ON THE PLETHYSM OF S-FUNCTIONS

S. P. O. PLUNKETT

1. Introduction. Many authors have studied the theory and calculation of the plethysms of S-functions. The significance of S-functions lies in their relationship [9] to the characters of the continuous groups, and plethysms play a crucial role in the determination of branching rules associated with the decomposition of a continuous group into its subgroups $[\mathbf{2} ; \mathbf{1 4} ; \mathbf{1 6}]$. Tables have been published for the plethysm $\{\lambda\} \otimes\{\mu\}$, where (λ) and (μ) are any partitions of l and m, respectively, with $l m \leqq 18$. These tables have been drawn up both with [1] and without [5] the aid of computers and some results are also known for $l m>18[\mathbf{3} ; \mathbf{4} ; \mathbf{7}]$.

The method given here deals with the notion of q-quotients and is based on a theorem of Littlewood's relating these to plethysms of S-functions with symmetric power sums. Use is made of some results concerning modular congruences between the symmetric power sums. A general rule is obtained for $\{l\} \otimes\{\mu\}$, where $\{l\}$ is a symmetric S-function and (μ) is any partition of 3 . In addition, the method has been used for the computation of $\{l\} \otimes\{\mu\}$ beyond the range currently available.

Acknowledgement. It is a pleasure to express my gratitude to Dr. R. C. King for his careful reading of the manuscript, for many helpful suggestions, and for his continuous advice and encouragement.
2. S-functions and plethysm. S-functions, or Schür functions, $\{\lambda\}$, are defined [9] in terms of symmetric power sums S_{l} of independent variables $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ given by

$$
\begin{equation*}
S_{l}=\sum_{i=1}^{n} \alpha_{i}{ }^{l} . \tag{2.1}
\end{equation*}
$$

For any partition $\rho=\left(1^{a} 2^{b} 3^{c} \ldots\right)$, the product S_{ρ} is defined by

$$
\begin{equation*}
S_{\rho}=S_{1}{ }^{a} S_{2}{ }^{b} S_{3}{ }^{c} \ldots, \tag{2.2}
\end{equation*}
$$

and the Schür function $\{\lambda\}$ corresponding to the partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of l may then be expressed in the form

$$
\begin{equation*}
\{\lambda\}=\frac{1}{l!} \sum_{\rho} h_{\rho} \chi_{\rho}{ }^{(\lambda)} S_{\rho} \tag{2.3}
\end{equation*}
$$

where $\chi_{\rho}{ }^{(\lambda)}$ is the character of the class ρ of size h_{ρ} in the irreducible representa-
tion of the symmetric group specified by (λ). The inverse of (2.3) is the relationship

$$
\begin{equation*}
S_{\rho}=\sum_{\lambda} \chi_{\rho}^{(\lambda)}\{\lambda\} \tag{2.4}
\end{equation*}
$$

The outer product of two S-functions, $\{\lambda\}\{\mu\}$, may be evaluated by means of the well known Littlewood-Richardson rule [10]. Powers of S-functions may be split into parts corresponding to some degree of symmetry between the factors. Thus,

$$
\{\lambda\}^{2}=\{\lambda\} \otimes\{2\}+\{\lambda\} \otimes\left\{1^{2}\right\}
$$

where the square is divided into its symmetrised and anti-symmetrised parts; and

$$
\{\lambda\}^{3}=\{\lambda\} \otimes\{3\}+2\{\lambda\} \otimes\{21\}+\{\lambda\} \otimes\left\{1^{3}\right\}
$$

etc. In general [13],

$$
\begin{equation*}
\{\lambda\}^{m}=\sum_{\mu} f^{\mu}\{\lambda\} \otimes\{\mu\} \tag{2.5}
\end{equation*}
$$

where (μ) is a partition of m for which the symmetric group representation is of degree f^{μ}, and $\{\lambda\} \otimes\{\mu\}$ defines the operation of plethysm. This operation was introduced by Littlewood [6] who also established its algebra, which is such that

$$
\begin{equation*}
\{\lambda\} \otimes(\{\mu\}+\{\nu\})=\{\lambda\} \otimes\{\mu\}+\{\lambda\} \otimes\{\nu\}, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\{\lambda\} \otimes(\{\mu\}\{\nu\})=(\{\lambda\} \otimes\{\mu\})(\{\lambda\} \otimes\{\nu\}) \tag{2.7}
\end{equation*}
$$

3. q-residues and q-quotients. The notions of q-residue, q-sign, and q-quotient were introduced by Robinson $[\mathbf{1 1} ; \mathbf{1 2} ; \mathbf{1 3}]$ and developed by Littlewood [8]. With every partition $(\lambda)=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{i}\right)$ of l into i parts, there is associated a q-quotient, which is a sum of partitions of s, with an associated sign, and a q-residue or q-core, which is a partition of r, where s and r are such that $l=s q+r$. The definitions of these quantities are best illustrated by an example. Consider the partition ($9542^{2} 1$) of 23 , and let $q=3$. The numerical working consists of a series of lines:

A	9	5	4	2	2	1
B	5	4	3	2	1	0
C	14	9	7	4	3	1
D	2	3	7	4	0	1
E	7	4	3	2	1	0
F	2	0	0	0	0	0

A is the partition, B the numbers $i-1, i-2, \ldots, 1,0$, and C the sum of A and $B . D$ is obtained from C by reducing each number $(\bmod 3)$ to the smallest nonnegative integer so far unused, working from the right. E contains the numbers in D rearranged in descending order, and F is the difference between E and B.

The partition in F, i.e., (2), is the 3 -residue. The sign of the permutation by which E is obtained from D, here positive, is the 3 -sign. To obtain the 3 -quotient, consider the decrease between C and D, in multiples of 3 , of terms congruent to $0(\bmod 3)$:

$$
(9,3) \rightarrow(3,0):(2,1)
$$

of terms congruent to 1 :

$$
(7,4,1) \rightarrow(7,4,1):(0)
$$

and of terms congruent to 2 :

$$
(14) \rightarrow(2):(4) .
$$

The outer product of S-functions corresponding to these three partitions is found:

$$
\begin{equation*}
\{21\}\{4\}\{0\}=\{61\}+\{52\}+\{511\}+\{421\} \tag{3.1}
\end{equation*}
$$

and the 3 -quotient is the corresponding set of partitions with the 3 -sign appended:

$$
+(61)+(52)+(511)+(421)
$$

The q-quotient is a sum of partitions of, say, n which is obtained from outer products of S-functions. The S-functions $\{n\}$ and $\left\{1^{n}\right\}$ can occur only with coefficient ± 1 (or 0) in such a product. For example, if $n=4$ all possible quotients correspond to the S-functions:

$$
\begin{aligned}
& \{4\} ;\{31\} ;\left\{2^{2}\right\} ;\left\{21^{2}\right\} ;\left\{1^{4}\right\} ; \\
& \{3\}\{1\}=\{4\}+\{31\} ;\{21\}\{1\}=\{31\}+\left\{2^{2}\right\}+\left\{21^{2}\right\} ;\left\{1^{3}\right\}\{1\}=\left\{21^{2}\right\}+\left\{1^{4}\right\} ; \\
& \{2\}\{2\}=\{4\}+\{31\}+\left\{2^{2}\right\} ;\{2\}\left\{1^{2}\right\}=\{31\}+\left\{21^{2}\right\} ;\left\{1^{2}\right\}\left\{1^{2}\right\}= \\
& \left\{2^{2}\right\}+\left\{21^{2}\right\}+\left\{1^{4}\right\} ; \\
& \{2\}\{1\}\{1\}=\{4\}+2\{31\}+\left\{2^{2}\right\}+\left\{21^{2}\right\} ;\left\{1^{2}\right\}\{1\}\{1\}= \\
& \{31\}+\left\{2^{2}\right\}+2\left\{21^{2}\right\}+\left\{1^{4}\right\} ; \\
& \{1\}\{1\}\{1\}\{1\}=\{4\}+3\{31\}+2\left\{2^{2}\right\}+3\left\{21^{2}\right\}+\left\{1^{4}\right\} .
\end{aligned}
$$

So the partitions (n) and (1^{n}) can occur in a q-quotient only with coefficient ± 1 or 0 .

The q-residue, q-sign, and q-quotient may also be obtained in a graphical manner. From the tableau for the partition (λ), hooks are removed whose length is a multiple of q. This multiple is denoted by n_{j} for a hook starting on the j th row, and each n_{j} is made as large as possible subject to three conditions. Each hook must (i) start from the right hand end of a row, each row being tried in turn starting at the bottom, (ii) move only to the left and down, and (iii) leave a regular tableau. Figure 1 illustrates this process for the tableau for ($9542^{2} 1$). The q-residue is the partition of the tableau which remains. If m_{j} is the number of rows covered by the hook starting at the end of the j th row, the q-sign is $\Pi_{j}(-1)^{m_{j+1}}$. To find the q-quotient, the quantity $j-\lambda_{j}$ is found for each hook. If, for hooks starting on the rows $j_{1}, j_{2}, j_{3} \ldots$, this quantity is congruent $(\bmod q)$, then the S-function $\left\{n_{j_{1}} n_{j_{2}} n_{j_{3}} \ldots\right\}$ is constructed. The
outer product of these S-functions, one for each congruence class, is found as before, giving the q-quotient. In Figure 1, the first square of each hook is marked with the value of $j-\lambda_{j}$. Since $-8 \equiv 1(\bmod 3),-3 \equiv 3 \equiv 0(\bmod 3)$, and $n_{1}=4, n_{2}=2, n_{5}=1$, the 3 -quotient is $\{4\}\{21\}\{0\}$, in agreement with (3.1).

The removal of hooks of length 3,6 and 12 from the tableau for $\left(9542^{2} 1\right)$ leaving the tableau for (2).

Figure 1
4. Application to the calculation of plethysms. Littlewood [8] proves the theorem that if the q-residue of (ν) is null and the q-quotient is $\sum k_{\lambda \nu}(\lambda)$, then

$$
\{\lambda\} \otimes S_{q}=\sum k_{\lambda \nu}\{\nu\} .
$$

This result can be used to calculate plethysms of the form $\{\lambda\} \otimes\{\mu\}$. Littlewood has two methods to suggest, but both involve fairly lengthy calculations and the establishing of tables of prior results. One method uses the symmetric function identity

$$
\{m\}=\frac{1}{m} \sum_{r=0}^{m-1} S_{m-r}\{r\}
$$

to obtain

$$
\{\lambda\} \otimes\{m\}=\frac{1}{m} \sum_{r=0}^{m-1}\left(\{\lambda\} \otimes S_{m-r}\right)(\{\lambda\} \otimes\{r\})
$$

by means of (2.6) and (2.7). The evaluation of this expression involves the finding of $\{\lambda\} \otimes S_{r}$, for $2 \leqq r \leqq m$, and $\{\lambda\} \otimes\{r\}$, for $2 \leqq r<m$. Then further calculations are necessary to find $\{\lambda\} \otimes\{\mu\}$.

The other method uses (2.3) in conjunction with (2.6) and (2.7) to obtain

$$
\begin{align*}
\{\lambda\} \otimes\{\mu\} & =\frac{1}{m!} \sum_{\rho} h_{\rho} \chi_{\rho}{ }^{(\mu)}\{\lambda\} \otimes S_{\rho} \tag{4.1}\\
& =\frac{1}{m!} \sum_{\rho} h_{\rho} \chi_{\rho}{ }^{(\mu)}\left(\{\lambda\} \otimes S_{1}\right)^{a}\left(\{\lambda\} \otimes S_{2}\right)^{b}\left(\{\lambda\} \otimes S_{3}\right)^{c} \ldots
\end{align*}
$$

Here, again, $\{\lambda\} \otimes S_{\tau}$ for $2 \leqq r \leqq m$ must be known, and also $\left(\{\lambda\} \otimes S_{1}\right)^{r}$, i.e. $\{\lambda\}^{r}$, for $2 \leqq r \leqq m$. This second method can be greatly simplified by observing a relationship between these products.

For p prime,

$$
\begin{align*}
S_{a}^{p b} & =\left(\alpha_{1}{ }^{a}+\alpha_{2}^{a}+\ldots+\alpha_{n}{ }^{a}\right)^{)^{b}} \tag{4.2}\\
& \equiv \alpha_{1}{ }^{p^{b}}+\alpha_{2}{ }^{a p^{b}}+\ldots+\alpha_{n}^{a p b}(\bmod p) \\
& =S_{a p^{b}} .
\end{align*}
$$

Special cases of this result are particularly useful. For $a=b=1$,

$$
S_{1}^{p} \equiv S_{p}
$$

for $a=1$,

$$
S_{1}{ }^{p^{b}} \equiv S_{p}{ }^{b},
$$

and for $b=1$,

$$
S_{a}^{p} \equiv S_{a p}
$$

Thus,

$$
\begin{gather*}
\{\lambda\} \otimes S_{p} \equiv\{\lambda\} \otimes S_{1}^{p}=\{\lambda\}^{p}, \tag{4.3}\\
\{\lambda\} \otimes S_{p^{b}} \equiv\{\lambda\} \otimes S_{1}^{p^{b}}=\{\lambda\}^{p^{b}}, \tag{4.4}\\
\{\lambda\} \otimes S_{a p} \equiv\{\lambda\} \otimes S_{a}^{p}=\left(\{\lambda\} \otimes S_{a}\right)^{p} . \tag{4.5}
\end{gather*}
$$

So we have

$$
\begin{aligned}
& \{\lambda\} \otimes S_{2} \equiv\{\lambda\}^{2}(\bmod 2) \\
& \{\lambda\} \otimes S_{3} \equiv\{\lambda\}^{3}(\bmod 3) \\
& \{\lambda\} \otimes S_{4} \equiv\{\lambda\}^{4}(\bmod 2) \\
& \{\lambda\} \otimes S_{5} \equiv\{\lambda\}^{5}(\bmod 5) \\
& \{\lambda\} \otimes S_{6} \equiv\left(\{\lambda\} \otimes S_{3}\right)^{2}(\bmod 2)
\end{aligned}
$$

etc.
These congruences are not in themselves sufficient to obtain $\{\lambda\} \otimes S_{r}$ from $\{\lambda\}^{r}$, but in certain cases the result can be determined. Rewriting Littlewood's theorem: if

$$
\{\lambda\} \otimes S_{r}=\sum k_{\lambda \nu}\{\nu\}
$$

then the r-quotient of (ν) contains $k_{\lambda \nu}(\lambda)$. But we have shown that an r-quotient can contain (l) or (1^{l}) only with coefficient ± 1 or 0 . So $k_{l \nu}$ and $k_{1^{l} \nu}$ are ± 1 or 0 . Therefore, the coefficients of the S-functions appearing in $\{l\} \otimes S_{r}$ and $\left\{1^{l}\right\} \otimes S_{r}$ are simply the r-signs of the corresponding partitions. Thus, the modular congruences give the coefficients $k_{l \nu}$ and $k_{1^{l} \nu}$ unambiguously except for congruences $(\bmod 2)$, for which $+1 \equiv-1$. But in these cases the r-sign is easily determined.

The method for finding $\{l\} \otimes\{\mu\}$, for all partitions (μ) of m, is as follows. First, $\{l\}^{m}$ is calculated, noting the $\{l\}^{r}, 2 \leqq r<m$, on the way. From these, the $\{l\} \otimes S_{r}$ can easily be found as shown above. Then the character-class-size products are used to complete (4.1). It is important to emphasize that the characters involved are only those for \sum_{m} and not for the much larger group $\sum_{i m}$.

This method has been used for the machine calculation of $\{l\} \otimes\{\mu\}$ on the University of London's CDC 6600 computer. With $m=4$, the values of l range up to 10 ; and for $m=5$, up to 6 . Table 3 shows a typical set of plethysms.
5. Symmetrized squares of S-functions. As a simple illustration, the result for $\{l\} \otimes\{2\}$ and $\{l\} \otimes\left\{1^{2}\right\}$ can easily be established. First of all

$$
\begin{equation*}
\{l\}^{2}=\{2 l\}+\{2 l-1,1\}+\{2 l-2,2\}+\{2 l-3,3\}+\ldots . \tag{5.1}
\end{equation*}
$$

In order to find $\{l\} \otimes S_{2}$, we must know the 2 -sign of each partition. It is clear diagramatically that for partitions into even parts, hooks of length 2 can be removed from the two rows separately giving a positive 2 -sign, while for partitions into two odd parts, one 2 -hook must cover the two rows giving a negative 2 -sign (see Figure 2). So we have

$$
\begin{equation*}
\{l\} \otimes S_{2}=\{2 l\}-\{2 l-1,1\}+\{2 l-2,2\}-\{2 l-3,3\}+\ldots, \tag{5.2}
\end{equation*}
$$ and also

$$
\begin{equation*}
\{l\} \otimes S_{1}{ }^{2}=\{l\}^{2}=\{2 l\}+\{2 l-1,1\}+\{2 l-2,2\} \tag{5.3}
\end{equation*}
$$

$$
+\{2 l-3,3\}+\ldots
$$

Hence, the well-known results [7]:

$$
\begin{align*}
\{l\} \otimes\{2\} & =\{l\} \otimes\left[\frac{1}{2}\left(S_{1}^{2}+S_{2}\right)\right] \tag{5.4}\\
& =\{2 l\}+\{2 l-2,2\}+\ldots,
\end{align*}
$$

and

$$
\begin{align*}
\{l\} \otimes\left\{1^{2}\right\} & =\{l\} \otimes\left[\frac{1}{2}\left(S_{1}{ }^{2}-S_{2}\right)\right] \tag{5.5}\\
& =\{2 l-1,1\}+\{2 l-3,3\}+\ldots .
\end{align*}
$$

(a)

(b)

Figure 2
Removal of 2-hooks from two-rowed tableaux with (a) rows of even numbers of boxes (b) rows of odd number of boxes.
6. Symmetrized cubes of S-functions. Thrall [15] produced a simple rule for writing down the plethysm $\{l\} \otimes\{3\}$. We can re-derive this result and also produce similar rules for immediately obtaining $\{l\} \otimes\{21\}$ and $\{l\} \otimes\left\{1^{3}\right\}$.

Again, an illustration makes the method clearest. We take $l=4$ and find

$$
\begin{equation*}
\{4\}^{2}=\{8\}+\{71\}+\{62\}+\{53\}+\{44\}, \tag{6.1}
\end{equation*}
$$

and
(6.2) $\{4\}^{3}=\{12\}+2\{11.1\}+3\{10.2\}+4\{93\}+5\{84\}+3\{75\}+\{66\}$

$$
+\{10.1 .1\}+2\{921\}+3\{831\}+4\{741\}+2\{651\}
$$

$$
+\{822\}+2\{732\}+3\{642\}+\{552\}
$$

$$
+\{633\}+\{543\}
$$

$$
+\{444\}
$$

The result has been set out so that the pattern of the coefficients in $\{4\}^{3}$ is clear. It will be observed that the coefficient of $\{\nu\}=\left\{\nu_{1} \nu_{2} \nu_{3}\right\}$ is

$$
M_{\nu}=1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}-\nu_{3}\right) .
$$

This can be shown in general as follows. The coefficient of $\{\nu\}$ is the number of ways $\{\nu\}$ can be obtained from terms in $\{\lambda\}^{2}$ by multiplication with $\{\lambda\}$. This is equal to the number of ways in which $l c$'s can be placed in the tableau for $\{\nu\}$ following the usual rules and completely filling the third row. This leaves $n c$'s to be distributed between the first and second rows, where

$$
\begin{equation*}
3 n=2\left(\nu_{2}-\nu_{3}\right)+\left(\nu_{1}-\nu_{2}\right) . \tag{6.3}
\end{equation*}
$$

(See Figure 3(a).) From this, it is clear that the greater of $\left(\nu_{2}-\nu_{3}\right)$ and ($\nu_{1}-\nu_{2}$) cannot be less than n, so the number of ways of distributing the c 's is one more than the lesser of $\left(\nu_{2}-\nu_{3}\right)$ and $\left(\nu_{1}-\nu_{2}\right)$. See Figure 3(b), (c).

$$
\leftarrow \nu_{3} \rightarrow \leftarrow\left(\nu_{2}-\nu_{3}\right) \rightarrow \leftarrow\left(\nu_{1}-\nu_{2}\right) \rightarrow
$$

(a)

(c)
 result is three, which equals $1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}-\nu_{3}\right)$.

Figure 3
Continuing with the calculation,

$$
\begin{equation*}
\{4\} \otimes S_{2}=\{8\}-\{71\}+\{62\}-\{53\}+\{44\} \tag{6.4}
\end{equation*}
$$

so
(6.5) $\{4\} \otimes S_{2} S_{1}=\left(\{4\} \otimes S_{2}\right)\{4\}=\{12\}+\{10.2\}+\{84\}-\{75\}+\{66\}$

$$
\begin{aligned}
& -\{10.1 .1\}-\{831\} \\
& +\{822\}+\{642\}-\{552\} \\
& -\{633\} \\
& +\{444\}
\end{aligned}
$$

Each term in $\{4\} \otimes S_{2} S_{1}$ is obtained from a series of successive terms in $\{4\} \otimes S_{2}$, just as those in $\{4\}^{3}$ came from $\{4\}^{2}$. The alternation in signs in $\{4\} \otimes S_{2}$ means that a coefficient in $\{4\} \otimes S_{2} S_{1}$ must be 0 if an even number of terms contribute, and ± 1 if an odd number. In the latter case, the sign will be that of the first (or last) of the series of contributing terms in $\{4\} \otimes S_{2}$. If ($\nu_{2}-\nu_{3}$) is less than (or equal to) ($\nu_{1}-\nu_{2}$), this sign will be positive (negative) if ν_{2} is even (odd). If ($\nu_{1}-\nu_{2}$) is less than ($\nu_{2}-\nu_{3}$), the sign will be similarly determined by ν_{1}. But ($\nu_{1}-\nu_{2}$) must be even in order to give an odd number of terms, so $\nu_{1} \equiv \nu_{2}(\bmod 2)$. See Figure 3. So the terms which occur in $\{\lambda\} \otimes S_{2} S_{1}$ have coefficient ± 1, according as ν_{2} is even or odd.
$\{4\} \otimes S_{3}$ is obtained by reducing the coefficients in $\{4\}^{3}(\bmod 3)$ to ± 1 or 0 :

$$
\begin{align*}
\{4\} \otimes S_{3} & =\{12\}-\{11.1\}+\{93\}-\{84\}+\{66\} \tag{6.6}\\
& +\{10.1 .1\}-\{921\}+\{741\}-\{651\} \\
& +\{822\}-\{732\}+\{552\} \\
& +\{633\}-\{543\} \\
& +\{444\} .
\end{align*}
$$

Now,

$$
\begin{equation*}
\{4\} \otimes\{3\}=\frac{1}{6}\left[\{4\} \otimes S_{1}^{3}+2 .\{4\} \otimes S_{3}+3 .\{4\} \otimes S_{2} S_{1}\right] . \tag{6.7}
\end{equation*}
$$

The coefficient of each S-function in the sum in square brackets must be divisible by 6 . Since $\{4\} \otimes S_{2} S_{1}$ can only contribute coefficients ± 1 or 0 , and this entry is multiplied by 3 , the coefficients obtained from the sum of the first two terms must be divisible by 3 and, further, if even, will receive no contribution from the third term but, if odd, will receive ± 3 as ν_{2} is even or odd. The coefficients in $\{4\} \otimes S_{3}$ are also ± 1 or 0 , so the contribution from the second term will be ± 2 or 0 . The coefficients in the first term are the M_{ν}. So we have Thrall's rule: $\{l\} \otimes\{3\}=\sum k_{\nu}\{\nu\}$, summed over all partitions of $3 l$ with 3 or fewer parts, where k_{ν} is obtained by adding ± 2 or 0 to M_{ν} to give a result divisible by 3 , then if even, dividing by 6 , but if odd, first adding (subtracting) 3 if ν_{2} is even (odd) and then dividing by 6 .

Similarly for $\{l\} \otimes\left\{1^{3}\right\}$. We have

$$
\begin{equation*}
\{l\} \otimes\left\{1^{3}\right\}=\frac{1}{6}\left[\{l\} \otimes S_{1}{ }^{3}+2\{l\} \otimes S_{3}-3\{l\} \otimes S_{2} S_{1}\right] \tag{6.8}
\end{equation*}
$$

so the only alteration in the above rule is the interchanging of "adding" and "subtracting".

Also,

$$
\begin{equation*}
\{l\} \otimes\{21\}=\frac{1}{3}\left[\{l\} \otimes S_{1}{ }^{3}-\{l\} \otimes S_{3}\right] . \tag{6.9}
\end{equation*}
$$

So $\{l\} \otimes\{21\}=\sum k_{\nu}\{\nu\}$, where k_{ν} is obtained by adding ± 1 or 0 to M_{ν} to obtain a multiple of 3 , and then dividing by 3 .

Thus, $M_{\nu}=1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}-\nu_{3}\right)$ and the "parity" of ν_{2} determine the coefficient of $\{\nu\}$ in $\{l\} \otimes\{\mu\},(\mu)$ a partition of 3 . These coefficients are given
in Table 1 for $M_{\nu} \leqq 11$ which suffices for $l \leqq 10$. Table 2 lists the partitions of 12 into not more than three parts with their M_{ν} and ν_{2} "parity", and tabulates the plethysms $\left\{4\left\{\otimes\{3\},\{4\} \otimes\{21\},\{4\} \otimes\left\{1^{3}\right\}\right.\right.$.

Table 1

	l{f7b31b1da-6719-4737-963a-4ddff48b8757}		$\{l\} \otimes\{21\}$	l{ffa5fe306-541c-471a-a5a2-086864a7be5c}	
M_{ν}	ν_{2} even	ν_{2} odd		ν_{2} even	ν_{2} odd
1	1	0	0	0	1
2	0	0	1	0	0
3	1	0	1	0	1
4	1	1	1	1	1
5	1	0	2	0	1
6	1	1	2	1	1
7	2	1	2	1	2
8	1	1	3	1	1
9	2	1	3	1	2
10	2	2	3	2	2
11	2	1	4	1	2

$M_{\nu}=1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}-\nu_{3}\right)$ determines the coefficient of $\{\nu\}$ in the three plethysms $\{l\} \otimes\{3\},\{l\} \otimes\{21\},\{l\} \otimes\left\{1^{3}\right\}$ except that if M_{ν} is odd it is necessary to know also the "parity" of ν_{2} for $\{l\} \otimes\{3\}$ and $\{l\} \otimes\left\{1^{3}\right\}$.

Table 2

$\}\}$	M_{ν}	$\nu_{2}(\bmod 2)$	$\{4\} \otimes\{3\}$	$\{4\} \otimes\{21\}$	$\{4\} \otimes\left\{1^{3}\right\}$
$\{12\}$	1	0	1	0	0
$\{111\}$	2	1	0	1	0
$\{102\}$	3	0	1	1	0
$\{93\}$	4	1	1	1	1
$\{84\}$	5	0	1	2	0
$\{75\}$	3	1	0	1	1
$\{66\}$	1	0	1	0	0
$\{1011\}$	1	1	0	0	1
$\{921\}$	2	0	0	1	0
$\{831\}$	3	1	0	1	1
$\{741\}$	4	0	1	1	1
$\{651\}$	2	1	0	1	0
$\{822\}$	1	0	1	0	0
$\{732\}$	2	1	0	1	0
$\{642\}$	3	0	1	1	0
$\{552\}$	1	1	0	0	1
$\{633\}$	1	1	0	0	1
$\{543\}$	2	0	0	1	0
$\{444\}$	1	0	1	0	0

The plethysms $\{4\} \otimes\{3\},\{4\} \otimes\{21\}$ and $\{4\} \otimes\left\{1^{3}\right\}$ calculated from Table 1.

Table 3

	$\{5\} \otimes\{4\}$	$\{5\} \otimes\{31\}$	$\{5\} \otimes\left\{2^{2}\right\}$	$\{5\} \otimes\left\{21^{2}\right\}$	$\{5\} \otimes\left\{1^{4}\right\}$
\{20\}	1	0	0	0	0
\{19 1 $\}$	0	1	0	0	0
$\{182\}$	1	1	1	0	0
$\left\{\begin{array}{lll}18 & 1\end{array}\right\}$	0	0	0	1	0
$\{173\}$	1	2	0	1	0
$\left\{\begin{array}{llll}17 & 2 & 1\end{array}\right\}$	0	1	1	1	0
$\left\{\begin{array}{lllll}17 & 1 & 1 & 1\end{array}\right\}$	0	0	0	0	1
$\left\{\begin{array}{lll}16 & 4\end{array}\right\}$	2	2	2	1	0
$\left\{\begin{array}{llll}16 & 3 & 1\end{array}\right\}$	0	2	1	2	1
$\left\{\begin{array}{llll}16 & 2 & 2\end{array}\right\}$	1	1	1	0	0
$\left\{\begin{array}{lllll}16 & 2 & 1 & 1\end{array}\right\}$	0	0	0	1	0
\{15 5\}	1	4	1	2	0
$\left\{\begin{array}{llll}15 & 4 & 1\end{array}\right\}$	1	3	2	3	1
$\left\{\begin{array}{llll}15 & 3 & 2\end{array}\right\}$	1	2	1	2	0
$\left\{\begin{array}{lllll}15 & 3 & 1 & 1\end{array}\right\}$	0	0	1	1	1
$\left\{\begin{array}{llll}15 & 2 & 2 & 1\end{array}\right\}$	0	1	0	0	0
\{14 6\}	2	3	3	2	1
$\left\{\begin{array}{lll}14 & 5 & 1\end{array}\right\}$	1	4	3	5	1
\{14 4 2 \}	2	4	3	2	1
$\left\{\begin{array}{llllll}14 & 4 & 1 & 1\end{array}\right\}$	0	1	0	2	1
$\left\{\begin{array}{lllll}14 & 3 & 3\end{array}\right\}$	0	1	0	2	1
$\left\{\begin{array}{lllll}14 & 3 & 2 & 1\end{array}\right\}$	0	1	1	1	0
$\left\{\begin{array}{llll}14 & 2 & 2\end{array}\right\}$	1	0	0	0	0
\{13 7\}	1	4	1	3	0
$\left\{\begin{array}{llll}13 & 6 & 1\end{array}\right\}$	2	5	3	5	2
$\left\{\begin{array}{llll}13 & 5 & 2\end{array}\right\}$	2	6	3	5	1
$\left\{\begin{array}{lllll}13 & 5 & 1 & 1\end{array}\right\}$	0	1	2	2	2
$\{1343\}$	1	3	2	3	1
$\left\{\begin{array}{lllll}13 & 4 & 2 & 1\end{array}\right\}$	1	2	1	2	0
$\left\{\begin{array}{llll}13 & 3 & 3 & 1\end{array}\right\}$	0	0	1	1	1
$\left\{\begin{array}{llll}13 & 3 & 2\end{array} 2\right\}$	0	1	0	0	0
\{12 8\}	2	2	3	2	1
$\left\{\begin{array}{lll}12 & 7 & 1\end{array}\right\}$	1	5	3	5	2
$\left\{\begin{array}{lll}12 & 6\end{array}\right\}$	3	6	5	5	2
$\left\{\begin{array}{lllll}12 & 6 & 1 & 1\end{array}\right\}$	0	2	1	3	0
$\{1253\}$	1	5	3	6	2
$\left\{\begin{array}{llll}12 & 5 & 2\end{array}\right\}$	1	3	2	3	1
\{12 4 4\}	2	2	2	1	0
$\left\{\begin{array}{llllll}12 & 4 & 3\end{array}\right\}$	0	2	1	2	1
$\left\{\begin{array}{llllll}12 & 4 & 2\end{array}\right\}$	1	1	1	0	0
$\left\{\begin{array}{llll}12 & 3 & 3\end{array}\right\}$	0	0	0	1	0
\{119\}	0	3	0	2	0
$\left\{\begin{array}{lll}11 & 8\end{array}\right\}$	1	4	3	4	1
$\left\{\begin{array}{lll}117 & 7\end{array}\right\}$	2	6	3	6	1
$\left\{\begin{array}{lllll}11 & 7 & 1 & 1\end{array}\right\}$	1	1	2	2	2
$\left\{\begin{array}{lll}11 & 6 & 3\end{array}\right\}$	2	6	4	6	2
$\left\{\begin{array}{llll}11 & 6 & 2 & 1\end{array}\right\}$	1	4	2	3	1
$\left\{\begin{array}{lll}1154\end{array}\right\}$	1	5	3	4	1

Table 3 (continued)

	$\{5\} \otimes\{4\}$	$\{5\} \otimes\{31\}$	$\{5\} \otimes\left\{2^{2}\right\}$	$\{5\} \otimes\left\{21^{2}\right\}$	$\left.\{5\} \otimes 1^{4}\right\}$
$\left\{\begin{array}{lllll}11 & 5 & 3 & 1\end{array}\right\}$	1	2	3	4	2
$\left\{\begin{array}{llll}11 & 5 & 2\end{array}\right\}$	1	2	0	1	0
$\{11441\}$	1	2	0	1	0
$\left\{\begin{array}{lllll}11 & 4 & 2\end{array}\right\}$	0	1	1	1	0
$\left\{\begin{array}{lllll}11 & 3 & 3 & 3\end{array}\right\}$	0	0	0	0	1
$\left\{\begin{array}{lll}10 & 10\end{array}\right\}$	1	0	2	0	1
$\left\{\begin{array}{llll}10 & 9 & 1\end{array}\right\}$	1	2	1	3	1
$\left\{\begin{array}{llll}108 & 2\end{array}\right\}$	2	4	4	3	2
$\left\{\begin{array}{lllll}10 & 8 & 1 & 1\end{array}\right\}$	0	2	0	2	0
$\{1073\}$	1	5	3	6	2
$\left\{\begin{array}{lllll}10 & 7 & 1\end{array}\right\}$	1	3	2	3	1
\{1064\}	3	5	4	4	2
$\left\{\begin{array}{lllll}10 & 6 & 3 & 1\end{array}\right\}$	1	4	2	4	1
$\left\{\begin{array}{lllll}10 & 6 & 2\end{array}\right\}$	1	1	2	1	0
\{1055\}	0	2	1	4	1
$\left\{\begin{array}{lllll}10 & 5 & 4 & 1\end{array}\right\}$	1	3	2	3	1
$\left\{\begin{array}{lllll}10 & 5 & 3\end{array}\right\}$	0	2	1	2	1
$\{10442\}$	1	1	1	0	0
$\{10433\}$	0	0	0	1	0
\{ 9992$\}$	0	2	0	2	0
	0	0	2	0	1
\{ 9883$\}$	1	3	2	3	1
\{ 98821$\}$	1	2	1	2	0
\{ 974 4\}	1	4	2	4	1
\{ 97731$\}$	1	2	3	3	2
\{ 9722 2	0	2	0	1	0
\{ 965 6	1	3	2	3	1
\{9641\}	1	4	2	3	0
$\left\{\begin{array}{l}9\end{array} 632\right\}$	1	2	1	2	1
\{ 955551$\}$	0	1	2	2	2
$\left\{\begin{array}{l}9 \\ 5\end{array} 4^{2}\right.$ \}	1	2	1	2	0
\{9533\}	0	0	1	1	1
\{9443\}	0	1	0	0	0
\{ 884 4\}	1	1	2	1	0
\{ 88831$\}$	0	2	0	1	0
$\begin{cases}8 & 8 \\ \hline\end{cases}$	1	0	1	0	1
$\{875\}$	0	2	1	2	1
$\left\{\begin{array}{lllll}8 & 7 & 4\end{array}\right\}$	1	2	1	2	1
$\left\{\begin{array}{l}8732\}\end{array}\right.$	0	1	1	2	0
\{ 866 6\}	1	1	1	0	0
\{ 88651$\}$	1	2	1	2	0
$\left\{\begin{array}{l}8642\}\end{array}\right.$	1	2	2	1	1
\{ 8633 \}	0	1	0	1	0
\{ 8552$\}$	0	1	0	2	1
\{ 8543$\}$	0	1	1	1	0
\{ 8444$\}$	1	0	0	0	0
\{ 776$\}$	0	0	0	1	0
\{ 7751$\}$	0	0	1	1	1

TABLE 3 (concluded)

	$\{5\} \otimes\{4\}$	$\{5\} \otimes\{31\}$	$\{5\} \otimes\left\{2^{2}\right\}$	$\{5\} \otimes\left\{21^{2}\right\}$	$\{5\} \otimes\left\{1^{4}\right\}$
$\left\{\begin{array}{l}7 \\ 7\end{array}\right.$	0	1	0	1	0
$\left\{\begin{array}{l}773\end{array}\right\}$	0	0	1	0	1
$\left\{\begin{array}{lllll}7 & 6 & 1\end{array}\right\}$	0	1	0	0	0
\{ 7652 \}	0	1	1	1	0
\{ 7643 3	1	1	0	1	0
$\left\{\begin{array}{l}7553\end{array}\right\}$	0	0	1	1	1
\{ 7544 \}	0	1	0	0	0
\{ 6662 \}	1	0	0	0	0
\{ $\left.\begin{array}{llll}6 & 6 & 5\end{array}\right\}$	0	1	0	0	0
\{ 6644 ¢	0	0	1	0	0
\{ $\left.\begin{array}{lllll}6 & 5 & 5\end{array}\right\}$	0	0	0	1	0
\{ 5555$\}$	0	0	0	0	1

References

1. P. H. Butler and B. G. Waybourne, Tables of outer S-function plethysms, Atomic Data 3 (1971), 133-151.
2. P. H. Butler and B. G. Wybourne, The configurations $(d+s)^{N}$ and the group R_{6}, J. de Physique 30 (1967), 181-186.
3. D. G. Duncan, On D. E. Littlewood's algebra of S-functions, Can. J. Math. 4 (1952), 504-512.
4. H. O. Foulkes, Concomitants of the quintic and sextic, Jour. Lond. Math. Soc. 26 (1950), 205-209.
5. E. M. Ibrahim, Tables for the plethysm of S-functions, Proc. Math. Phys. Soc. Egypt 5 (1954), 85-86, and $2 \mathscr{2}$ (1958), 137-142, and Royal Society (London), Depository of Unpublished Tables.
6. D. E. Littlewood, Polynomial concomitants and invariant matrices, Jour. Lond. Math. Soc. 11 (1936), 49-55.
7. -_Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London Ser. A 239 (1943), 305-365.
8. Modular representations of symmetric groups. Proc. Roy. Soc. London Ser. A 209 (1951), 333-352.
9. - The theory of group characters (Oxford University Press, Oxford, 1950).
10. D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A 233 (1934), 99-141.
11. G. de B. Robinson, On the representations of S_{n}, Amer. J. Math. 69 (1947), 286-298, and 70 (1948), 277-294.
12. On a conjecture of Nakayama, Trans. Roy. Soc. Canada 41 (1947), 20-25.
13. - Representation theory of the symmetric group (The University Press. Edinburgh, 1961).
14. P. R. Smith and B. G. Wybourne, Selection rules and the decomposition of the Kronecker squares of irreducible representations, J. Math. Phys. 8 (1967), 2434-2440.
15. R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388.
16. B. G. Wybourne, Symmetry principles and atomic spectroscopy, with an appendix of tables by P. H. Butler (John Wiley and Sons, New York, 1970).

The University of Southampton, Southampton, England

