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Numerically computed with high accuracy are periodic travelling waves at the free surface
of a two-dimensional, infinitely deep, and constant vorticity flow of an incompressible
inviscid fluid, under gravity, without the effects of surface tension. Of particular interest
is the angle the fluid surface of an almost extreme wave makes with the horizontal.
Numerically found are the following. (i) There is a boundary layer where the angle
rises sharply from 0◦ at the crest to a local maximum, which converges to 30.3787 . . .◦,
independently of the vorticity, as the amplitude increases towards that of the extreme wave,
which displays a corner at the crest with a 30◦ angle. (ii) There is an outer region where
the angle descends to 0◦ at the trough for negative vorticity, while it rises to a maximum,
greater than 30◦, and then falls sharply to 0◦ at the trough for large positive vorticity.
(iii) There is a transition region where the angle oscillates about 30◦, resembling the
Gibbs phenomenon. Numerical evidence suggests that the amplitude and frequency of
the oscillations become independent of the vorticity as the wave profile approaches the
extreme form.

Key words: surface gravity waves, computational methods

1. Introduction

Stokes (1847, 1880) made significant contributions to periodic travelling waves at the free
surface of an incompressible inviscid fluid in two dimensions, under gravity, without
the effects of surface tension. In particular, he observed that crests become sharper and
troughs flatter as the amplitude increases, and the so-called extreme wave or wave of
greatest height displays a 120◦ corner at the crest. Such an extreme wave bears relevance to
breaking, whitecapping, and other physical scenarios. When the flow is irrotational (zero
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vorticity), based on the reformulation of the problem via conformal mapping as Babenko’s
nonlinear pseudo-differential equation (see (2.16)), impressive progress was achieved
analytically (see, for instance, Buffoni, Dancer & Toland 2000a,b) and numerically
(see, for instance, Dyachenko, Lushnikov & Korotkevich 2013, 2016; Lushnikov 2016;
Lushnikov, Dyachenko & Silantyev 2017).

For zero vorticity, the angle the fluid surface of the extreme wave makes with the
horizontal is 30◦ at the crest and < 30◦ at least near the crest (see, for instance, Amick
& Fraenkel 1987; McLeod 1987). Krasovskiı̆ (1960, 1961) conjectured that the angle of
any Stokes wave is ≤ 30◦. So it came as a surprise when Longuet-Higgins & Fox (1977)
gave analytical and numerical evidence that the angle of an ‘almost’ extreme wave can
exceed 30◦ by about 0.37◦ near the crest. Longuet-Higgins & Fox (1978) took matters
further and discovered that the wave speed and several other quantities are not monotone
functions of the amplitude but, instead, have maxima and minima within a range of
the parameter. McLeod (1997) ultimately proved that Krasovskiı̆’s conjecture is false.
Chandler & Graham (1993) solved numerically Nekrasov’s nonlinear integral equation
(see (2.19)) to find that the angle of an almost extreme wave rises sharply from 0◦ at the
crest to approximately 30.3787◦ in a thin boundary layer, oscillates about 30◦, resembling
the Gibbs phenomenon, and falls to 0◦ at the trough after the oscillations die out (see also
figure 2).

Most of the existing mathematical treatments of Stokes waves assume that the flow
is irrotational, so that the stream function is harmonic inside the fluid. On the other hand,
vorticity has profound effects in many circumstances, for instance, for wind waves or waves
in a shear flow. Stokes waves in rotational flows have had a major renewal of interest during
the past two decades. We refer the interested reader to, for instance, Haziot et al. (2022)
and references therein. Constant vorticity is of particular interest because one can adapt
the approaches for zero vorticity. Also, it is representative of a wide range of physical
scenarios (see, for instance, Teles da Silva & Peregrine (1988, for more discussion)).

For large values of positive constant vorticity, Simmen & Saffman (1985) (see also
Teles da Silva & Peregrine 1988, for finite depth) numerically found overhanging profiles
and, taking matters further, profiles that intersect themselves tangentially above the trough
to enclose a bubble of air. For zero vorticity, by contrast, the wave profile must be the
graph of a single-valued function. Here, we distinguish positive vorticity for upstream
propagating waves and negative vorticity for downstream (see, for instance, Teles da Silva
& Peregrine (1988, for more discussion)). Recently, Dyachenko & Hur (2019b,c) (see also
Dyachenko & Hur 2019a) offered persuasive numerical evidence that for any constant
vorticity, Stokes waves are ultimately limited by an extreme wave in the (amplitude) ×
(wave speed) plane, which in the zero vorticity case displays a 120◦ corner at the crest. See
Appendix A for analytical evidence, similar to Stokes (1847, 1880), that for any constant
vorticity, an extreme wave displays a 120◦ corner at the crest.

Here, we solve numerically the Babenko equation, modified to accommodate the effects
of constant vorticity (see (2.15)), with unprecedentedly high accuracy, to discover a
boundary layer and the Gibbs phenomenon near the crest, alongside other properties of
almost extreme waves, in great detail. We offer persuasive numerical evidence that for
any constant vorticity, the wave speed oscillates as the amplitude increases monotonically
towards that of the extreme wave (see figure 1). We predict that

cext − c
(
√

sext − s)3
= α cos

(
3
π
κ log(sext − s)+ β

)
+ · · · as s → sext (1.1)
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Figure 1. Plots of (cext − c)/
√

sext − s3 versus log(sext − s) for: (a) ω = 0, red; (b) ω = 1, yellow; and
(c) ω = −1, green. Dotted curves are the numerical results, and solid curves show cosine curve fitting. See
figures 2–4 for solutions corresponding to the circles, triangles and diamonds.

for some constants α and β, depending on the vorticity, where c denotes the dimensionless
wave speed, and s is the steepness, i.e. the dimensionless wave height, with cext and sext
for the extreme wave, and κ = 1.1220 . . . is the positive root of

κ tanh κ = π

2
√

3
, (1.2)

independently of the vorticity. For zero vorticity, see, for instance, Longuet-Higgins & Fox
(1977, 1978) for more discussion. Also, we find numerically the following.

(i) For any constant vorticity, there is a boundary layer where the angle the fluid surface
of an almost extreme wave makes with the horizontal rises sharply from 0◦ at the
crest to a (first) local maximum, which converges monotonically to 30.3787 . . .◦
as the steepness increases towards that of the extreme wave, independently of the
vorticity; the thickness of the boundary layer is ∝ sext − s as s → sext.

(ii) There is an outer region where the angle descends monotonically to 0◦ at the trough
for zero and negative constant vorticity, while it rises to a maximum >30◦ and then
falls sharply to 0◦ at the trough for large positive vorticity.

(iii) There is a transition region where the angle oscillates about 30◦, resembling
the Gibbs phenomenon, and the number of oscillations increases as s increases
towards that of the extreme wave; the first local minimum converges monotonically
to 29.9953 . . .◦ as s → sext, independently of the vorticity. Numerical evidence
suggests that the amplitude and frequency of the angle oscillations reach a limit
as s → sext, independent of the vorticity.

See figures 2–6.
It is difficult to resolve accurately the boundary layer and the Gibbs phenomenon

because the boundary layer is thin and the angle decreases about two orders of magnitude
from one critical value (maximum or minimum) to the next. We solve the modified
Babenko equation efficiently using the Newton conjugate residual method, with aid of an
auxiliary conformal mapping, to approximate at least 100 decimal digits of the steepness
up to sext − s ≈ 10−18. See § 3 for details. Our result improves those of Chandler &
Graham (1993), Lushnikov et al. (2017), Dyachenko & Hur (2019b,c) and others.
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Figure 2. For ω = 0: (a) θ versus log x, x ∈ [0,π], for sext − s ≈ 10−18, 10−16 and 10−14 for the dotted,
dashed and solid curves, respectively; (b) log |θ − 30◦| versus log(x/x1) in the Gibbs oscillation region, where
θ(x1) =: θ1 is the first local maximum. See table 1 for approximate values of θj, j = 1, 2, . . . , 6. We find
L ≈ 2.93 numerically.

0

10

20

30

40

50

−18 −12 −6 0

θ 
(d

eg
.)

−6

−4

−2

0

2

−1 0 1 2 3 5 7

0 L 2L

θ1

θ2

θ3L

lo
g
 |θ

 −
 3

0
°|

log x log (x/x1)

(a) (b)

Figure 3. For ω = 1: (a) θ versus log x, x ∈ [0,π], for sext − s ≈ 10−19, 10−16 and 10−14 for the dotted, dashed
and solid curves, respectively; (b) log |θ − 30◦| versus log(x/x1), where θ(x1) is the first local maximum. See
table 1 for approximate values of θ1, θ2 and θ3.

2. Preliminaries

Consider a two-dimensional, infinitely deep, and constant vorticity flow of an
incompressible inviscid fluid, under gravity, without the effects of surface tension, and
waves at the fluid surface. We assume unit fluid density for simplicity. Suppose for
definiteness that in Cartesian coordinates, waves propagate in the x direction and gravity
acts in the negative y direction. Suppose that the fluid at time t occupies a region in the
(x, y) plane, bounded above by a free surface, say, y = η(x, t). Let

D(t) = {(x, y) ∈ R
2 : y < η(x, t)} and S(t) = {(x, η(x, t)) : x ∈ R}. (2.1a,b)

Let u(x, y, t) denote the velocity of the fluid at the point (x, y) and time t, and let
P(x, y, t) denote the pressure. These satisfy the Euler equations for an incompressible fluid,

ut + (u · ∇)u = −∇P + (0,−g) and ∇ · u = 0 in D(t), (2.2a)
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Figure 4. For ω = −1, same as in figures 2 and 3. See table 1 for θ1, θ2 and θ3.
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Figure 6. (a) Almost extreme waves for ω = 0 (red), ω = 1 (yellow) and ω = −1 (green), marked by the
circles in figure 1, in the (x, y) plane over the interval x ∈ [−π,π]. The mean fluid level is at y = 0. (b) Plot of
log(x1) versus log(sext − s) for ω = 0 (red), ω = 1 (yellow) and ω = −1 (green). The inset is a close up where
sext − s is O(10−7).
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where g is the constant acceleration due to gravity. We assume that the vorticity

ω := ∇ × u (2.2b)

is constant throughout D(t). The kinematic and dynamic boundary conditions are

ηt + u · ∇(η − y) = 0 and P = Patm at S(t), (2.2c)

where Patm is the constant atmospheric pressure.
Let

u(x, y, t) = (−ωy, 0)+ ∇φ(x, y, t), (2.3)

so that

∇2φ = 0 in D(t) (2.4)

by the second equation of (2.2a). Namely, φ is a velocity potential. We pause to remark that
for non-constant vorticity, such a velocity potential is no longer viable to use. Substituting
(2.3) into the first equation of (2.2a) and recalling the second equation of (2.2c), after some
algebra we arrive at

φt + 1
2 |∇φ|2 − ωyφx + ωψ + P − Patm + gy = B(t) in D(t), (2.5)

where ψ is a harmonic conjugate of φ, and B is an arbitrary function. Since φ and ψ are
defined up to addition by functions of t, we may assume without loss of generality that

φ,ψ → 0 as y → −∞ uniformly for x (2.6)

for all time.
We restrict attention to travelling wave solutions to (2.2) and (2.6). That is, D, φ and ψ

are stationary in a frame of reference moving with a constant velocity. Let

D = {(x(u, v), y(u, v)) : u ∈ R and v < 0} and S = {(x(u, 0), y(u, 0)) : u ∈ R},
(2.7a,b)

and (2.2) and (2.6) become⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇2φ,∇2ψ = 0 in D,

(φx − ωy − c)yu = φyxu at S,
1
2 (φx + ωy − c)2 + 1

2φ
2
y + gy = B at S,

φ, ψ → 0 as y → −∞ uniformly for x,

(2.8)

for some c /= 0, the wave speed, where B is an arbitrary constant. After the change of
variables

y �→ y + y0 and c �→ c − ωy0 for some y0 ∈ R, (2.9)

we may assume that B = 0. Additionally, we assume that D and ψ are periodic in the
horizontal direction and symmetric about the vertical lines below the crest and trough. We
assume without loss of generality that the period is 2π.
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2.1. The modified Babenko equation
Proceeding as in Dyachenko & Hur (2019b,c) and others, we reformulate (2.8) in
‘conformal coordinates’. In what follows, we identify R2 with C whenever it is convenient
to do so.

Suppose that
(x + iy)(u + iv) (2.10)

maps C− := {u + iv ∈ C : v < 0} conformally to D and that

(x + iy)(u + iv)− (u + iv) (2.11)

is 2π periodic in u and (x + iy)(u + iv)− (u + iv) → 0 as v → −∞ uniformly for u.
Suppose that (2.10) extends to map C− continuously to D ∪ S. We recall from the theory
of Fourier series that

(x + iy)(u + i0) = u + ((H + i)y)(u + i0), (2.12)

where H denotes the periodic Hilbert transform, defined as

H eiku = −i sgn(k) eiku, k ∈ Z. (2.13)

Abusing notation, let (φ + iψ)(u + iv) = (φ + iψ)((x + iy)(u + iv)), and we recall from
the theory of Fourier series that

(φ + iψ)(u + i0) = ((1 − iH)φ)(u + i0). (2.14)

Substituting (2.12) and (2.14) into (2.8), after some algebra, we arrive at

c2Hyu − (g + ωc)y = g( yHyu + H( yyu))+ 1
2ω

2( y2 + H( y2yu)+ y2Hyu − 2yH( yyu)).

(2.15)
When ω = 0 (zero vorticity), (2.15) becomes

c2Hyu − gy = g( yHyu + H( yyu)), (2.16)

namely the Babenko equation (Babenko 1987).
A solution of (2.15) gives rise to a solution of (2.8), provided that

u �→ u + H y(u)+ i y(u) is injective for all u ∈ R (2.17a)

and
(1 + H yu(u))2 + yu(u)2 /= 0 for all u ∈ R. (2.17b)

We pause to remark that (2.17a) expresses that the fluid surface does not intersect itself,
and (2.17b) ensures that (2.10) is well-defined throughout C−. Dyachenko & Hur (2019b,c)
offered numerical evidence that the solutions of (2.15) can be found even though (2.17a)
fails to hold, but such solutions are ‘physically unrealistic’ because the fluid surface
intersects itself and the fluid flow becomes multi-valued. Recently, Hur & Wheeler (2022)
gave a rigorous proof that there exists a ‘touching’ wave, whose profile intersects itself
tangentially at one point above the trough to enclose a bubble of air.

If (2.17b) fails to hold, on the other hand, then there would be a stagnation point at
the fluid surface, where the velocity of the fluid particle vanishes in the moving frame
of reference. Numerical evidence supports that for any constant vorticity, the solutions
of (2.15) would be limited ultimately by an extreme wave in the (amplitude) × (wave
speed) plane, which would display a corner at the crest. In Appendix A, we give analytical
evidence, similar to (Stokes 1847, 1880), that for any value of ω, the angle at the crest
would be 120◦. Here we are interested in ‘almost’ extreme waves.
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2.2. The Nekrasov equation
Let

θ = arctan
(

yu

xu

)
(2.18)

denote the angle that the fluid surface makes with the horizontal at the point (x(u), y(u)),
u ∈ [−π,π]. When ω = 0,

θ(u) = 1
3π

∫ π

0
log

∣∣∣∣∣sin 1
2(u + u′)

sin 1
2(u − u′)

∣∣∣∣∣ sin θ(u′)

μ+
∫ u′

0
sin θ

du′, (2.19)

where

μ = 1
3gc

(√
c2 − 2g y(0)

)3

, (2.20)

namely the Nekrasov equation (Nekrasov 1921). We refer the interested reader to, for
instance, Buffoni et al. (2000a,b) for details. Throughout, we use subscripts for partial
derivatives and primes for variables of integration. We pause to remark that

√
c2 − 2g y(0)

is the speed of the fluid particle at the crest.
Amick, Fraenkel & Toland (1982) and others proved that for μ = 0, there exists an

extreme wave and |θ(u)| → 30◦ as u → 0; Plotnikov & Toland (2004) proved that |θ(u)|
decreases monotonically over the interval u ∈ [0,π], so that supu∈[0,π] |θ(u)| = 30◦. For
μ � 1, on the other hand, McLeod (1997) proved that supu∈[0,π] |θ(u)| > 30◦.

For μ sufficiently small, Chandler & Graham (1993) solved numerically (2.19) to find
that: the angle increases from 0◦ at the crest to a maximum ≈30.3787◦ in a boundary layer
of size O(μ); the angle then oscillates about 30◦, and the number of oscillations increases
as μ → 0; and the angle decreases to 0◦ outside the oscillation region. Here, we solve
numerically (2.16), with unprecedentedly high accuracy, to improve the result of Chandler
& Graham (1993), and take matters further to include the effects of constant vorticity.

3. Methods

We write (2.15) abstractly as

G( y, c) = 0, (3.1)

and solve it iteratively by means of Newton’s method. Let

y(n+1) = y(n) + δy(n), n = 0, 1, 2, . . . , (3.2)

where y(0) is an initial guess and

δ G( y(n), c) δy(n) = −G( y(n), c), (3.3)

where δG( y(n), c) linearizes G( y, c) with respect to y, and evaluates y = y(n). We solve
(3.3) numerically using Krylov subspace methods. We approximate y(n) and δy(n) using a
discrete cosine transform, and compute efficiently using a fast Fourier transform. We treat
Hy(n) and others likewise. Once we obtain a convergent solution, we continue it in c. We
refer the interested reader to Yang (2010), for instance, for details.
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3.1. Auxiliary conformal mapping
In what follows, we employ the notation z = x + iy and w = u + iv.

In the ω = 0 (zero vorticity) case, Dyachenko et al. (2013, 2016) and others gave
numerical evidence that an analytic continuation of (2.10) to C has branch points at
w = 2nπ + iv0, n ∈ Z, for some v0 > 0. Also,

z(w)− w =
∑

k∈Z,k�0

ẑ(k) eikw, where |ẑ(k)| ∝ exp(−v0|k|) as |k| → ∞, (3.4)

for v0 sufficiently small. Recall that v0 → 0 as the wave profile approaches the
extreme form. This presents enormous technical challenges for numerical computation.
Nevertheless, Dyachenko et al. (2016) used 227 (≈ 1.3 × 108) Fourier coefficients to
approximate 32 decimal digits of the steepness for v0 ≈ 10−7.

To achieve higher accuracy, Lushnikov et al. (2017) introduced

w = 2 arctan
(
ε tan

1
2
ζ

)
and ζ = 2 arctan

(
1
ε

tan
1
2

w
)

(3.5a,b)

for some ε > 0, to be determined in the course of numerical experiment. Note that (3.5)
maps C− conformally to C−, and R + i0 to R + i0, and (3.5) is 2π periodic in the real
variables. In the ω = 0 case, therefore, one may solve (see (2.16))

c2Hyζ − guζ y = g( yHyζ + H( yyζ )), ζ ∈ R, (3.6)

where H is the periodic Hilbert transform in the ζ variable, and uζ is the Jacobian of
(3.5). Since u ≈ εζ , ζ ∈ R, about ζ = 0 for ε � 1, (3.5) maps uniform grid points of ζ to
non-uniform grid points of u, concentrating the points about u = 0. Also, (3.5b) maps iv0
to, say, iζ0 = iv0/ε + O((v0/ε)

3) for v0/ε � 1, so that

z(w(ζ ))− w(ζ ) =
∑

k∈Z,k�0

ẑ(k) eikζ , where |ẑ(k)| ∝ exp
(
−v0

ε
|k|

)
as |k| → ∞

(3.7)

for v0/ε � 1, provided that there are no singularities of (3.5a) closer to C− than iζ0.
A straightforward calculation reveals that (3.5a) has branch points at ζ = 2nπ ±
2 arctan(i/ε) = (2n ± 1)π ± 2iε + O(iε3), n ∈ Z, for ε � 1. One may therefore choose

ε ≈
√

1
2v0, v0 � 1, so that

z(w(ζ ))− w(ζ ) =
∑

k∈Z,k�0

ẑ(k) eikζ , where |ẑ(k)| ∝ exp(−
√

2v0|k|) as |k| → ∞.

(3.8)

This improves numerical convergence. For instance, Lushnikov et al. (2017) used about
104 Fourier coefficients to obtain the same result as Dyachenko et al. (2013, 2016) did
with ≈108 Fourier coefficients.
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Here, we take matters further and resort to

w = 2 am
(

K(
√

m)
ζ + π

π
,
√

m
)

− π (3.9)

for some m in the range (0, 1), where am denotes the Jacobi amplitude; that is, for the
elliptic parameter m (rather than the elliptic modulus k such that m = k2),

ϕ = am(u,
√

m) = F−1(u,
√

m), and u = F(ϕ,
√

m) =
∫ ϕ

0

dϕ′√
1 − m sin2 ϕ

(3.10a,b)

is the incomplete elliptic integral of the first kind;

K(
√

m) =
∫ 1

0

dt√
(1 − t2)(1 − mt2)

(3.11)

is the complete elliptic integral of the first kind. We refer the interested reader, for instance,
to Hale & Tee (2009) for more discussion. We calculate

ζ = π

K(
√

m)
F

(
1
2

w + π,
√

m
)

− π. (3.12)

Note that (3.9) maps {ζ ∈ C : −π(K′(
√

m)/K(
√

m)) < Im ζ < 0} conformally to C−,
and R + i0 to R + i0, where K′(

√
m) = K(

√
1 − m), and (3.9) and (3.12) are 2π periodic

in the real variables. Note that (3.9) maps iζ , ζ > 0, to iv, where

ζ = π
K′(

√
m)

K(
√

m)
and m = 1 − tanh2

(
1
2
v

)
= sech2

(
1
2
v

)
. (3.13a,b)

Note that (3.9) maps [0, iζ ], ζ > 0, to [0, iv], where ζ and v are in (3.13a,b). Also note
that (3.9) maps [−π + iζ, 0 + iζ ] and [0 + iζ,π + iζ ] to [iv,+i∞], making a branch cut
of (3.9).

A straightforward calculation reveals that

ζw(ζ ) = π

2

dn
(

1
π

K(
√

m) ζ,
√

m
)

√
1 − m K(

√
m)

, (3.14)

where dn is a Jacobi elliptic function, defined as dn(u,
√

m) =
√

1 − m sin2(am(u,
√

m)).
Recall that dn(·,√m) has periods 2 K(

√
m) and 4i K′(

√
m), zeros at (2n + 1)K + (2n′ +

1)iK′, and simple poles at 2nK + 2n′iK′ for any n, n′ ∈ Z, so that

ζw(ζ ) = 0 at ζ = ±π + (2n + 1)iπ
K′(

√
m)

K(
√

m)
, n ∈ Z, (3.15)

and

ζw(ζ ) → ∞ at ζ = 0 + 2niπ
K′(

√
m)

K(
√

m)
, n ∈ Z. (3.16)

For v0 > 0 and sufficiently small, where iv0 is the closest singularity of (2.10) to C−,
therefore we choose

m = 1 − tanh2
(

1
2v0

)
= sech2

(
1
2v0

)
, (3.17)
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Almost extreme waves

so that (3.9) maps [−π + iζ0, 0 + iζ0] and [0 + iζ0,π + iζ0] to [iv0,+i∞], that is, the
branch cut of (3.9) to the branch cut of (2.10), where

ζ0 = π
K′(

√
m)

K(
√

m)
≈ π2

2
1

log(8/v0)
for v0 � 1. (3.18)

Correspondingly,

z(w(ζ ))− w(ζ ) =
∑

k∈Z,k�0

ẑ(k) eikζ , where |ẑ(k)| ∝ exp
(

−π2

2
|k|

log(8/v0)

)
as |k| → ∞

(3.19)

for v0 � 1. This dramatically improves numerical convergence. For instance, for v0 =
10−30, one would need about 1017 Fourier coefficients using (3.5) for approximating a
solution with 10−36 error, whereas about 103 Fourier coefficients would suffice for (3.9).

3.2. Method for non-zero vorticity: conjugate gradient versus conjugate residual
Since

δ G( y, c) δy = c2 H(δy)u − (g + cω) δy − g(δyHyu + yH(δy)u + H( y δy)u)

− 1
2ω

2(2y δy + H( y2 δy)u − [2y δy, y] + [y2, δy] (3.20)

is self-adjoint, where [ f1, f2] = f1Hf2 − f2Hf1, Dyachenko & Hur (2019b) employed the
conjugate gradient (CG) method (see, for instance, Yang 2010) to solve numerically
(3.3). For any value of ω, the CG method converges within a range of the parameters,
although δ G( y, c) is not positive definite, but the method breaks down as the wave profile
approaches the extreme form. Even when the method converges, the solution error is not a
monotonically decreasing function of the number of iterations for almost extreme waves.

Here, we resort to Krylov subspace methods for symmetric indefinite systems,
particularly, minimal residual (MINRES) methods. MINRES minimizes the L2-norm of
the residual and does not suffer from breakdown. See, for instance, Paige & Saunders
(1975) for more discussion. Indeed, replacing the CG method by the conjugate residual
(CR) method works well for any value of ω for almost extreme waves, and the solution
error is monotonically decreasing.

We require the truncation error |ŷ(n)(N/2)| � 10−36, where N is the number of Fourier
coefficients or, alternatively, the number of uniform grid points in the ζ variable, and the
residual ‖G( y(n), c)‖L2 � 10−43, to approximate 100 decimal digits of the steepness for
sext − s up to 10−19, where s is the steepness, with sext for the extreme wave.

The wave speed oscillations become exponentially small along the solution curve as
s increases monotonically to sext (see figure 1) and our numerical computation must use
arbitrary-precision floating-point numbers. We use the GNU MPFR library for variable
precision numbers (see, for instance, Fousse et al. 2007), increasing the number of bits per
floating point number as s → sext.

3.3. Method for zero vorticity
For ω = 0, alternatively, we solve (3.3) non-iteratively because solving a 4096 × 4096
linear system would suffice to approximate 100 decimal digits of the steepness for sext − s
up to 10−18. The solution error decreases quadratically, that is, the number of significant
digits in the numerical solution increases by a factor of 2 in each Newton iteration so long
as the method converges.
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4. Results

In the ω = 0 (zero vorticity) case, Dyachenko et al. (2016), Lushnikov et al. (2017) and
others gave numerical evidence that the wave speed converges oscillatorily to that of
the extreme wave as the steepness increases monotonically towards that of the extreme
wave. The wave speed decreases about two orders of magnitude from one critical value
(maximum or minimum) to the next, though, and it is difficult to resolve accurately
such wave speed oscillations. Nevertheless, Lushnikov et al. (2017) resolved about 3.5
oscillations, predicting that

cext − c
√

sext − s3 = α cos
(π

3
κ log(sext − s)+ β

)
+ · · · as s → sext (4.1)

for some constants α and β, where κ = 1.1220 . . . is the positive root of

κ tanh κ = π

2
√

3
. (4.2)

Throughout, we take g = 1, c denotes the wave speed, and s denotes the steepness – the
crest-to-trough vertical distance divided by the period – with cext and sext for the extreme
wave. See also Longuet-Higgins & Fox (1978) for more discussion.

Figure 1(a) shows (cext − c)/
√

sext − s3 versus log(sext − s) for ω = 0 for sext − s up
to 10−18, and compares the result with (4.1), where cext, sext and α, β are determined
from the numerics. We exploit an auxiliary conformal mapping (see (3.9)) to improve the
result of Lushnikov et al. (2017) and others, resolving about 6.5 oscillations. We report
cext = 1.0922850485 . . . and sext = 0.1410634839 . . . .

Figures 1(b,c) show (cext − c)/
√

sext − s3 versus log(sext − s) for ω = 1 and −1 for
sext − s up to 10−19, and compare the numerical results with (4.1), discovering that α
and β depend on ω but, interestingly, κ does not. We predict that for any constant
vorticity, the wave speed oscillates as c → cext while s → sext monotonically, and the
frequency of the wave speed oscillations is independent of the vorticity. We report cext =
2.2683602961 . . . and sext = 0.4431049878 . . . for ω = 1, and cext = 0.6710639577 . . .
and sext = 0.0492991750 . . . for ω = −1.

In what follows, by the angle, abusing notation, denoted θ we mean the angle – measured
clockwise – that the fluid surface makes with the horizontal.

We begin by taking ω = 0. Figure 2(a) shows the graph of θ as a function of x, over the
interval x ∈ [0,π], for an almost extreme wave for which sext − s ≈ 10−18, and compares
the result with two other almost extreme waves, for which sext − s ≈ 10−16 and 10−14.
Note that the horizontal axis is logarithmic. The three almost extreme waves are marked
by the triangle, circle and diamond in figure 1(a). We report c = 1.0922850485 . . . for the
dotted, dashed and solid curves, agreeing on at least 20 decimal digits.

We find numerically a boundary layer where θ rises sharply from θ(0) = 0◦ to a
(first) local maximum θ(x1) =: θ1, and an outer region where θ falls to θ(π) = 0◦.
We report sext − s = 1.3777 . . .× 10−18 and x1 = 1.4095 . . .× 10−16 (dotted), sext − s =
1.3604 . . .× 10−16 and x1 = 1.3918 . . .× 10−14 (dashed), and sext − s = 1.3460 . . .×
10−14 and x1 = 1.3771 . . .× 10−12 (solid), predicting that x1 ≈ 102.3(sext − s) as s →
sext. Also, we find numerically a transition region where θ oscillates about 30◦, resembling
Gibbs phenomenon, although not visible in the scale. Our result agrees with Chandler &
Graham (1993) and others.

Figure 2(b) shows the Gibbs oscillations in the logarithmic scale. We resolve
numerically six critical values, denoted θj := θ(xj), j = 1, 2, . . . , 6, and
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ω sext − s θj (deg.) |θj − 30◦| Chandler & Graham (1993)

0.0 1.3777 × 10−18 30.3787032466 3.78703246652 × 10−1 3.787032466 × 10−1

29.9953964674 4.60353262916 × 10−3 4.60353 × 10−3

30.0000566331 5.66330666364 × 105 5.6631 × 10−5

29.9999993034 6.96605412024 × 10−7 7.4218 × 10−7

30.0000000086 8.56571838806 × 10−9 3.6722 × 10−7

30.0000000000 1.47128277182 × 10−10 —

1.0 4.8086 × 10−19 30.3787032465 3.78703518762 × 10−1 —
29.9953974098 4.60235904573 × 10−3 —
30.0000607270 6.17344001164 × 10−5 —
30.0000127856 1.56031059113 × 10−5 —

−1.0 6.8836 × 10−19 30.3787029890 3.78702126845 × 10−1 —
29.9953953515 4.60838078515 × 10−3 —
30.0000518141 3.58968559624 × 10−5 —

Table 1. Approximate values of θj for sext − s � 1 for ω = 0, 1 and −1, and in the ω = 0 case, comparison
with Chandler & Graham (1993). Digits in bold agree up to rounding across numerical computation and also
the result for ω = 0.

0 < x1 < x2 < · · · < x6 < π, while observing that the number of oscillations increases
as s increases towards sext. Table 1 gives approximate critical values for sext − s =
1.3777 . . .× 10−18, or equivalently, μ = 2.1978 . . .× 10−26 (see (2.20)), and compares
the result with five critical values computed by Chandler & Graham (1993) for μ = 10−18.
Recall that μ → 0 as s → sext. We predict that

θ1 → 30.3787032466 . . .◦ and θ2 → 29.9953964674 . . .◦ as s → sext. (4.3)

Also, numerical evidence suggests that

|θj+1 − 30◦|
|θj − 30◦| ≈ 1.22 × 10−2 and

xj+1

xj
≈ 18.73 for sext − s � 1, j = 1, 2, . . . ,

(4.4)

or equivalently, L := log(xj+1/x1)− log(xj/x1) ≈ 2.93 as s → sext, independently of j. In
particular, xj → 0 as s → sext for all j.

We turn our attention to ω = 1. Figure 3 shows θ versus x, x ∈ [0,π], in the logarithmic
scale, for three almost extreme waves, marked by the triangle, circle and diamond in
figure 1(b). We report c = 2.2683602961 . . . and sext − s ≈ 10−19, 10−16 and 10−14 for
the dotted, dashed and solid curves, respectively. Numerically found are a boundary layer
where θ rises sharply from θ(0) = 0◦ to a first local maximum θ(x1) =: θ1, where x1 ≈
102.4(sext − s) as s → sext, and a Gibbs oscillation region, the same as for the ω = 0 case.
We resolve numerically up to the second local maximum angle for sext − s ≈ 10−19, while
observing that higher-order local maxima and minima set in for s closer to sext, compared
with the ω = 0 case. See table 1 for approximate critical values for sext − s = 4.8086 . . .×
10−19. We predict that θ1 → 30.378703256 . . .◦ and θ2 → 29.99539 . . .◦ as s → sext, as in
the ω = 0 case (see (4.3)). Also, we predict that L := log(xj+1/x1)− log(xj/x1) ≈ 2.93 as
s → sext, independently of j, as in the ω = 0 case (see (4.4)). But an important difference
is that in the outer region, θ rises to a maximum 52.1426155193 . . .◦ and then falls sharply
to θ(π) = 0◦. See figure 3(a).
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Last but not least, in the ω = −1 case, figure 4 shows θ for sext − s ≈ 10−19, 10−16

and 10−14, corresponding to the triangle, circle and diamond in figure 1(c), respectively.
We report c = 0.6710639577 . . . . The result is the same as in the ω = 0 case, but critical
values of the angle set in for sext − s smaller compared with the ω = 0 case.

Figure 5 shows that the first local maximum angle in the oscillation region converges
monotonically to 30.3787 . . .◦, and the first local minimum converges monotonically
to 29.9953 . . .◦ as s → sext, independently of the constant vorticity. We predict that
higher-order local maxima and minima converge monotonically as s → sext, independently
of the vorticity. By contrast, the wave speed and several other quantities are not monotone
functions of the steepness (see figure 1).

Figure 6(a) shows the profiles of almost extreme waves for ω = 0, 1 and −1 in the (x, y)
plane over one period. We report

s = 0.141063483979936080716 (s/sext = 0.99999999999999999023) for ω = 0,
s = 0.44310498782481126969 (s/sext = 0.99999999999999999831) for ω = 1,
s = 0.049299175088933178 (s/sext = 0.999999999999999738) for ω = −1.

Figure 6(b) shows x1 as a function of sext − s, in the logarithmic scale, for ω = 0, 1 and
−1. Numerical evidence is clear that the thickness of the boundary layer is ∝ sext − s as
s → sext, independently of the constant vorticity.

5. Conclusions

For any constant vorticity, for the steepness sufficiently close to that of the extreme wave,
we find numerically the following.

(i) There is a boundary layer where the angle the fluid surface of such an almost
extreme wave makes with the horizontal rises sharply from 0◦ at the crest to a
first local maximum, which converges monotonically to 30.3787 . . .◦ as s → sext,
independently of the vorticity; the thickness of the boundary layer is ≈ 102(sext − s),
independently of the vorticity.

(ii) There is an outer region where the angle descends to 0◦ at the trough for zero and
negative vorticity, while it rises to a maximum >30◦ and then falls sharply to 0◦ at
the trough for large positive vorticity.

(iii) There is a transition region, where the angle oscillates about 30◦, bearing
resemblance to the Gibbs phenomenon; the number of oscillations increases as
s → sext; the first local minimum angle converges monotonically to 29.9953 . . .◦
as s → sext, independently of the vorticity.

Let θj = θ(xj) denote the jth critical value of the angle in the oscillation region,
where 0 < x1 < x2 < · · · < xj < · · · < π. Numerical evidence suggests that θj converges
monotonically to a limit, while |θj+1 − 30◦|/|θj − 30◦| → 1.22 × 10−2 as s → sext, for
each j, independently of the vorticity. Also, xj → 0 while xj+1/xj → 18.72 . . . as s → sext,
for each j, independently of the vorticity.

Perhaps the angle oscillations have relevance to the singularities of the conformal
mapping for the Stokes wave (see (2.10)), where square root branch points in Riemann
sheets tend to w = 0 (corresponding to the crest) in a self-similar manner as the wave
profile approaches the extreme form (for more discussion, see, for instance, Dyachenko
et al. 2016; Lushnikov 2016).

For zero vorticity, Chandler & Graham (1993) solved the Nekrasov equation (see (2.19))
efficiently to discover a boundary layer and the Gibbs phenomenon near the crest of an
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almost extreme wave with remarkable accuracy. For non-zero constant vorticity, there is
no such integral equation, to the best of the authors’ knowledge, and we instead solve the
modified Babenko equation (see (2.15)) with sufficiently high accuracy.
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Appendix A. The angle of the extreme wave

We give analytical evidence, similar to Stokes (1880), that for any constant vorticity, if an
extreme wave has a corner at the crest, then it makes a 120◦ corner.

Recall from § 2 that z = x + iy, and we employ the notation f = φ + iψ . Suppose for
definiteness that z0 = x0 + iy0 at the crest. Suppose that

f (z) =
∞∑

n=0

αn(z − z0)
n + α(z − z0)

b + o(|z − z0|b) as z → z0, (A1)

where αn, α ∈ C, and b ∈ R is not a non-negative integer. We assume that the crest is a
stagnation point, so that

fz(z0)− ωy0 − c = 0 (A2)

by the second equation of (2.8). We assume that b > 1 and arrive at α1 = ωy0 + c.
We write

z − z0 = r eiθ , αn = ρn eiσn and α = ρ eiσ , (A3a–c)

where ρn, ρ > 0, and σn, σ ∈ (−π,π]. Therefore

φ(r, θ) =
∞∑

n=0

ρnrn cos(nθ + σn)+ ρrb cos(bθ + σ)+ o(rb) as r → 0. (A4)

Note that ρ1 = ωy0 + c and σ1 = 0.
Suppose that θ = θ(r) along the fluid surface. Suppose that

θ(r) = −π

2
± θ0 + o(1) as r → 0, (A5)

where θ = −π/2 bisects the angle at the crest, and 2θ0 measures the angle; the + sign
is for r → 0 for x > x0, and the − sign is for x < x0. Substituting (A4) and (A5) into the
third equation of (2.8), at the leading order we gather that

1
2 b2ρ22r2b−2 + gy0 − gr cos θ0 + o(r2b−2) = B as r → 0. (A6)

Therefore

b = 3
2 , gy0 = B and 1

2

(
3
2

)2
ρ2 − g cos θ0 = 0. (A7a–c)

We pause to remark that fz(z) ∝ (z − z0)
1/2 as z → z0, a square root branch point.
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To proceed, substituting (A4), (A5) and (A7a–c) into the second equation of (2.8), at
the order of r1/2 we arrive at

3
2
ρr1/2 cos

(
−π

4
± θ0

2
+ σ

)
+ o(r1/2)

= (± cot θ0 + o(1))
(

3
2
ρr1/2 sin

(
−π

4
± θ0

2
+ σ

)
+ o(r1/2)

)
as r → 0, (A8)

whence cos(−π/4 ± 3
2θ0 + σ) = 0. Therefore θ0 = π/3 and σ = −3π/4. This means

that the angle at the crest is 2θ0 = 2π/3.
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