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1. In some recent work by D. G. Kendall and the author f on the number of points of a
lattice which lie in a random circle the mean value of the variance emerged as a constant
multiple of the value of the Epstein zeta-function Z(s) associated with the lattice, taken at
the point «=§. Because of the connexion with the problems of closest packing and covering
it seemed likely that the minimum value of Z{%) would be attained for the hexagonal lattice ;
it is the purpose of this paper to prove this and to extend the result to other real values of the
variable s.

Let
h(m,n) = a.m2 + 28mn + Pn2 (1)

be a positive definite quadratic form of determinant a/? - S2 equal to unity. In particular,
the special forms Q (m, n) and q (m, n) are defined as follows :

Q(m, n)=%J3q{m,n)=%J3(m? + mn + n2) (2)

We consider the Epstein zeta-function J ,

Zh(s)= E E1 {h(m,n)}-° (3)
m= — oo n= — oo

where the dash denotes, as always, the exclusion of the term m=n=0. This double series is
absolutely convergent for 9?s> 1. The function Zh (s) can be continued over the whole s-plane
and is regular except for a simple pole of residue 1 at s= 1.

It is easily shown that in the particular case h (m, n) = Q (m, n)

(«)£(«) (4)

where £ (s) is the Riemann zeta-function and L (s) is the Dirichlet i-series

We shall, throughout the paper, be concerned with real values of s in the half-plane of
convergence. We prove the

THEOKEM. For all a> 1-035, Zh(s)^ZQ(s). Equality occurs only when h and Q are
equivalent forms.

In view of the closeness of the lower bound 1-035 to unity and the fact that all the
functions Zh (s) are asymptotically equal as «->l + 0 it seems very likely that the conclusion
of the theorem remains valid for all s> l , but I have been unable to prove this. Further, I
have not been able to find any single method which is applicable to the whole range s^s 1-035,
as will be seen from the proof.

f " On the number of points of a given lattice in a random hypersphere." (To appear in the Quarterly
Journal.)

J For the general theory of Zh(s) see Max Deuring, " Zetafunktionen quadratischer Formen " J. reine
angew. Math. 172 (1935), 226-252.
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150 R. A. RANKIN

2. In this section we introduce some new notation and prove 10 lemmas. In the first
place, as is well known, we may, by means of a unimodular transformation on the variables
m and n, assume that <x is the minimum of the form for all pairs of integers m, n, not both
zero, and that

With these restrictions on the coefficients, the Theorem states that, for s^l-035, Zh (S)^ZQ (S)

and that equality occurs only for h=Q.
We now introduce some symmetry by defining

so that

and, by (5),
0 < a < £ < y < a + /? (8)

Also define
f(m, n) = Bm2+(P+y-ot)mn + yn2=h( — n, m + n) "1

V fy l

g(m,n) — ym2+(y + a- p)mn + <xn2=h(m + n, —m))

Then we find that
and deduce that 1

f=g+h±2J(gh-q*), g=h+f±2sJ{hf-q2), h=f+g±2sJ{fg~q2) (11) ]

LEMMA 1. / / a+j8+y«£4, the minus sign must be taken in each of the three relations (11). 1
Proof. We prove that f+g-h cannot take negative values. We have i

By (8), the coefficients of m2 and n2 are non-negative and the determinant of the form is, by
(7),

In a similar way it can be shown that g+h-f and h+f—g are not negative.
We now introduce new variables x, y and z defined by

x=S/x, y=l/<x, z=x + iy, (12)
so that we have

I m + nz
h(m,n) = -

y

and the conditions (8) imply that z belongs to the modular region Ji defined by

0<*<i, y>0, x* + y2^l (13)

Put

i(z.y; s)^[l+J^s + {{xJ? + y^=l-s+
l
Js+

l-s. (14)
We prove

LEMMA 2. If s>2 we have

Equality holds only when a,=P=y=
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Proof. By Holder's inequality, since s>2 ,

and equality can only occur when x=\, y=\J%. Accordingly, it is enough to prove that
<j>(x,y ; 2)>f in JB and that equality occurs only for x=\, y=i*J& and x=0, y=\.

Write y2=r] and put

Then

and is positive if

Since v^l - x2 in J@, -^- > 0 if
ax

i.e. if 0^x<l(3-J5) = x0, say.
Suppose now that x^x0. We have

M = l a-
dr,

and

Now, by evaluating the derivatives at rj — a + b it is easily verified that

fa - 2a) (̂  + ft)4 + (r, - 26) (i, + a)*

is not negative for r/^a+b, and since 2/2^=a;2+ (1 - x ) 2 in JD we deduce that d^jdyf^O in JE-
Hence, since f\^-\ - x2 in JB,

Id4,_d^ x
2ydy B-q^ 4(1 -x)2 ^ '

since x o <a;< | .
Accordingly we deduce that tfi(x, rj) attains its minimum value in JB either on the line

or on the'arc x2 + y2=l, 0 ^ a ; < | . Now, if x—Q, y > l we have

sotha t^(0 , y; 2)>^(0,1 ; 2) = | .
Finally, if x2 + y2 = 1, 0 < x < | we put

> v — 1 „ 4 «
a ; = — T > v I—r

so that l ^v<3 , and obtain
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say. Since

we-deduce that as v increases from 1 to 3, <f> (v) increases from f to a maximum at v=2J5 - 3
and then decreases to a minimum value of f at v=3. This completes the proof of Lemma 2.

We note that all that has been assumed in the proof of Lemma 2 is that «>2 and that
a, /} and y satisfy (7) and the inequalities (8). We use this fact to prove

LEMMA 3. / / a + /8+y^4 and s>2 then, for any values of m and n, not both zero,

1 1 1 _ ^ , / 7 3 >
{f(m,n)Y {g(m,n)Y {h(m,n)Y

Equality occurs only when a=j3=y=.2/J3.
Proof. Denote by a, b and c the three quantities f/q, g/q, hjq arranged in ascending

order of magnitude. Then, by (10) and Lemma 1,

and

so that, by Lemma 2,

Equality occurs only when f=g=h=2qjsj3, and then, since f+g + h—(<x+fi + y)q, we have
« + j8+y=2N/3. I.e., in terms of x and y, (*- |)2+(y-JN/3)2=0, so that x=\, y=\^3 and
therefore a=P—y=2/J3.

LEMMA 4. If a + p+y^4 and s>2, then

Proof. In terms of the point z, defined by (12), we have to consider the region
(x~h)2+(y~ l ) 2 ^ i . which we denote by®*.

Write

r1
2 + r2

2)-(r a
2 -r 1

2) 2- l}i , and r^r^l by (13). Also ©*=B** where
is the part of JB in which ra>>/2. Then

</> (x, y ; s) = 2-{2 (rx
2 + r/) - {r? - rff -1}

and it is easily verified that, for r2 constant,

where
co = (r* - r^) (r2

2 - 2) r^2*'2 + (1 + r2 - rx
2) (1 + r2~

2s)
Now

since r a
2^2, r x

2 ^ l and 2s>s— 1. Thus, since r2~^rx in ffi** we have

and therefore
x-

2s - 3r1~
2' + rx~

2s~2^ 1 - 2r1~
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Hence d^/dr-^O in 3©** and it follows that j>(x,y\ s) attains its minimum in J!* on the
line a;=0, y^l. Since

we have
<f>(O,y;

which completes the proof of the Lemma.
LEMMA 5. The real function f(t) is defined for all real t and possesses the following

(•00

properties : (i) f(t), f'(t) and f"(t) are continuous for all t, (ii) the integrals f(t)dt and
J - 0 0

| / " (0 I dt converge, (iii) f(t) and /'(<) tend to zero as £-^±00 , (iv) f"(t) is negative for
J —00

00

t 1 « « 2 , but otherwise non-negative. Then 8= S f(n) is convergent and, for some real •9-
n=—00

satisfying

Proof. We use the Euler-Maclaurin sum-formula in the form :

/ ( ) r / w * { / ( ) / ( ) } r
n=-M J -M J -M

where T(t) = t — \f\ — \ and

r1(<)= - r(u)du.
J 0

It is easily shown that 0<r1(<)<J for all t, and we deduce that the infinite series converges
and that

f(t)dt=\ rl(t)f'{t)dt=B,

I say. From condition (iv) it follows that
j

which completes the proof.
In the next two lemmas we are concerned with the function Zh (s) expressed in terms of

the variables x and y, and write

O(x, y) = Zh{s) = ZZ'y* \ mz + n \-** (15)
m n

LEMMA 6.1 For s>\,

l

t Deuring (loc. cit.) gives a somewhat similar formula for the function G(x, y), but with a different
form of remainder and without the explicit numerical constants which are essential for our purpose.
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Proof. We have, because of uniform convergence,

-O(xv)-- E E' d' f V

' Vs-1 \mz+n\2-2m2y2

We now apply Lemma 5 to each of the two inner sums. Put
UP

where p = s or s + 1 . Then

/
/ / j \ " r i f \ " « " * ' r e / / . / / /.v

\ / — 1 ' . _ ~n j / ( v I

so that the conditions are satisfied with

my my
/fyfY A_ f !* nnnna I 4- "

We deduce that
oo • I*QO y p d too • / •oo

i7/(») = 1 (2P + 2)p + 1 '
and, since the integral is

the result follows from (16) on taking p=s+ 1 and s in the two parts of the sum over n.
LEMMA 7. If s>\ and y~^\ then Gv(x, y)>0.
Proof. By Lemma 6,

where

and

Ov {x, y)>y°-i I(2*) - y - fa (s) -

say. Since

• r - '-1

and

u1-2'du=-.

) S + 1 - p ( 2 ) - * . . ,

it follows that ^1(*)<|7r.
Also, it is easily proved by differentiation that both fa (s) and fa (s) are decreasing func-

tions of* for y~>\. Thus we have, since ^2(l)<0-8174 y~2,

jr- Gv(x, y)>ys~^ {I(2s) - \ny1-2* - 0-8174y-3} = y*-1 fa (s, y),
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say. In order to show that (f>a(s, y)>0 for y > | it is enough to prove that <f>a(s, f )>0 . Now,
for l < s < 1-3 we have

A,(s, f )>I(2-6) - \n(I)"1 - 0-8174(f )-3>0-016>0,
for T 3 ^ s < 2 we have

&(«,*)>£ (4)-*ir(t)-i-«-0-8174 (t)-»>0-019>0,-
and for «^=2 we have

&(«,.*)> 1 - (frr+0-8174) (f)-s>0-292>0.
This completes the proof.

LEMMA 8. Let h and fi be fixed positive numbers and suppose that the function H(u)
possesses continuous derivatives H'(u), H"{u) for u^u0 and that H" (u)>\i?H(u) for all u>u0.
Then

for all
Proof. This follows from the formula

ru+h fv+h

flr
1(«)=e-f« e^odv] e-»a{H"(w)-fj.2H{w)}dw,

which is easily checked by integration.
For the remainder of the paper we write

H(u) = u**K^(u)r (17)
where Ks_^ (u) is a Bessel function.

LEMMA 9. / / 0 < / J , < 1 then H"(w)>[X2H(u) provided either that (i) u(l-ix2)^2s where
«>1 or (ii) (1 - V ) « > 3 ( 1 -Ja

2) + 2 V . when lsQs<2.
Proof. By using the relations (1) and (5) of § 3.71 of G. N. Watson's Bessel Functions,^

we obtain

a n d 8 i n C e

Jo
and cosh (s -1) ijscosh (s - f) t, the first part of the Lemma follows.

Suppose now that l ^ s < 2 . Then if we substitute for Ka-^{u) in terms of JLJ_A(M) and
Ks-±(u) in (18) and use the fact that Ky(z) = K_y(z), we get

H" («) - fi2H («) = (1 - M2) us +i Ki _, («) - {3 (1 - n*) + &/*«} u^Ki-, («),

and (ii) follows from this in a similar manner.
LEMMA 10. We have H"(u)>p2H(u) for all u^u0 in the following cases : (i) uo—^7rr,

\ r .. r

[ (1-035<SSS2 ; r = 3, 4, 5, ...), (iii) MO = 2T7, /x=i cosh"1 {^(2s- 1)} (2<s<3).

Proof, (i) Put a=|7r. We suppose first that l < s < | . By Lemma 9 (i), it suffices to
show that

1

since u(\ - /xr
2) is an increasing function of u. This is true since

cosh {a(a-2s)}*>cosh {a(a- 3)}*>2-838>|>l + 21-2'.

t Cambridge, 1922.
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Suppose next that f<s<2. Since (1 - nr
2) (w - 3) - 2s/j.r

2 increases with u, it is enough,
by Lemma 9 (ii), to show that

a2(a - 3) - (a - 3 + 2s) {cosh-1 (1 + 21-2")}2>0,
i.e. that

This follows since 1 +21-2»<f <2-383<cosh (a (—^*) <cosh (a ( a~3
n V l

{ \a+lj j { \a-3 + 2s/ )

(ii) By Lemma 9 (i) we have to show that

ar (l --ifcosh-1

for r=3, 4, 5,..., when l-035<*<2, i.e. that

If f<«<2, £(2s-l)<£(2)<cosh{a(a-f)}*<cosh{a(a-fs)}i Hence we need only prove
that, if l-035<s<f then

g(s)=log cosh {a(a-|«)}*-log C(2a- l)>0.
Now, ifl<5<f,

t a n h {«(«-1)}*-21(2)>0-751>0,

r
since y (2)= -0-5699610. Hence gr(s) is an increasing function for 1 <s<f, and since <7(f )>0
it follows that there exists a unique s0 such that l<s o <f and g(so)=O. By using Gram's
tables of (s — 1) £(s) we find that 1-O3<so<l-O35, and this completes the proof,

(iii) By Lemma 9 (i) we have to show that
£ (2a - 1) <cosh {4TT (n - a) }*

for 2<«<3. This is true since £(3)<cosh{47r(7r-3)}i
3. We now prove the Theorem for s^3 .
Suppose first that a + /3 + y=s;4. Then we have, by (9) and Lemma 3,

equality occurring only when h=Q. To complete the proof we have therefore to consider
the case a + /S + y^4. Now we have, by (14) and (15)

Zh{s)=y° 2 Z' \mz + n\-*°>2l{2s)<l>(x,y, s),

since the last expression is the part of the double sum corresponding to the terms

(m, n) = (0, ±r), (±r,0), (±r,Tr)
forr=l , 2, 3, ... .
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By Lemma 4 and (4) it remains to prove that

where

Now it is easily shown by the method described in the appendix to a paper by D. G. Kendall f
that L (3) = 0-8840238 and so .F(3)>0-0896>0. Also, by considering the infinite product, we
see that $ (s) — 1 is a decreasing function of s, and since 2~s - 3 (^J3)s is an increasing function
it follows that F(s) is an increasing function and is therefore positive.

4. In this section we assume that

1

The function 0 (x, y) of (15) is an even periodic function of x of period unity ; we express it
as a Fourier series :

G(x,y)~ E are
27rirx=a0 + 2 E ar cos 2TTTX.

r= — oo r=l

We have, for r>0,

ar=\ G(x,y)e-*"irxdx=2ys E E
J — i m = l M = — co J —

In the inner sum we put n = mX + v where 0 O < m and obtain
oo m - 1 /•»

ar = 2ys E E
m = l v=0 J - o o •

oo 1 m - 1

/"CO p—ZiTtTt fjf

r(s)
where

d\n

Similarly it can be shown that

The inversions of the orders of summation are all justified because of the absolute convergence
of the series concerned. Also the Fourier series is uniformly convergent in x, and so we have,
in fact,

GO

G (x, y) = a0 + 2 E ar cos 2-rrrx.

Also, again by uniform convergence,
00

Gx {x, y) ~ — 4:7T E rar sin 2nrx
r = l

— 00 ' CO

E Xr sir

f " On the number of lattice points inside a random oval," Quart. J. Math., Oxford Ser. 19 (1948),
1-26.

https://doi.org/10.1017/S2040618500035668 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035668


158 R. A. RANKIN

say, where '
(19)

in the notation of (17). By partial summation we obtain, for xj^O,

A ^ } (20)x{^y),A „ ( r + 2 r + 1 + r ) { ( + )
rr b i l l TTJC f=\

Now since
« ( r=l ,2 ,3) ,

it follows that we shall have

Ar+2-2Ar+1 + Ar>0 (r=l ,2,3, . . . ) (21)
if

£T{(r + 2)A}-2 cosh/xrAjff{(r+l)A} + JH'(rA)>0 ( r=l ,2 , ...),

where h=2ny and fir is defined by

c o s h ^ ^ l + 2 1 - 2 8 ( r = l , 2 ; s<2),

cosh firh—t,{2s- 1) (otherwise).

By Lemmas 8 and 10 with u = rh we conclude that (21) holds in the following cases :
(a) 1035<s<2, y>f, (6) 2<s<3 , y > l . It follows from (20) that Qx(x,y)<0 in cases (a)
and {b)ifO<x<i.

5. We now suppose that 2<s<3 . By Lemma 7, the minimum of O(x, y) is attained at
a point 2 of © for which ?/<f. Now z must lie in the circle (x -f )2 + (y - 1 )2<J as otherwise
y > l , and, by case (&) of § 4, it would follow that G(x, y) could be diminished by increasing x.
Hence (a;-f)2+(?/-l)2<i, i.e. a + j8 + y^4 , and the argument given at the beginning of § 3
shows that G(x, y)~^G(\, \^"S), equality occurring only when x=\, y=^*J3.

6. It remains to consider the range l-035<s<2. Again by Lemma 7 we know that
O(x, y) attains its minimum at a point z of 23 for which y<^\. Since Ox{x, y)<0 in 23 except
on x = 0 and x=% it follows that z — \ + iy where 1 /̂3=^2/<f. Now, if |V^<2/^f> @(x>y)
takes the same value at the point

, , • , 1 2 . 4w
z =x+iy = 7=1—5—T + *T-5—r"

z - 1 4t/2+l 4«/2+l
But 0<a; '<! and y ' ^ f so that Ox(x', y')<0 and hence 6(x, y) can be decreased still further '
by increasing x'. This contradiction establishes that Zh (s) attains its minimum at z = J + tyJS
and at no other point of 29 ; i.e. the minimum is attained only when h(m, n) = Q(m, n). This
completes the proof of the theorem.

We remark, in conclusion, that it is of course possible to reduce the lower bound 1-035
of s somewhat by more detailed arithmetical analysis, but, since the method places an upper
bound on £(2s - 1), it cannot be used without alteration to prove the Theorem for all s > l .
THE UNIVERSITY, BIRMINGHAM, 15

https://doi.org/10.1017/S2040618500035668 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035668

