ON THE PLETHYSM OF S-FUNCTIONS

S. P. O. PLUNKETT

1. Introduction. Many authors have studied the theory and calculation of the plethysms of S-functions. The significance of S-functions lies in their relationship [9] to the characters of the continuous groups, and plethysms play a crucial role in the determination of branching rules associated with the decomposition of a continuous group into its subgroups [2; 14; 16]. Tables have been published for the plethysm $\{\lambda\} \otimes \{\mu\}$, where (λ) and (μ) are any partitions of l and m, respectively, with $lm \leq 18$. These tables have been drawn up both with [1] and without [5] the aid of computers and some results are also known for lm > 18 [3; 4; 7].

The method given here deals with the notion of q-quotients and is based on a theorem of Littlewood's relating these to plethysms of S-functions with symmetric power sums. Use is made of some results concerning modular congruences between the symmetric power sums. A general rule is obtained for $\{l\} \otimes \{\mu\}$, where $\{l\}$ is a symmetric S-function and (μ) is any partition of 3. In addition, the method has been used for the computation of $\{l\} \otimes \{\mu\}$ beyond the range currently available.

Acknowledgement. It is a pleasure to express my gratitude to Dr. R. C. King for his careful reading of the manuscript, for many helpful suggestions, and for his continuous advice and encouragement.

2. S-functions and plethysm. S-functions, or Schür functions, $\{\lambda\}$, are defined [9] in terms of symmetric power sums S_i of independent variables $\alpha_1, \alpha_2, \ldots, \alpha_n$ given by

$$(2.1) S_l = \sum_{i=1}^n \alpha_i^l.$$

For any partition $\rho = (1^a 2^b 3^c \dots)$, the product S_{ρ} is defined by

(2.2)
$$S_{\rho} = S_1^{a} S_2^{b} S_3^{c} \dots,$$

and the Schür function $\{\lambda\}$ corresponding to the partition $(\lambda_1, \lambda_2, ...)$ of l may then be expressed in the form

(2.3)
$$\{\lambda\} = \frac{1}{l!} \sum_{\rho} h_{\rho} \chi_{\rho}^{(\lambda)} S_{\rho},$$

where $\chi_{\rho}^{(\lambda)}$ is the character of the class ρ of size h_{ρ} in the irreducible representa-

Received August 31, 1971.

tion of the symmetric group specified by (λ). The inverse of (2.3) is the relationship

(2.4)
$$S_{\rho} = \sum_{\lambda} \chi_{\rho}^{(\lambda)} \{\lambda\}.$$

The outer product of two S-functions, $\{\lambda\}\{\mu\}$, may be evaluated by means of the well known Littlewood-Richardson rule [10]. Powers of S-functions may be split into parts corresponding to some degree of symmetry between the factors. Thus,

 $\{\lambda\}^2 = \{\lambda\} \otimes \{2\} + \{\lambda\} \otimes \{1^2\},\$

where the square is divided into its symmetrised and anti-symmetrised parts; and

$$\{\lambda\}^3 = \{\lambda\} \otimes \{3\} + 2\{\lambda\} \otimes \{21\} + \{\lambda\} \otimes \{1^3\},\$$

etc. In general [13],

(2.5)
$$\{\lambda\}^m = \sum_{\mu} f^{\mu}\{\lambda\} \otimes \{\mu\},$$

where (μ) is a partition of *m* for which the symmetric group representation is of degree f^{μ} , and $\{\lambda\} \otimes \{\mu\}$ defines the operation of plethysm. This operation was introduced by Littlewood [6] who also established its algebra, which is such that

(2.6)
$$\{\lambda\} \otimes (\{\mu\} + \{\nu\}) = \{\lambda\} \otimes \{\mu\} + \{\lambda\} \otimes \{\nu\},\$$

and

(2.7)
$$\{\lambda\} \otimes (\{\mu\}\{\nu\}) = (\{\lambda\} \otimes \{\mu\})(\{\lambda\} \otimes \{\nu\}).$$

3. *q*-residues and *q*-quotients. The notions of *q*-residue, *q*-sign, and *q*-quotient were introduced by Robinson [11; 12; 13] and developed by Littlewood [8]. With every partition $(\lambda) = (\lambda_1, \lambda_2, \ldots, \lambda_i)$ of *l* into *i* parts, there is associated a *q*-quotient, which is a sum of partitions of *s*, with an associated sign, and a *q*-residue or *q*-core, which is a partition of *r*, where *s* and *r* are such that l = sq + r. The definitions of these quantities are best illustrated by an example. Consider the partition (9542²1) of 23, and let q = 3. The numerical working consists of a series of lines:

A	9	5	4	2	2	1
В	5	4	3	2	1	0
С	14	9	7	4	3	1
D	2	3	7	4	0	1
E	7	4	3	2	1	0
F	2	0	0	0	0	0

A is the partition, B the numbers i - 1, i - 2, ..., 1, 0, and C the sum of A and B. D is obtained from C by reducing each number (mod 3) to the smallest non-negative integer so far unused, working from the right. E contains the numbers in D rearranged in descending order, and F is the difference between E and B.

542

The partition in F, i.e., (2), is the 3-residue. The sign of the permutation by which E is obtained from D, here positive, is the 3-sign. To obtain the 3-quotient, consider the decrease between C and D, in multiples of 3, of terms congruent to 0 (mod 3):

$$(9, 3) \rightarrow (3, 0) : (2, 1),$$

of terms congruent to 1:

$$(7, 4, 1) \rightarrow (7, 4, 1) : (0),$$

and of terms congruent to 2:

$$(14) \to (2) : (4).$$

The outer product of S-functions corresponding to these three partitions is found:

$$(3.1) \qquad \{21\}\{4\}\{0\} = \{61\} + \{52\} + \{511\} + \{421\},\$$

and the 3-quotient is the corresponding set of partitions with the 3-sign appended:

+ (61) + (52) + (511) + (421).

The q-quotient is a sum of partitions of, say, n which is obtained from outer products of S-functions. The S-functions $\{n\}$ and $\{1^n\}$ can occur only with coefficient ± 1 (or 0) in such a product. For example, if n = 4 all possible quotients correspond to the S-functions:

 $\{4\}; \{31\}; \{2^2\}; \{21^2\}; \{1^4\};$

$$\{3\}\{1\} = \{4\} + \{31\}; \{21\}\{1\} = \{31\} + \{2^2\} + \{21^2\}; \{1^3\}\{1\} = \{21^2\} + \{1^4\}; \\ \{2\}\{2\} = \{4\} + \{31\} + \{2^2\}; \{2\}\{1^2\} = \{31\} + \{21^2\}; \{1^2\}\{1^2\} =$$

$${2^2} + {21^2} + {1^4};$$

$$\{2\}\{1\}\{1\} = \{4\} + 2\{31\} + \{2^2\} + \{21^2\}; \{1^2\}\{1\}\{1\} = \\ \{31\} + \{2^2\} + 2\{21^2\} + \{1^4\};$$

 $\{1\}\{1\}\{1\}\{1\} = \{4\} + 3\{31\} + 2\{2^2\} + 3\{21^2\} + \{1^4\}.$

So the partitions (n) and (1^n) can occur in a q-quotient only with coefficient ± 1 or 0.

The q-residue, q-sign, and q-quotient may also be obtained in a graphical manner. From the tableau for the partition (λ) , hooks are removed whose length is a multiple of q. This multiple is denoted by n_j for a hook starting on the *j*th row, and each n_j is made as large as possible subject to three conditions. Each hook must (i) start from the right hand end of a row, each row being tried in turn starting at the bottom, (ii) move only to the left and down, and (iii) leave a regular tableau. Figure 1 illustrates this process for the tableau for $(9542^{2}1)$. The q-residue is the partition of the tableau which remains. If m_j is the number of rows covered by the hook starting at the end of the *j*th row, the q-sign is $\prod_j (-1)^{m_j+1}$. To find the q-quotient, the quantity $j - \lambda_j$ is found for each hook. If, for hooks starting on the rows $j_1, j_2, j_3 \ldots$, this quantity is congruent (mod q), then the S-function $\{n_{j_1}n_{j_2}n_{j_2}\ldots\}$ is constructed. The

outer product of these S-functions, one for each congruence class, is found as before, giving the q-quotient. In Figure 1, the first square of each hook is marked with the value of $j - \lambda_j$. Since $-8 \equiv 1 \pmod{3}$, $-3 \equiv 3 \equiv 0 \pmod{3}$, and $n_1 = 4$, $n_2 = 2$, $n_5 = 1$, the 3-quotient is $\{4\}\{21\}\{0\}$, in agreement with (3.1).

The removal of hooks of length 3, 6 and 12 from the tableau for $(9542^{\circ}1)$ leaving the tableau for (2).

FIGURE 1

4. Application to the calculation of plethysms. Littlewood [8] proves the theorem that if the *q*-residue of (ν) is null and the *q*-quotient is $\sum k_{\lambda\nu}(\lambda)$, then

$$\{\lambda\} \otimes S_q = \sum k_{\lambda\nu} \{\nu\}.$$

This result can be used to calculate plethysms of the form $\{\lambda\} \otimes \{\mu\}$. Littlewood has two methods to suggest, but both involve fairly lengthy calculations and the establishing of tables of prior results. One method uses the symmetric function identity

$$\{m\} = \frac{1}{m} \sum_{r=0}^{m-1} S_{m-r}\{r\}$$

to obtain

$$\{\lambda\}\otimes\{m\} = rac{1}{m}\sum_{r=0}^{m-1} (\{\lambda\}\otimes S_{m-r})(\{\lambda\}\otimes\{r\}),$$

by means of (2.6) and (2.7). The evaluation of this expression involves the finding of $\{\lambda\} \otimes S_r$, for $2 \leq r \leq m$, and $\{\lambda\} \otimes \{r\}$, for $2 \leq r < m$. Then further calculations are necessary to find $\{\lambda\} \otimes \{\mu\}$.

The other method uses (2.3) in conjunction with (2.6) and (2.7) to obtain

(4.1)
$$\{\lambda\} \otimes \{\mu\} = \frac{1}{m!} \sum_{\rho} h_{\rho} \chi_{\rho}^{(\mu)} \{\lambda\} \otimes S_{\rho}$$
$$= \frac{1}{m!} \sum_{\rho} h_{\rho} \chi_{\rho}^{(\mu)} (\{\lambda\} \otimes S_{1})^{a} (\{\lambda\} \otimes S_{2})^{b} (\{\lambda\} \otimes S_{3})^{c} \dots$$

Here, again, $\{\lambda\} \otimes S_r$ for $2 \leq r \leq m$ must be known, and also $(\{\lambda\} \otimes S_1)^r$, i.e. $\{\lambda\}^r$, for $2 \leq r \leq m$. This second method can be greatly simplified by observing a relationship between these products.

544

For p prime,

(4.2)
$$S_a{}^{pb} = (\alpha_1{}^a + \alpha_2{}^a + \ldots + \alpha_n{}^a){}^{pb}$$
$$\equiv \alpha_1{}^{apb} + \alpha_2{}^{apb} + \ldots + \alpha_n{}^{apb} \pmod{p}$$
$$= S_{an^b}.$$

Special cases of this result are particularly useful. For a = b = 1,

for a = 1,

and for b = 1,

$$S_a{}^p \equiv S_{ap}$$

 $S_1^p \equiv S_p$

 $S_1^{p^b} \equiv S_n^{b}.$

Thus,

- (4.3) $\{\lambda\} \otimes S_p \equiv \{\lambda\} \otimes S_1^p = \{\lambda\}^p,$ (4.4) $\{\lambda\} \otimes S_{n^b} \equiv \{\lambda\} \otimes S_1^{p^b} = \{\lambda\}^{p^b},$
- (4.5) $\{\lambda\} \otimes S_{ap} \equiv \{\lambda\} \otimes S_a^p = (\{\lambda\} \otimes S_a)^p.$

So we have

 $\begin{array}{l} \{\lambda\} \otimes S_2 \equiv \{\lambda\}^2 \pmod{2}, \\ \{\lambda\} \otimes S_3 \equiv \{\lambda\}^3 \pmod{3}, \\ \{\lambda\} \otimes S_4 \equiv \{\lambda\}^4 \pmod{2}, \\ \{\lambda\} \otimes S_5 \equiv \{\lambda\}^5 \pmod{5}, \\ \{\lambda\} \otimes S_6 \equiv (\{\lambda\} \otimes S_3)^2 \pmod{2}, \end{array}$

etc.

These congruences are not in themselves sufficient to obtain $\{\lambda\} \otimes S_r$ from $\{\lambda\}^r$, but in certain cases the result can be determined. Rewriting Littlewood's theorem: if

$$\{\lambda\} \otimes S_r = \sum k_{\lambda\nu} \{\nu\},\$$

then the *r*-quotient of (ν) contains $k_{\lambda\nu}(\lambda)$. But we have shown that an *r*-quotient can contain (l) or (1^l) only with coefficient ± 1 or 0. So $k_{1\nu}$ and $k_{1^l\nu}$ are ± 1 or 0. Therefore, the coefficients of the *S*-functions appearing in $\{l\} \otimes S_r$ and $\{1^l\} \otimes S_r$ are simply the *r*-signs of the corresponding partitions. Thus, the modular congruences give the coefficients $k_{1\nu}$ and $k_{1^l\nu}$ unambiguously except for congruences (mod 2), for which $+1 \equiv -1$. But in these cases the *r*-sign is easily determined.

The method for finding $\{l\} \otimes \{\mu\}$, for all partitions (μ) of m, is as follows. First, $\{l\}^m$ is calculated, noting the $\{l\}^r$, $2 \leq r < m$, on the way. From these, the $\{l\} \otimes S_r$ can easily be found as shown above. Then the character-class-size products are used to complete (4.1). It is important to emphasize that the characters involved are only those for \sum_m and not for the much larger group \sum_{lm} .

This method has been used for the machine calculation of $\{l\} \otimes \{\mu\}$ on the University of London's CDC 6600 computer. With m = 4, the values of l range up to 10; and for m = 5, up to 6. Table 3 shows a typical set of plethysms.

5. Symmetrized squares of S-functions. As a simple illustration, the result for $\{l\} \otimes \{2\}$ and $\{l\} \otimes \{1^2\}$ can easily be established. First of all

$$(5.1) \qquad \{l\}^2 = \{2l\} + \{2l-1,1\} + \{2l-2,2\} + \{2l-3,3\} + \dots$$

In order to find $\{l\} \otimes S_2$, we must know the 2-sign of each partition. It is clear diagramatically that for partitions into even parts, hooks of length 2 can be removed from the two rows separately giving a positive 2-sign, while for partitions into two odd parts, one 2-hook must cover the two rows giving a negative 2-sign (see Figure 2). So we have

$$(5.2) \quad \{l\} \otimes S_2 = \{2l\} - \{2l-1, 1\} + \{2l-2, 2\} - \{2l-3, 3\} + \dots,$$

and also

(5.3)
$$\{l\} \otimes S_1^2 = \{l\}^2 = \{2l\} + \{2l-1, 1\} + \{2l-2, 2\} + \{2l-3, 3\} + \dots$$

Hence, the well-known results [7]:

(5.4)
$$\{l\} \otimes \{2\} = \{l\} \otimes [\frac{1}{2}(S_1^2 + S_2)] \\ = \{2l\} + \{2l - 2, 2\} + \dots$$

and

(5.5)
$$\{l\} \otimes \{1^2\} = \{l\} \otimes [\frac{1}{2}(S_1^2 - S_2)] \\ = \{2l - 1, 1\} + \{2l - 3, 3\} + \dots$$

Figure 2

Removal of 2-hooks from two-rowed tableaux with (a) rows of even numbers of boxes (b) rows of odd number of boxes.

6. Symmetrized cubes of *S*-functions. Thrall [15] produced a simple rule for writing down the plethysm $\{l\} \otimes \{3\}$. We can re-derive this result and also produce similar rules for immediately obtaining $\{l\} \otimes \{21\}$ and $\{l\} \otimes \{1^3\}$.

Again, an illustration makes the method clearest. We take l = 4 and find

$$(6.1) \qquad \qquad \{4\}^2 = \{8\} + \{71\} + \{62\} + \{53\} + \{44\},$$

and

The result has been set out so that the pattern of the coefficients in $\{4\}^3$ is clear. It will be observed that the coefficient of $\{\nu\} = \{\nu_1\nu_2\nu_3\}$ is

$$M_{\nu} = 1 + \min (\nu_1 - \nu_2, \nu_2 - \nu_3).$$

This can be shown in general as follows. The coefficient of $\{\nu\}$ is the number of ways $\{\nu\}$ can be obtained from terms in $\{\lambda\}^2$ by multiplication with $\{\lambda\}$. This is equal to the number of ways in which lc's can be placed in the tableau for $\{\nu\}$ following the usual rules and completely filling the third row. This leaves nc's to be distributed between the first and second rows, where

(6.3)
$$3n = 2(\nu_2 - \nu_3) + (\nu_1 - \nu_2).$$

(See Figure 3(a).) From this, it is clear that the greater of $(\nu_2 - \nu_3)$ and $(\nu_1 - \nu_2)$ cannot be less than *n*, so the number of ways of distributing the *c*'s is one more than the lesser of $(\nu_2 - \nu_3)$ and $(\nu_1 - \nu_2)$. See Figure 3(b), (c).

The number of ways of placing six c's in the tableaux (10 5 3) and (9 7 2). In both cases, the result is three, which equals $1 + \min(\nu_1 - \nu_2, \nu_2 - \nu_3)$.

FIGURE 3

Continuing with the calculation,

$$(6.4) \qquad \{4\} \otimes S_2 = \{8\} - \{71\} + \{62\} - \{53\} + \{44\},\$$

so

(6.5)
$$\{4\} \otimes S_2 S_1 = (\{4\} \otimes S_2)\{4\} = \{12\} + \{10.2\} + \{84\} - \{75\} + \{66\} - \{10.1.1\} - \{831\} + \{822\} + \{642\} - \{552\} - \{633\} + \{444\}.$$

547

Each term in $\{4\} \otimes S_2S_1$ is obtained from a series of successive terms in $\{4\} \otimes S_2$, just as those in $\{4\}^3$ came from $\{4\}^2$. The alternation in signs in $\{4\} \otimes S_2$ means that a coefficient in $\{4\} \otimes S_2S_1$ must be 0 if an even number of terms contribute, and ± 1 if an odd number. In the latter case, the sign will be that of the first (or last) of the series of contributing terms in $\{4\} \otimes S_2$. If $(\nu_2 - \nu_3)$ is less than (or equal to) $(\nu_1 - \nu_2)$, this sign will be positive (negative) if ν_2 is even (odd). If $(\nu_1 - \nu_2)$ is less than $(\nu_2 - \nu_3)$, the sign will be similarly determined by ν_1 . But $(\nu_1 - \nu_2)$ must be even in order to give an odd number of terms, so $\nu_1 \equiv \nu_2 \pmod{2}$. See Figure 3. So the terms which occur in $\{\lambda\} \otimes S_2S_1$ have coefficient ± 1 , according as ν_2 is even or odd.

 $\{4\} \otimes S_3$ is obtained by reducing the coefficients in $\{4\}^3 \pmod{3}$ to ± 1 or 0:

$$(6.6) \qquad \{4\} \otimes S_3 = \{12\} - \{11.1\} + \{93\} - \{84\} + \{66\} \\ + \{10.1.1\} - \{921\} + \{741\} - \{651\} \\ + \{822\} - \{732\} + \{552\} \\ + \{633\} - \{543\} \\ + \{444\}.$$

Now,

$$(6.7) \qquad \{4\} \otimes \{3\} = \frac{1}{6}[\{4\} \otimes S_1^3 + 2, \{4\} \otimes S_3 + 3, \{4\} \otimes S_2S_1].$$

The coefficient of each S-function in the sum in square brackets must be divisible by 6. Since $\{4\} \otimes S_2S_1$ can only contribute coefficients ± 1 or 0, and this entry is multiplied by 3, the coefficients obtained from the sum of the first two terms must be divisible by 3 and, further, if even, will receive no contribution from the third term but, if odd, will receive ± 3 as ν_2 is even or odd. The coefficients in $\{4\} \otimes S_3$ are also ± 1 or 0, so the contribution from the second term will be ± 2 or 0. The coefficients in the first term are the M_ν . So we have Thrall's rule: $\{l\} \otimes \{3\} = \sum k_\nu \{\nu\}$, summed over all partitions of 3l with 3 or fewer parts, where k_ν is obtained by adding ± 2 or 0 to M_ν to give a result divisible by 3, then if even, dividing by 6, but if odd, first adding (subtracting) 3 if ν_2 is even (odd) and then dividing by 6.

Similarly for $\{l\} \otimes \{1^3\}$. We have

$$(6.8) \qquad \{l\} \otimes \{1^3\} = \frac{1}{6} [\{l\} \otimes S_1^3 + 2\{l\} \otimes S_3 - 3\{l\} \otimes S_2 S_1],$$

so the only alteration in the above rule is the interchanging of "adding" and "subtracting".

Also,

$$(6.9) {l} \otimes \{21\} = \frac{1}{3}[\{l\} \otimes S_1^3 - \{l\} \otimes S_3].$$

So $\{l\} \otimes \{21\} = \sum k_{\nu}\{\nu\}$, where k_{ν} is obtained by adding ± 1 or 0 to M_{ν} to obtain a multiple of 3, and then dividing by 3.

Thus, $M_{\nu} = 1 + \min(\nu_1 - \nu_2, \nu_2 - \nu_3)$ and the "parity" of ν_2 determine the coefficient of $\{\nu\}$ in $\{l\} \otimes \{\mu\}$, (μ) a partition of 3. These coefficients are given

in Table 1 for $M_r \leq 11$ which suffices for $l \leq 10$. Table 2 lists the partitions of 12 into not more than three parts with their M_r and ν_2 "parity", and tabulates the plethysms {4{ \otimes {3}, {4} \otimes {21}, {4} \otimes {1³}.

	$\{l\}\otimes$) {3}	$\{l\} \otimes \{21\}$	$\{l\} \otimes \{1^3\}$	
М,	₽2 even	ν_2 odd		ν_2 even	$\nu_2 \text{ odd}$
1	1	0	0	0	1
2	0	0	1	0	0
3	1	0	1	0	1
4	1	1	1	1	1
5	1	0	2	0	1
6	1	1	2	1	1
7	2	1	2	1	2
8	1	1	3	1	1
9	2	1	3	1	2
10	2	2	3	2	2
11	2	1	4	1	2

	TABLE	1
--	-------	---

 $M_{\nu} = 1 + \min(\nu_1 - \nu_2, \nu_2 - \nu_3)$ determines the coefficient of $\{\nu\}$ in the three plethysms $\{l\} \otimes \{3\}, \{l\} \otimes \{21\}, \{l\} \otimes \{1^s\}$ except that if M_{ν} is odd it is necessary to know also the "parity" of ν_2 for $\{l\} \otimes \{3\}$ and $\{l\} \otimes \{1^s\}$.

{ <i>v</i> }	M_{ν}	$\nu_2 \pmod{2}$	$\{4\} \otimes \{3\}$	$\{4\} \otimes \{21\}$	$\{4\} \otimes \{1^3\}$
{12}	1	0	1	0	0
{11 1}	2	1	0	1	0
{10 2}	3	0	1	1	0
{93}	4	1	1	1	1
{84}	5	0	1	2	0
{75}	3	1	0	1	1
{66}	1	0	1	0	0
{10 1 1}	1	1	0	0	1
{921}	2	0	0	1	0
{831}	3	1	0	1	1
{741}	4	0	1	1	1
{651}	2	1	0	1	0
<i>{</i> 822 <i>}</i>	1	0	1	0	0
{732}	2	1	0	1	0
{642}	3	0	1	1	0
{552}	1	1	0	0	1
{633}	1	1	0	0	1
{543}	2	0	0	1	0
{444 }	1	0	1	0	0

TABLE 2

The plethysms $\{4\} \otimes \{3\}, \{4\} \otimes \{21\}$ and $\{4\} \otimes \{1^{a}\}$ calculated from Table 1.

S. P. O. PLUNKETT

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{bmatrix} 120, & 1 & 0 & 0 & 0 & 0 \\ 19 & 1 & 0 & 1 & 0 & 0 & 0 \\ 18 & 2 & 1 & 1 & 1 & 0 & 0 \\ 18 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 17 & 3 & 1 & 2 & 0 & 1 & 0 \\ 17 & 2 & 1 & 0 & 1 & 1 & 1 & 0 \\ 17 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 16 & 4 & 2 & 2 & 2 & 1 & 0 \\ 16 & 3 & 1 & 0 & 2 & 1 & 2 & 1 \\ 16 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 1 & 1 & 0 & 0 \\ 15 & 5 & 1 & 4 & 1 & 2 & 0 \\ 15 & 3 & 1 & 4 & 1 & 2 & 0 \\ 15 & 3 & 1 & 4 & 1 & 2 & 0 \\ 15 & 3 & 1 & 1 & 0 & 0 & 1 & 1 \\ 15 & 2 & 1 & 2 & 1 & 2 & 0 \\ 15 & 3 & 1 & 4 & 1 & 1 & 1 \\ 15 & 2 & 1 & 0 & 0 & 1 & 1 & 1 \\ 15 & 2 & 1 & 0 & 0 & 1 & 1 & 1 \\ 15 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ 14 & 6 & 2 & 3 & 3 & 2 & 1 \\ 14 & 5 & 1 & 1 & 4 & 3 & 5 & 1 \\ 14 & 4 & 2 & 2 & 4 & 3 & 2 & 1 \\ 14 & 4 & 1 & 0 & 1 & 0 & 2 & 1 \\ 14 & 3 & 3 & 0 & 1 & 0 & 2 & 1 \\ \end{array} $
$ \begin{bmatrix} 11 & 1 & 1 & 0 & 0 \\ 18 & 2 & 1 & 1 & 1 & 0 & 0 \\ 18 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 17 & 3 & 1 & 2 & 0 & 1 & 0 \\ 17 & 2 & 1 & 0 & 1 & 1 & 1 & 0 \\ 17 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 16 & 4 & 2 & 2 & 2 & 1 & 0 \\ 16 & 3 & 1 & 0 & 2 & 1 & 2 & 1 \\ 16 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 1 & 1 & 0 & 0 \\ 15 & 5 & 1 & 4 & 1 & 2 & 0 \\ 15 & 4 & 1 & 3 & 2 & 3 & 1 \\ 15 & 3 & 2 & 1 & 2 & 1 & 2 \\ 15 & 3 & 1 & 4 & 1 & 2 & 0 \\ 15 & 3 & 1 & 0 & 0 & 1 & 1 & 1 \\ 15 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ 14 & 6 & 2 & 3 & 3 & 2 & 1 \\ 14 & 5 & 1 & 1 & 4 & 3 & 5 & 1 \\ 14 & 4 & 2 & 2 & 4 & 3 & 2 & 1 \\ 14 & 4 & 1 & 0 & 1 & 0 & 2 & 1 \\ 14 & 3 & 3 & 0 & 1 & 0 & 2 & 1 \\ \end{array} $
$ \begin{bmatrix} 13 & 2 \\ 18 & 1 \\ 1 \end{bmatrix} = 0 & 0 & 0 & 1 & 0 \\ 17 & 3 \end{bmatrix} = 1 & 2 & 0 & 1 & 0 \\ 17 & 2 & 1 \end{bmatrix} = 0 & 1 & 1 & 1 & 0 \\ 17 & 1 & 1 \end{bmatrix} = 0 & 0 & 0 & 0 & 1 \\ 16 & 4 \end{bmatrix} = 2 & 2 & 2 & 1 & 0 \\ 16 & 3 & 1 \end{bmatrix} = 0 & 2 & 1 & 2 & 1 \\ 16 & 2 & 2 \end{bmatrix} = 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 \end{bmatrix} = 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 \end{bmatrix} = 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 \end{bmatrix} = 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 \end{bmatrix} = 0 & 0 & 0 & 1 & 0 \\ 15 & 5 \end{bmatrix} = 1 & 2 & 1 & 2 & 0 \\ 15 & 4 & 1 \end{bmatrix} = 0 & 0 & 1 & 1 & 1 \\ 15 & 3 & 2 \end{bmatrix} = 1 & 2 & 1 & 2 & 0 \\ 15 & 3 & 1 \end{bmatrix} = 0 & 1 & 0 & 0 & 0 \\ 14 & 6 \end{bmatrix} = 2 & 3 & 3 & 2 & 1 \\ 14 & 5 & 1 \end{bmatrix} = 1 & 4 & 3 & 5 & 1 \\ 14 & 4 & 2 \end{bmatrix} = 2 & 4 & 3 & 2 & 1 \\ 14 & 4 & 1 \end{bmatrix} = 0 & 1 & 0 & 2 & 1 \\ 14 & 3 \end{bmatrix} = 0 & 1 & 0 & 2 & 1 \\ 14 & 3 \end{bmatrix} = 0 & 1 & 0 & 2 & 1 \\ 14 & 3 \end{bmatrix} = 0 & 1 & 0 & 2 & 1 \\ 14 & 3 \end{bmatrix} = 0 = 1 = 0 + 2 + 1 \\ 14 & 3 \end{bmatrix} = 0 = 1 + 0 + 1 \\ 15 = 2 + 1 + 1 + 1 \\ 15 = 2 + 1 + 1 + 1 \\ 15 = 2 + 1 + 1 \\ 15 = 2 + 1 + 1 \\ 15 = 2 + 1 + 1 \\ 15 = 2 + 1 \\ 15 = 2 + 1 + 1 \\ 15 = 2 + 1 \\ 15 = 1 \\ 15 = 2 + 1 \\ 15 = 1$
$ \begin{bmatrix} 17 & 3 \\ 17 & 3 \\ 1 & 1 \end{bmatrix} = 0 \qquad 0 \qquad 0 \qquad 1 \qquad 0 \\ 17 & 2 & 1 \\ 17 & 2 & 1 \end{bmatrix} = 0 \qquad 1 \qquad 1 \qquad 1 \qquad 0 \\ 17 & 1 & 1 & 1 \\ 16 & 4 \\ 2 \qquad 2 \qquad 2 \qquad 2 \qquad 1 \qquad 0 \\ 16 & 3 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \qquad 0 \\ 16 & 2 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \\ 0 \qquad 0 \qquad 0 \qquad 1 \\ 16 & 2 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \\ 16 & 2 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \\ 16 & 2 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \\ 16 & 2 & 1 \\ 16 & 2 & 2 \\ 1 \qquad 1 \qquad 1 \qquad 0 \\ 15 & 5 \\ 1 \qquad 4 \qquad 1 \qquad 2 \qquad 0 \\ 15 & 5 \\ 1 \qquad 4 \qquad 1 \qquad 2 \qquad 0 \\ 15 & 3 & 1 \\ 15 & 3 & 2 \\ 15 & 3 & 1 \\ 1 \qquad 3 \qquad 2 \qquad 1 \\ 15 & 3 & 2 \\ 15 & 3 & 1 \\ 1 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \\ 15 & 2 & 2 \\ 15 & 3 & 1 \\ 1 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \\ 1 \qquad 1 \\ 15 & 2 & 2 \\ 1 \qquad 1 \\ 14 & 5 & 1 \\ 1 \qquad 4 \qquad 3 \qquad 5 \qquad 1 \\ 14 & 4 & 2 \\ 14 & 4 & 1 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 14 & 4 & 1 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 14 & 3 & 3 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 14 & 3 & 3 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 14 & 3 & 3 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 1 \\ 14 & 3 & 3 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 1 \\ 14 & 3 & 3 \\ 1 \qquad 0 \qquad 1 \qquad 0 \qquad 2 \qquad 1 \\ 1 \\ 1 \\ 1 \qquad 0 \qquad 2 \qquad 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$ \begin{bmatrix} 11 & 31 & 1 & 2 & 0 & 1 & 0 \\ 17 & 2 & 1 & 0 & 1 & 1 & 1 & 0 \\ 17 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 16 & 4 & 2 & 2 & 2 & 1 & 0 \\ 16 & 3 & 1 & 0 & 2 & 1 & 2 & 1 \\ 16 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\ 16 & 2 & 1 & 1 & 1 & 1 & 0 & 0 \\ 16 & 2 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 15 & 5 & 1 & 4 & 1 & 2 & 0 \\ 15 & 4 & 1 & 1 & 3 & 2 & 3 & 1 \\ 15 & 3 & 2 & 1 & 2 & 1 & 2 & 0 \\ 15 & 4 & 1 & 1 & 3 & 2 & 3 & 1 \\ 15 & 3 & 2 & 1 & 2 & 1 & 2 & 0 \\ 15 & 3 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 15 & 2 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ 14 & 6 & 2 & 3 & 3 & 2 & 1 \\ 14 & 5 & 1 & 1 & 4 & 3 & 5 & 1 \\ 14 & 4 & 2 & 2 & 4 & 3 & 2 & 1 \\ 14 & 4 & 1 & 0 & 1 & 0 & 2 & 1 \\ 14 & 3 & 3 & 0 & 1 & 0 & 2 & 1 \\ \end{array} $
$ \begin{bmatrix} 17 & 2 & 1 \\ 17 & 1 & 1 \\ 1 \end{bmatrix} 0 1 0 0 0 0 0 1 \\ 16 & 4 \end{bmatrix} 2 2 2 1 0 1 \\ 16 & 3 & 1 \end{bmatrix} 0 2 1 2 1 \\ 16 & 2 & 2 \end{bmatrix} 1 1 1 1 0 0 \\ 16 & 2 & 1 \end{bmatrix} 0 0 0 1 0 \\ 16 & 2 & 1 \end{bmatrix} 0 0 0 1 0 \\ 16 & 2 & 1 \end{bmatrix} 0 0 0 1 0 \\ 15 & 5 \end{bmatrix} 1 4 1 2 0 \\ 15 & 4 & 1 \end{bmatrix} 2 1 2 1 0 \\ 15 & 3 & 1 \end{bmatrix} 1 2 1 2 0 \\ 15 & 3 & 1 \end{bmatrix} 0 0 1 1 1 1 \\ 15 & 2 & 2 \end{bmatrix} 1 2 1 2 0 \\ 15 & 3 & 1 \end{bmatrix} 0 0 1 1 1 1 \\ 15 & 2 & 2 \end{bmatrix} 0 \\ 15 & 3 & 1 \end{bmatrix} 0 0 1 1 0 0 0 0 \\ 14 & 6 \end{bmatrix} 2 3 3 2 1 \\ 14 & 5 & 1 \end{bmatrix} 1 4 3 3 2 1 \\ 14 & 3 \end{bmatrix} 0 1 0 2 1] $
$ \begin{bmatrix} 10 & 3 & 1 \\ 10 & 3 & 1 \\ 11 & 0 \\ 10 & 2 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $
$ \begin{bmatrix} 10 & 2 & 2 \\ 10 & 2 & 2 \\ 1 & 1 \end{bmatrix} = 1 = 1 = 1 = 1 = 0 = 0 = 0 = 0 = 0 = 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\{14 \ 4 \ 1 \ 1\} 0 1 0 2 1$ $\{14 \ 3 \ 3\} 0 1 0 2 1$
$\{14 \ 3 \ 3\}$ 0 1 0 2 1
$\{14 \ 3 \ 2 \ 1\} \qquad 0 \qquad 1 \qquad 1 \qquad 0 \qquad 0 \qquad 0$
$\{14\ 2\ 2\ 2\}$ 1 0 0 0 0
$\{13,7\}$ 1 4 1 3 0
$\{13 \ 6 \ 1\}$ 2 5 3 5 2
$\{13 \ 5 \ 2\}$ 2 6 3 5 1
$\{13 \ 5 \ 1 \ 1\}$ 0 1 2 2 2 2 (19.4.2) 1 2 2 1
$\{13 4 3\}$ 1 3 2 3 1
$\{13 4 2 1\}$ 1 2 1 2 0 (12 2 2 1) 0 0 1 1 1
$\{13 3 3 1\}$ 0 0 1 1 1 1 (12 2 2 2) 0 1 0 0 0 0
$\{13 \ 3 \ 2 \ 2\}$ 0 1 0 0 0
$\{12 \ 0\}$ 2 2 3 2 1 $(19 \ 7 \ 1)$ 1 5 9 5 9
$\{12 \ (1) \}$ 1 0 3 0 2 $(19 \ (2))$ 2 6 7 7 0
$\{12 \ 0 \ 2\}$ 3 0 5 5 2 (19 c 1 1) 0 9 1 9 0
$\{12 0 1 1\} 0 2 1 3 0$
$\{12 \ 0 \ 0\}$ 1 0 3 0 2 $(19 \ 5 \ 0 \ 1)$ 1 0 0 1
$\{12 \ 0 \ 2 \ 1\}$ 1 0 2 3 1 $(19 \ 4 \ 4)$ 9 9 0 1 0
$\{12 4 4\}$ 2 2 2 1 0 (19 4 2 1) 0 2 1 2 1
$\{12 4 5 1\} 0 2 1 2 1$
$\{12 + 22\}$ 1 1 1 0 0
$\{11 \ 8 \ 1\}$ 1 4 2 4 1
$\{11, 6, 3\}$ 2 6 4 6 2
$\{11621\}$ 1 4 2 2 1
$\{1154\}$ 1 5 3 4 1

TABLE 3

1 5 3 4 2 1 5 2 1 2 0 1 0 1 4 1 1 2 0 1 0 1 4 3 2 0 1 1 0 1 0 10 1 0 2 0 1 0 1 0 11 1 2 1 3 1 0 1 0 1 0 9 1 1 2 1 3 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1		$\{5\} \otimes \{4\}$	$\{5\} \otimes \{31\}$	$\{5\} \otimes \{2^2\}$	$\{5\} \otimes \{21^2\}$	$\{5\}\otimes 1^4\}$
15 2 2 1 2 0 1 0 $1 4 4 1$ 1 2 0 1 0 $1 4 3 2$ 0 1 1 0 0 $1 3 3$ 0 0 0 0 1 $0 10$ 1 0 2 0 1 $0 9 1$ 1 2 1 3 1 $0 8 2$ 2 4 4 3 2 $0 7 3$ 1 5 3 6 2 $0 7 2 1$ 1 3 5 4 4 2 $0 6 4$ 3 5 4 4 2 $0 6 5 2$ 1 1 2 1 0 $0 5 5 2$ 0 2 1 2 1 $0 4 4 3 3$ 0 0 0 1 0 $0 5 4 1$ 1 1 2 0 1 $0 7 4$ 1 1	$\{11 \ 5 \ 3 \ 1\}$	1	2	3	4	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{11 \ 5 \ 2 \ 2\}$	1	2	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	{11 4 4 1}	1	2	0	1	0
$1 \ 3 \ 3 \ 3 \ 0$ 0 0 0 0 1 $0 \ 10 \ 1$ 1 0 2 0 1 $0 \ 9 \ 1 \ 1$ 1 2 1 3 1 $0 \ 8 \ 2 \ 2$ 2 4 4 3 2 $0 \ 8 \ 1 \ 1 \ 0$ 0 2 0 2 0 $0 \ 7 \ 3 \ 1$ 1 3 2 3 1 $0 \ 6 \ 4 \ 1 \ 3$ 5 4 4 2 $0 \ 6 \ 4 \ 1 \ 3$ 5 4 4 2 $0 \ 6 \ 4 \ 1 \ 1$ 1 3 2 3 1 $0 \ 5 \ 5 \ 1$ 0 2 1 2 1 $0 \ 4 \ 4 \ 2 \ 1$ 1 1 0 0 0 $0 \ 7 \ 4 \ 3 \ 1$ 1 2 0 1 0 $0 \ 9 \ 2 \ 1 \ 1$ 2 1 2 0 1 $0 \ 9 \ 4 \ 3 \ 1 \ 1$ 2 1 2 0 1	$11 \ 4 \ 3 \ 2$	0	1	1	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11 \ 3 \ 3 \ 3$	0	0	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10}	1	0	2	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10 \ 9 \ 1$	1	2	1	3	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 8 2}	2	4	4	3	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10 \ 8 \ 1 \ 1$	0	2	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 7 3}	1	5	3	6	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10\ 7\ 2\ 1$	1	3	2	3	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 6 4}	3	5	4	4	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10 \ 6 \ 3 \ 1$	1	4	2	4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 6 2 2	1	1	2	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 5 5	0	2	1	4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10541	1	3	2	3	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10\ 5\ 3\ 2$	0	$\frac{1}{2}$	1	$\frac{1}{2}$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 4 4 2	1	1	1	$\overline{0}$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 4 3 3	ō	0	ō	1	Ō
9 9 1 0 0 2 0 1 9 8 3 1 3 2 3 1 9 8 3 1 2 1 2 0 9 8 2 1 1 2 0 1 0 9 7 2 1 1 4 2 4 1 9 7 2 0 2 0 1 0 9 6 5 1 3 2 3 1 9 6 3 1 4 2 3 0 9 6 3 1 2 1 2 1 9 5 1 0 1 2 1 2 1 9 5 3 0 0 1 1 1 1 9 5 3 0 1 0 0 0 0 9 5 3 0 1	992}	Õ	$\hat{2}$	Ő	$\overline{2}$	Ő
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9911	Õ	0	$\overset{\circ}{2}$	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	983	1	3	$\overline{2}$	3	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9821	1	$\overset{\circ}{2}$	1	$\frac{1}{2}$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	974}	1	4	$\overline{2}$	4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9731	1	$\overline{2}$	3	3	$\tilde{2}$
9 + 6 + 5 1 3 2 3 1 $9 + 6 + 5$ 1 3 2 3 1 $9 + 6 + 5$ 1 1 4 2 3 0 $9 + 6 + 5$ 1 2 1 2 1 2 1 $9 + 6 + 5 + 1$ 0 1 2 1 2 1 2 1 $9 + 5 + 5 + 1$ 0 1 2 1 2 0 9 9 5 3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 <t< td=""><td>9722</td><td>ō</td><td>$\frac{1}{2}$</td><td>õ</td><td>1</td><td>0</td></t<>	9722	ō	$\frac{1}{2}$	õ	1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 6 5}	1	- 3	$\overset{\circ}{2}$	- 3	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9641}	1	4	$\frac{-}{2}$	3	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9632	1	$\overline{2}$	1	$\frac{1}{2}$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9551	ō	1	$\overline{2}$	$\overline{2}$	$\overline{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9542	1	$\tilde{2}$	1	$\overline{2}$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9533	0	0	1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9443	0	1	ō	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 4}	1	1	$\overset{\circ}{2}$	1	Ő
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 3 1	0	$\overline{2}$	0	1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 2 2	1	0	1	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 7 5	0	2	1	2	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8741	1	$\frac{-}{2}$	1	2	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8732	0	1	1	$\overline{2}$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 6 6}	1	1	ĩ	0	õ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8651	ī	$\frac{1}{2}$	ĩ	$\tilde{2}$	õ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8642	1	$\overline{2}$	$\overline{\hat{2}}$	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8633	ō	1	0	1	Ô
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8552	õ	ĩ	õ	$\frac{1}{2}$	ĭ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8543	ŏ	ĩ	ĩ	1	Ō
776 0 0 1 0 7751 0 0 1 1	8444	1	ō	0	0	Ő
7751 0 0 1 1 1	776	ō	õ	õ	1	Ő
	7751	õ	Ő	1	1	ĩ

TABLE 3 (continued)

	$\{5\} \otimes \{4\}$	$\{5\} \otimes \{31\}$	$\{5\} \otimes \{2^2\}$	$\{5\} \otimes \{21^2\}$	$\{5\} \otimes \{1^4\}$
$\{7742\}$	0	1	0	1	0
$\{7733\}$	0	0	1	0	1
$\{7661\}$	0	1	0	0	0
$\{7652\}$	0	1	1	1	0
$\{7643\}$	1	1	0	1	0
$\{7553\}$	0	0	1	1	1
$\{7544\}$	0	1	0	0	0
$\{ 6 6 6 2 \}$	1	0	0	0	0
$\{ 6 6 5 3 \}$	0	1	0	0	0
$\{ 6 6 4 4 \}$	0	0	1	0	0
$\{ 6 5 5 4 \}$	0	0	0	1	0
$\{5555\}$	0	0	0	0	1

TABLE 3 (concluded)

References

- 1. P. H. Butler and B. G. Waybourne, *Tables of outer S-function plethysms*, Atomic Data 3 (1971), 133-151.
- **2.** P. H. Butler and B. G. Wybourne, The configurations $(d + s)^N$ and the group R_6 , J. de Physique 30 (1967), 181–186.
- 3. D. G. Duncan, On D. E. Littlewood's algebra of S-functions, Can. J. Math. 4 (1952), 504-512.
- 4. H. O. Foulkes, Concomitants of the quintic and sextic, Jour. Lond. Math. Soc. 26 (1950), 205-209.
- E. M. Ibrahim, Tables for the plethysm of S-functions, Proc. Math. Phys. Soc. Egypt 5 (1954), 85-86, and 22 (1958), 137-142, and Royal Society (London), Depository of Unpublished Tables.
- 6. D. E. Littlewood, *Polynomial concomitants and invariant matrices*, Jour. Lond. Math. Soc. 11 (1936), 49-55.
- 7. Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London Ser. A 239 (1943), 305-365.
- Modular representations of symmetric groups. Proc. Roy. Soc. London Ser. A 209 (1951), 333–352.
- 9. The theory of group characters (Oxford University Press, Oxford, 1950).
- D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A 233 (1934), 99–141.
- 11. G. de B. Robinson, On the representations of S_n, Amer. J. Math. 69 (1947), 286–298, and 70 (1948), 277–294.
- 12. On a conjecture of Nakayama, Trans. Roy. Soc. Canada 41 (1947), 20-25.
- 13. —— Representation theory of the symmetric group (The University Press. Edinburgh,
- 1961).
- 14. P. R. Smith and B. G. Wybourne, Selection rules and the decomposition of the Kronecker squares of irreducible representations, J. Math. Phys. 8 (1967), 2434-2440.
- R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388.
- B. G. Wybourne, Symmetry principles and atomic spectroscopy, with an appendix of tables by P. H. Butler (John Wiley and Sons, New York, 1970).

The University of Southampton, Southampton, England