ef £ H1 {M). 

We omit the proof and refer the reader to [6, Chapter 6] for similar argu­
ments. 

It is also possible to characterize restrictions to G of functions in Ha
l(M). 

For simplicity we consider only the case a = k, a positive integer. Here we 
may define H^iG) to be the space of / Ç Hl(G) for which Df 6 H^G) for 
every differential operator D of order ^ k. 

COROLLARY 2. There exists a bounded linear extension operator 

Ek:HJ(G)-+HS(M). 
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Proof. By a partition of unity argument we may reduce the problem to 
finding Ek : H*1®) -> HJÇR»), where i ï * 1 ^ ) is the space of / G Hl(V) for 
which Daf Ç H1 (Î2) for all a: with |a| g fe. We first extend/ and Daf to elements 
of HÏÇRJ1) by odd reflection, and then apply the construction of Calderôn [1] 
for obtaining an extension operator from L/(Q) —>Lk

p(Rn). We may apply 
Calderôn's proof almost verbatim, using Theorem A for the preservation of 
Hl(Rn) by singular integrals. 

Next wre consider the problem of restrictions to hypersurfaces. Let us 
define jffa

1(Rw) to be the image of i /^R*) under the Bessel potential Ga 

defined by (G«/)"(?) = (1 + |£|2)"a/2/(£). Since Ga is an invertible elliptic 
pseudo-differential operator of order —a this is consistent with our previous 
definition of Ha

1{M), and it is not hard to see that Ha
l(M) is modelled on 

Ha
l{Rn) in the same way that Hl(M) is modelled on Hx{Rn). 
There are many ways of defining the Besov spaces A(a; p, q) (Rn). The 

following definition is due to Peetre [4]: let a, r be C°° functions on [0, co) 
with a = 1 on (1, 2) and supported on ( | , 4), and r = 1 on [0, 4) and supported 
on [0, 8). Then A (a; p, q) (Rn) is the space of tempered distributions on R* for 
which the following norm is finite: 

\\f:A(a;P,q)\\ = || ̂ (rflÉl )/(*)) H, + ( £ H^VOIf l)l^/©)ll/ f ) ^ 

(if q = oo, replace the integral by sup). It is clear from other equivalent 
definitions (see [6]) that A (a; p, q) is locally invariant under diffeomorphisms 
and multiplication by Ĉ com functions, so we may define A (a; p, q)(M) for a 
compact C°° manifold without boundary M in the usual manner. 

THEOREM 3. If a ^ 1, the restriction map Rf(x, t) = f(x, 0) is well defined 
from H^iR") to L^R7* -1). Furthermore, if a > 1 then 

R : HJÇR») ->A(a - 1; 1, lKR*"1) 

and there exists an extension map S* : A (a — 1; 1, 1)(RW_1) —^Ha
1(Rn) such 

thatR^f =f. 

Proof. If / £ H^iR") for a ^ 1 then df/dt £ L^R71) by Theorem A and 

f| f(x, 0) \dx ^ J I | (df/dt) (x, t) \dxdt, 

so R : HJiR71) -^L^R"-1). Now the boundedness of 

RiHJiR»)-*^ - 1;1, lHR""1) for « > 1 

is essentially proved in Stein [7]. In fact, Stein proves the boundedness of 
R : La

p(Rn) -> A(a - l / £ ; £, ^ ( R " " 1 ) if a > \/p and 1 < £ < oo where 
La

v(Rn) is the image of Lv(Rn) under Ga. But the same proof works for p = 1 
(the restrictions 0 < a < 1 and l /£ < a < 1 on p. 579 of [7] may be replaced 
by 0 < a < 2 and 1/p < a < 1 + 1/p). 
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We define the extension map by means of the Fourier transform: 

(6) ( < / r a, v) = siKiÉUteMM) + ci(1 "^fi^fp^ 
where 13 > a + 2 + n and Ci, C2 are chosen so that 

(7) f^&fr&vM-Ki). 
Now (7) means i?(f/ = / . To show <f : A (a - 1; 1, lKR*"1) ->HJÇR») 

we handle each term of (6) separately. The first term is trivial because it has 
compact support away from the origin. For the second term we use the 
identity 

(1 - r(|f|))/(É) = f (1 - r(|£|)V2(*|£|)/(£) ̂  . 
«/o s 

The problem is then to show that the following three expressions are Fourier 
transforms of L1 functions: 

1 teryfeVfrW) ds (8) Jo m2+v
2)w:=a)/2 * 

(9) J„ dfi* + vy-«+i)/2 s 

(10) f " J l T V Ç I l ^ M I l ^ 
2\(0-a+l)/2 0 (|?|2 + »2) 

Let us consider for example (10) (the others are similar). We have 

or -i( f1 \ir\K^\s\^\) ds\\ 

^"•* U . (in2+ 5?
2)w-a+1,/2 J l i 

* J _ J . I K * LXœ(|£|2 + , 2 ) T r a , / 2 e *»J 
Xll^^dirV^llD/fôHi-y^. 

Since 

f II^T'd^rV^lfD/tt))!!^ ^ | | / : A(« - 1; 1, 1)|| 
t /0 S 

it suffices to show that 

(11) UK* U^-^n^^™756 ML* 
is bounded independent of s. But the change of variable t—> st, r\ —» 97/5 and 
the dilation £ —* J/5 (dilation on the Fourier transform side does not change 
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the L1 norm) shows that (11) is independent of s, so we may set 5 = 1 . Next 
we make the change of variable 77 —> \^\rj to obtain 

<i2> U K ' L i IfMISl) 
77e 

**l£h 

îdrj dt. (1 + „*)«-*+»'* 

To estimate (12) we will use the well-known version of Sobolev's inequality, 

(13) 

Now 
kirri 

rj e 

(i + ^ ) 
2\( j3-a+l) /2 drj 

is the &th derivative of the one-dimensional Bessel potential of order 0 — a + 1. 
Thus we have 

r 
Jc irr) 

7] e 
J _ ( 1 + 1 7 2 ) W - « + l ) / 2 

provided /3 — a + 1 — & > 1 (see [1]). Thus 

dt\ < ce 

f (3/̂ )7 (l*k (1*1) 
77e 

a + uT a+D/2 d-q = ^ ( | ^ i ) ( l + | / | ) m . \y\-At\t\ 

for |T| S n + 1, so by (13) 

l^-^Xj^kd^i) 77e 
**ISh 

72 J ^77 ^ c(l + \t\)më ITI - A Ï / 2 
( 1 + 1 ? 2 ) W - a + 2 ) / 2 

which shows (12) is bounded. 

COROLLARY. Let N ^ M be a compact C°° submanifold of codimension one. 
Let d/dt denote any transversal derivative to N. Let Tk : C°(M) —» Cco(N)k+1 be 
defined by Tkf = ( / |iV, (a /a / ) / \N, . . . (â/d/)*/ |iV). r t e 

TA :Ha\M)-+ I I A ( a - 1 - j;l,l) for alia > * + 1, 

awd //zer£ exists an extension map 

(f / c :f l A(a- l - j ; l , l ) - ^ 1 ^ ) 

SWC/Î /Âa£ 7^ (̂ fc w /fee identity. 

We omit the routine proof of the above corollary, which is similar to one in 
Seeley [5]. 

Using the results of this section we can generalize to H1 most of the results 
on elliptic boundary value problems valid for Lp, 1 < p < 00. We state one 
typical example from Seeley [5]: 

THEOREM 4. Let M0 C M be an open C°° submanifold with compact C°° 
boundary r , and let Abe a uniformly elliptic differential operator on M of order m. 
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Let u be any C° function on M0 which satisfies Au = 0 and which is the restriction 
to Mo of a distribution on M. Then u G Ha

l(Mo) if and only if the Cauchy data 
of u belongs to n7=To A (a — 1 — j ; 1, 1) (T), for any non-negative integer a. 

Remark. Comparing this with the results of [8], we see that for a solution of 
Au = 0 on MQ, U e H^Mo) if and only if u G Ll{MQ). 
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