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Abstract

We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with
complexity sublogarithmic in the inverse error, an exponential improvement over previous methods.
Specifically, we show that a d-sparse Hamiltonian H acting on n qubits can be simulated for time
t with precision ε using O(τ (log(τ/ε)/ log log(τ/ε))) queries and O(τ (log2(τ/ε)/ log log(τ/ε))n)
additional 2-qubit gates, where τ = d2‖H‖maxt . Unlike previous approaches based on product
formulas, the query complexity is independent of the number of qubits acted on, and for time-
varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the
Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and
fractional-query models using discrete quantum queries, showing that the former models are not
much more powerful than the discrete model even for very small error. We also simplify the analysis
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of this conversion, avoiding the need for a complex fault-correction procedure. Our simplification
relies on a new form of ‘oblivious amplitude amplification’ that can be applied even though the
reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our
algorithms are optimal as a function of the error.

2010 Mathematics Subject Classification: 68Q12 (primary); 81P68 (secondary)

1. Introduction

Simulation of quantum mechanical systems is a major potential application of
quantum computers. Indeed, the problem of simulating Hamiltonian dynamics
was the original motivation for the idea of quantum computation [27]. Lloyd
provided an explicit algorithm for simulating many realistic quantum systems,
namely those whose Hamiltonian is a sum of interactions acting nontrivially on
a small number of subsystems of limited dimension [32]. If the interactions act
on at most k subsystems, such a Hamiltonian is called k-local. Here we consider
the more general problem of simulating sparse Hamiltonians, a natural class of
systems for which quantum simulation has been widely studied. Note that k-local
Hamiltonians are sparse, so algorithms for simulating sparse Hamiltonians can be
used to simulate many physical systems. Sparse Hamiltonian simulation is also
useful in quantum algorithms [1, 17, 22, 28].

A Hamiltonian is said to be d-sparse if it has at most d nonzero entries in
any row or column. In the sparse Hamiltonian simulation problem, we are given
access to a d-sparse Hamiltonian H acting on n qubits via a black box that accepts
a row index i and a number j between 1 and d , and returns the position and value
of the j th nonzero entry of H in row i . Given such a black box for H , a time
t > 0 (without loss of generality), and an error parameter ε > 0, our task is to
construct a circuit that performs the unitary operation e−i Ht with error at most
ε using as few queries to H as possible. To develop practical algorithms, we
would also like to upper bound the number of additional 2-qubit gates. The time
complexity of a simulation is the sum of the number of queries and additional
2-qubit gates.

The first efficient algorithm for sparse Hamiltonian simulation was due to
Aharonov and Ta-Shma [1]. The key idea (also applied in [16]) is to use edge
coloring to decompose the Hamiltonian H into a sum of Hamiltonians

∑η

j=1 H j ,
where each H j is easy to simulate. These terms are then recombined using the
Lie product formula, which states that e−i Ht ≈ (e−i H1t/r e−i H2t/r · · · e−i Hη t/r )r for
large r . This method gives query complexity O(poly(n, d)(‖H‖t)2/ε), where
‖·‖ denotes the spectral norm. This was later improved using high-order product
formulas and more efficient decompositions of the Hamiltonian [8, 14, 19, 20, 40].
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Exponential improvement in precision for simulating sparse Hamiltonians 3

The best algorithms of this type [19, 20] have query complexity

d2(d + log∗ n)‖H‖t exp
(
O
(√

log(d‖H‖t/ε))). (1)

This complexity is only slightly superlinear in ‖H‖t in that exp(O(
√

log(d‖H‖t/ε)))
is asymptotically smaller than (d‖H‖t/ε)δ for any constant δ > 0; however,
exp(O(

√
log(d‖H‖t/ε))) is not polylogarithmic in d‖H‖t/ε.

In this work, we present an algorithm with query complexity O(τ (log(τ/ε)/
log log(τ/ε))). This algorithm has no query dependence on n, improved
dependence on d and t , and exponentially improved dependence on 1/ε. The
result for the number of queries is identical for time-dependent Hamiltonians. The
number of 2-qubit gates required is slightly larger, but only by a logarithmic factor.
Our Hamiltonian simulation algorithm is based on a connection to simulation
of the so-called fractional-query model. We show that a continuous-query
algorithm may be simulated with complexity polylogarithmic in 1/ε, and show
that Hamiltonian simulation can be posed as a special case of a continuous-query
algorithm.

Subsequent work. This article is an expanded version of work that appeared in
STOC 2014 [10]. Subsequent to this, some related algorithms appeared, which
build on the techniques introduced in this work (for example, oblivious amplitude
amplification).

One algorithm [11] is based on directly implementing the Taylor series of a
sum of certain basic Hamiltonians. The approach yields a simpler algorithm for
the special case of time-independent Hamiltonians. Reference [11] also addresses
the case of time-dependent Hamiltonians, but the approach is substantially more
complicated than in the time-independent case. Reference [11] does not address
the more general problem of simulating the fractional-query model, as we do here.

Another algorithm [12] uses a quantum walk to simulate time-independent
sparse Hamiltonians. This yields a complexity that is nearly linear in the sparsity,
whereas our present work has nearly quadratic complexity. However, for the
notable special case of local Hamiltonians (or more generally, those with a given
decomposition into 1-sparse terms), the present work already has complexity
nearly linear in the sparsity, so [12] does not give a significant improvement.
Moreover, it is unclear whether ideas from [12] can be applied to simulate time-
dependent Hamiltonians. Also, it does not address the fractional-query model.

Our approach to Hamiltonian simulation has also been applied to the simulation
of quantum chemistry [4, 5] and to the solution of linear systems [39]. The concept
of oblivious amplitude amplification introduced in this paper has been applied to
quantum circuit synthesis [37, 44].
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2. Summary of results

We show the following (where ‖H‖max denotes the largest entry of H in
absolute value).

THEOREM 2.1 (Sparse Hamiltonian simulation). A d-sparse Hamiltonian H
acting on n qubits can be simulated for time t within error ε with O(τ (log(τ/ε)/
log log(τ/ε))) queries and O(τ (log2(τ/ε)/ log log(τ/ε))n) additional 2-qubit
gates, where τ := d2‖H‖maxt (provided that τ > 1).

Our algorithm has no query dependence on n, improved dependence on
d and t , and exponentially improved dependence on 1/ε. Our new approach
to Hamiltonian simulation strictly improves all previous approaches based on
product formulas (for example, [1, 8, 14, 19, 32]). An alternative Hamiltonian
simulation method based on a quantum walk [9, 15] is incomparable. The method
has query complexity O(d‖H‖maxt/

√
ε), so its performance is better in terms of

‖H‖maxt and d but significantly worse in terms of ε. Thus, while suboptimal for
(say) constant-precision simulation, the results of Theorem 2.1 currently give the
best known Hamiltonian simulations as a function of ε.

Essentially the same approach used for Theorem 2.1 can be applied even
when the Hamiltonian is time dependent. The query complexity is unaffected
by any such time dependence, except that we take the largest max-norm
of the Hamiltonian over all times (that is, τ is redefined as τ := d2ht
with h := maxs∈[0,t] ‖H(s)‖max). The number of additional 2-qubit gates
is O(τ (log(τ/ε) log((τ + τ ′)/ε)/ log log(τ/ε))n), where τ ′ := d2h′t with
h′ := maxs∈[0,t] ‖(d/ds)H(s)‖. This dependence on h′ is a dramatic improvement
over previous methods for simulating time-dependent Hamiltonians using high-
order product formulas [43]. Another previous simulation method [38] also
improved the dependence on h′, but at the cost of substantially worse dependence
on t and ε.

While our approach applies to sparse Hamiltonians in general, it can sometimes
be improved using additional structure. In particular, consider the case of a
k-local Hamiltonian acting on a system of qubits. (A k-local Hamiltonian acting
on subsystems of limited dimension is equivalent to a k-local Hamiltonian acting
on qubits with an increased value of k.) Since a term acting only on k qubits is
2k-sparse, we can apply Theorem 2.1 with d = 2k M , where M is the total number
of local terms. However, by taking the structure of sparse Hamiltonians into
account, we find an improved simulation with τ replaced by τ̃ := 2k M‖H‖maxt .

The performance of our algorithm is optimal or nearly optimal as a function of
some of its parameters. A lower bound of Ω(‖H‖maxt) follows from the no-fast-
forwarding theorem of [8], showing that our algorithm’s dependence on ‖H‖maxt
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is almost optimal. However, prior to our work, there was no known ε-dependent
lower bound, not even one ruling out algorithms with no dependence on ε. We
show that, surprisingly, our query dependence on ε in Theorem 2.1 is optimal.

THEOREM 2.2 (ε-dependent lower bound for Hamiltonian simulation). For any
ε > 0, there exists a 2-sparse Hamiltonian H with ‖H‖max< 1 such that simulating
H with precision ε for constant time requires Ω(log(1/ε)/ log log(1/ε)) queries.

Our Hamiltonian simulation algorithm is based on a connection to the so-
called fractional quantum query model. A result of Cleve et al. [23] shows that
this model can be simulated with only small overhead using standard, discrete
quantum queries. While this can be seen as a kind of Hamiltonian simulation,
simulating the dynamics of a sparse Hamiltonian appears a priori unrelated. Here
we relate these tasks, giving a simple reduction from Hamiltonian simulation
to the problem of simulating (a slight generalization of) the fractional-query
model, so that improved simulations of the fractional-query model directly yield
improvements in Hamiltonian simulation.

To introduce the notion of fractional queries, recall that in the usual model
of quantum query complexity, we wish to solve a problem whose input
x ∈ {0, 1}N is given by an oracle (or black box) that can be queried to learn
the bits of x . The measure of complexity, called the query complexity, is the
number of times we query the oracle. More precisely, we are given access to a
unitary gate Qx whose action on the basis states | j〉|b〉 for all j ∈ [N ] := {1, 2,
. . . , N } and b ∈ {0, 1} is Qx | j〉|b〉 = (−1)bx j | j〉|b〉. A quantum query algorithm
is a quantum circuit consisting of arbitrary x-independent unitaries and Qx gates.
The query complexity of such an algorithm is the total number of Qx gates used
in the circuit.

The query model is often used to study the complexity of evaluating a classical
function of x . However, it is also natural to consider more general tasks. In
order of increasing generality, such tasks include state generation [3], state
conversion [31], and implementing unitary operations [7, 9]. Here we focus on
the last of these tasks, where for each possible input x we must perform some
unitary operation Ux . Considering this task leads to a strong notion of simulation:
to simulate a given algorithm in the sense of unitary implementation, one must
reproduce the entire correct output state for every possible input state, rather than
simply (say) evaluating some predicate in one bit of the output with a fixed input
state.

Since quantum mechanics is fundamentally described by the continuous
dynamics of the Schrödinger equation, it is natural to ask if the query model can
be made less discrete. In particular, instead of using the gate Qx for unit cost,
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what if we can make half a query for half the cost? This perspective is motivated
by the idea that if Qx is performed by a Hamiltonian running for unit time, we can
stop the evolution after half the time to obtain half a query. In general we could
run this Hamiltonian for time α ∈ (0, 1] at cost α. This fractional-query model
is at least as powerful as the standard (discrete-query) model. More formally, we
define the model as follows.

DEFINITION 1 (Fractional-query model). For an n-bit string x , let Qα
x act as

Qα
x | j〉|b〉 = e−iπαbx j | j〉|b〉 for all j ∈ [N ] and b ∈ {0, 1}. An algorithm in the

fractional-query model is a sequence of unitary gates Um Qαm
x Um−1 · · ·U1 Qα1

x U0,
where Ui are arbitrary unitaries and αi ∈ (0, 1] for all i . The fractional-query
complexity of this algorithm is

∑m
i=1 αi and the total number of fractional-query

gates used is m.

This idea can be taken further by taking the limit as the sizes of the fractional
queries approach zero to obtain a continuous variant of the model, called
the continuous-query model [26]. In this model, we have access to a query
Hamiltonian Hx acting as Hx | j〉|b〉 = πbx j | j〉|b〉. Unlike the fractional- and
discrete-query models, this is not a circuit-based model of computation. In this
model we are allowed to evolve for time T according to the Hamiltonian given by
Hx + HD(t) for an arbitrary time-dependent driving Hamiltonian HD(t), at cost
T . More precisely, the model is defined as follows.

DEFINITION 2 (Continuous-query model). Let Hx act as Hx | j〉|b〉 = πbx j | j〉|b〉
for all j ∈ [N ] and b ∈ {0, 1}. An algorithm in the continuous-query model is
specified by an arbitrary x-independent driving Hamiltonian HD(t) for t ∈ [0, T ].
The algorithm implements the unitary operation U (T ) obtained by solving the
Schrödinger equation

i
d
dt

U (t) = (Hx + HD(t))U (t) (2)

with U (0) = 1. The continuous-query complexity of this algorithm is the total
evolution time, T .

Because e−iαHx = Qα
x , running the Hamiltonian Hx with no driving

Hamiltonian for time T = α is equivalent to an α-fractional query. In the
remainder of this work we omit the subscript x on Q for brevity.

While initial work on the continuous-query model focused on finding analogues
of known algorithms [26, 34], it has also been studied with the aim of proving
lower bounds on the discrete-query model [34]. Furthermore, the model has
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led to the discovery of new quantum algorithms. In particular, Farhi et al. [24]
discovered an algorithm with continuous-query complexity O(

√
n) for evaluating

a balanced binary NAND tree with n leaves, which is optimal. This result was later
converted to the discrete-query model with the same query complexity [2, 17].

A similar conversion can be performed for any algorithm with a sufficiently
well-behaved driving Hamiltonian [15]. However, this leaves open the question
of whether continuous-query algorithms can be generically converted to discrete-
query algorithms with the same query complexity. This was almost resolved
by [23], which gave an algorithm that approximates a T -query continuous-query
algorithm to bounded error with O(T (log T/ log log T )) discrete queries. This
algorithm can be made time efficient [13] (informally, the number of additional
2-qubit gates is close to the query complexity).

However, to approximate a continuous-query algorithm to precision ε, the
algorithm of [23] uses O((1/ε)(T log T/ log log T )) queries. Ideally we would
like the dependence on ε to be polylogarithmic, instead of polynomial, in 1/ε.
For example, such behavior would be desirable when using a fractional-query
algorithm as a subroutine. Here we present a significantly improved and simplified
simulation of the continuous- and fractional-query models. In particular, we show
the following.

THEOREM 2.3 (Continuous-query simulation). An algorithm with continuous- or
fractional-query complexity T > 1 can be simulated with error at most ε with
O(T (log(T/ε)/ log log(T/ε))) queries. For continuous-query simulation, if there
is a circuit using at most g gates that implements the time evolution due to HD(t)
with precision ε/T between any two times t1 and t2 satisfying |t2− t1| 6 T , given
t1 and t2 encoded in quantum states, then the number of additional 2-qubit gates
for the simulation is O(T (log(T/ε)/ log log(T/ε))[g+ log(h̄T/ε)]), where h̄ :=
(1/T )

∫ T
0 ‖HD(t)‖ dt.

Since the continuous-query model is at least as powerful as the discrete-
query model, a discrete simulation must use Ω(T ) queries, showing our
dependence on T is close to optimal. However, as for the problem of Hamiltonian
simulation, there was previously no ε-dependent lower bound. Along the lines of
Theorem 2.2, we show a lower bound of Ω(log(1/ε)/ log log(1/ε)) queries for a
continuous-query algorithm with T = O(1) (Theorem 7.1), so the dependence of
our simulation on ε is optimal.

For the problem of evaluating a classical function of a black-box input, an
approach based on an invariant called the γ2 norm shows that the continuous-
query complexity is at most a constant factor smaller than the discrete-query
complexity for a bounded-error simulation [31]. However, it remains unclear
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whether the algorithm can be made time efficient and whether the unitary
dynamics of a continuous-query algorithm can be simulated (even with bounded
error) using O(T ) queries. Such a result does hold for state conversion, but
its dependence on error is quadratic [31]. More generally, the optimal tradeoff
between T and ε for simulation of continuous-query algorithms using discrete
queries—and for simulation of Hamiltonian dynamics—remains open (with or
without conditions on the time complexity).

The remainder of this article is organized as follows. In Section 3, we give
a high-level overview of the techniques used in our results. In Section 4, we
describe our simulation of the continuous- and fractional-query models using
discrete queries. In Section 5, we apply these results to Hamiltonian simulation. In
Section 6, we analyze the time complexity of our algorithms, and in Section 7, we
prove ε-dependent lower bounds showing optimality of their error dependence.
We conclude in Section 8 with a brief discussion of some open questions.
In Appendix A, we provide some proofs of known results for the sake of
completeness.

3. High-level overview of techniques

We begin by proving Theorem 2.3, our improved simulation of continuous- and
fractional-query algorithms. Then we prove Theorem 2.1 by reducing an instance
of a sparse Hamiltonian simulation problem to an instance of a fractional-query
algorithm, which can then be simulated via Theorem 2.3. We prove Theorem 2.2
using ideas from the no-fast-forwarding theorem from [8] and properties of the
unbounded-error quantum query complexity of the parity function.

We now sketch the approach for each of the main theorems, highlighting the
novel ideas.

3.1. Continuous-query simulation (Theorem 2.3). First consider the
simulation of fractional queries using discrete queries. We show that an
algorithm with constant fractional-query complexity can be simulated in the
discrete-query model using O(log(1/ε)/ log log(1/ε)) queries (Lemma 4.2).
The claimed upper bound for simulating a fractional-query algorithm with
query complexity T follows easily by breaking the algorithm into pieces with
constant fractional-query complexity. Since the continuous- and fractional-query
models are equivalent (Theorem 4.1), the result for the continuous-query model
(Theorem 2.3) follows.

We prove Lemma 4.2 in two steps. Let the unitary performed by the constant-
query fractional-query algorithm be V and let the (unknown) state it acts on be
|ψ〉. We would like to create the state V |ψ〉 up to error ε. First we construct a
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circuit Ũ that performs V with amplitude
√

p up to error ε, in the sense that Ũ is
within error ε of a unitary U that maps |0m〉|ψ〉 to

√
p|0m〉V |ψ〉 +√1− p|Φ⊥〉

for some constant p and some state |Φ⊥〉 with (|0m〉〈0m | ⊗ 1)|Φ⊥〉 = 0. The
existence of such a Ũ that makes O(log(1/ε)/ log log(1/ε)) queries was shown
by [23]. Their strategy is to measure the first m qubits and obtain V |ψ〉 with
constant probability. If the measurement fails, they recover the original state
|ψ〉 from |Φ⊥〉 using a fault-correction procedure, which is itself probabilistic
and occasionally fails, requiring a recursive correction algorithm to remove
all faults. The time-efficient implementation of this recursive fault-correction
procedure [13] is cumbersome.

Our alternative approach uses Ũ to deterministically create V |ψ〉 without
measurements. We show in general how to create V |ψ〉 with a constant number
of applications of Ũ when p is a constant. To do this, we introduce a notion
of ‘oblivious amplitude amplification’ that can have the same performance as
standard amplitude amplification, but that can be applied even when the reflection
about the input state is unavailable. This idea, which is inspired by the in-place
QMA amplification procedure of Marriott and Watrous [33], is a general result
that can potentially be applied in other contexts [37, 44].

Most of the algorithm is easily made time efficient, except the preparation of a
certain quantum state. However, this state can be prepared efficiently [13] and the
result follows.

3.2. Hamiltonian simulation reduction (Theorem 2.1). Next we describe
the main ideas of our Hamiltonian simulation algorithm. We remove the
dependence of the query cost on n with a simple trick involving local edge
coloring of bipartite graphs. This strategy is quite general and can be used to
remove n-dependence from several known Hamiltonian simulation algorithms.
The improved dependence on ε results from our algorithm for simulating the
fractional-query model in the discrete-query model (Theorem 2.3).

As mentioned previously, we reduce Hamiltonian simulation to a generalization
of the task of simulating the fractional-query model. Examining the basic Lie
product formula e−i Ht ≈ (e−i H1t/r e−i H2t/r · · · e−i Hη t/r )r , we see that if Q j := e−i H j

were query oracles, this would be a fractional-query algorithm using multiple
oracles Q j for time t each. (Note that because the query complexity of the
simulation depends only on the total time over which fractional queries are
applied rather than the total number of fractional queries, there is no advantage to
using higher-order product formulas.) We reduce a fractional-query algorithm that
calls each of η different query oracles for time t to a fractional-query algorithm
that uses query time ηt with a single query oracle that can perform any Q j . Thus
it suffices to decompose the given Hamiltonian H into a sum of Hamiltonians
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for which the matrices Q j can be viewed as query oracles in Theorem 2.3. We
show such a decomposition (Lemma 5.3) that yields that stated upper bound.
This algorithm can be made time efficient since it is essentially a reduction to
continuous-query simulation.

3.3. Lower bounds (Theorems 2.2 and 7.1). Finally, we prove lower bounds
showing optimality of our algorithms as a function of ε (Theorems 2.2 and 7.1).
The main idea behind both lower bounds is to show a Hamiltonian whose exact
simulation for any time t > 0 allows us to compute the parity of a string with
unbounded error, which is as hard as computing parity exactly, requiring Ω(N )
queries [6, 25]. The evolution for constant time only produces an overlap of
Θ(1/N !) with the state encoding the parity. To prevent the overlap with the
state encoding the incorrect parity being as large, the state must be produced
with accuracy ε = O(1/N !). Since simulating the state with this accuracy would
enable the parity to be computed with unbounded error, it must require complexity
Ω(N ). That then gives the lower bound of Ω(log(1/ε)/ log log(1/ε)).

4. From continuous to discrete queries

In this section we present our improved simulation of continuous or fractional
queries in the conventional discrete-query model. The main result of this section
is Lemma 4.8, which establishes the query complexity claimed in Theorem 2.3.
The time-complexity part of Theorem 2.3 is established in Section 6.

For concreteness, we quantify the distance between unitaries U and V with the
function ‖U − V ‖ and the distance between states |ψ〉 and |φ〉 with the function
‖|ψ〉 − |φ〉‖. As the error ultimately appears inside a logarithm, the precise choice
of distance measure is not significant.

We begin by recalling the equivalence of the continuous- and fractional-query
models for any error ε > 0. An explicit simulation of the continuous-query model
by the fractional-query model was provided by [23]; the proof is a straightforward
application of a result of [29]. The other direction is apparently folklore (for
example, both directions are implicitly assumed in [34]); we provide a short proof
in Appendix A.1 for completeness.

THEOREM 4.1 (Equivalence of continuous- and fractional-query models). For
any ε > 0, any algorithm with continuous-query complexity T can be implemented
with fractional-query complexity T with error at most ε and m = O(h̄T 2/ε)

fractional-query gates, where h̄ := (1/T )
∫ T

0 ‖HD(t)‖ dt is the average norm
of the driving Hamiltonian. Conversely, any algorithm with fractional-query
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Figure 1. The fractional-query gadget. After performing the controlled-Q
operation on the target state |ψ〉, the operation Qα is performed with amplitude
depending on α.

complexity T can be implemented with continuous-query complexity T with error
at most ε.

Since the two models are equivalent, it suffices to convert a fractional-
query algorithm to a discrete-query algorithm. We start with a fractional-
query algorithm that makes at most one query. The result for multiple queries
(Lemma 4.8) follows straightforwardly.

Lemma 4.2. Any algorithm in the fractional-query model with query complexity
at most 1 can be implemented with O(log(1/ε)/ log log(1/ε)) queries in the
discrete-query model with error at most ε.

The construction of the algorithm in this main lemma can be viewed in two
steps. First, we show how to unitarily construct a superposition of the required
state along with a label in state |0m+1〉 and another state whose label is orthogonal.
The construction is similar to that in [13, 23]; the main difference is that we do not
measure the state of the label. (This step is shown in the sequence Lemmas 4.3,
4.4, and 4.5.) Then, in the second step, rather than performing a fault-correction
procedure upon seeing a measurement outcome other than 0m+1, we perform
the underlying unitary operation in the first step three times (one of which is
backwards) in conjunction with certain reflections to arrive at the required state.
This step can be viewed as applying a generalization of amplitude amplification
that is shown in Lemma 4.6.

The first step of the construction uses the fractional-query gadget [23, Section
II.B] shown in Figure 1. This gadget behaves as follows, as we show in
Appendix A.2.

Lemma 4.3 (Gadget Lemma [23]). Let Q be a unitary matrix with eigenvalues
±1; let α ∈ [0, 1]. The circuit in Figure 1, with Rα := (1/

√
c + s)

(√
c
√

s√
s −√c

)
and
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Figure 2. A segment to implement the fractional-query algorithm. The segment
consists of many concatenated applications of the fractional-query gadget,
interspersed with x-independent unitaries Ui . The state preparation is indicated
in the dotted box, and the main operation is performed by the circuit in the dashed
box. The additional ancilla at the top is introduced to reduce the amplitude for
performing the correct operation to exactly 1/2.

P := (1 0
0 i

)
, performs the map

|0〉|ψ〉 7→√qα|0〉eiπα/2 Qα|ψ〉 +√1− qα|1〉|φ〉 (3)

for some state |φ〉, where c := cos(πα/2), s := sin(πα/2), qα := 1/(c + s)2 =
1/(1+ sin(πα)), and Qα = 1

2 (1+ Q)+ e−iπα 1
2 (1− Q) = e−iπα/2(c1+ is Q).

While the proof in Appendix A.2 shows that |φ〉 = e−iπ/4 Q−1/2|ψ〉, we do not
use this fact in our analysis, in contrast to previous approaches [13, 23].

Note that while we have defined the fractional-query model to use fractions
α ∈ (0, 1], a similar simulation could be applied if we allowed negative fractional-
time evolutions with α ∈ [−1, 1]. In particular, we could define s = sin(π |α|/2),
P = ( 1 0

0 i sgn(α) ) and carry through an analogous analysis. However, for simplicity,
we restrict our attention to the model with only positive fractional-time evolutions.

We now collect the gadgets into segments as shown in Figure 2 and show
that, with an appropriate choice of parameters, a segment implements a fractional-
query algorithm with constant query complexity with amplitude 1/2. This specific
choice facilitates one-step exact oblivious amplitude amplification. Other than
this choice of constant, this lemma is the same as in [23]. For completeness, we
provide a proof in Appendix A.2.

Lemma 4.4 (Segment Lemma). Let V be a unitary implementable by a fractional-
query algorithm with query complexity at most 1/5, that is, there exists an m such

https://doi.org/10.1017/fms.2017.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.2


Exponential improvement in precision for simulating sparse Hamiltonians 13

that V = Um Qαm Um−1 · · ·U1 Qα1U0 with αi > 0 for all i and
∑m

i=1 αi 6 1/5. Let
P and Rα be as in Lemma 4.3. Then there exists a unitary Υ on the additional
ancilla such that the circuit in Figure 2 performs the map

|0m+1〉|ψ〉 7→ 1
2
|0m+1〉eiϑV |ψ〉 +

√
3

2
|Φ⊥〉 (4)

for some state |Φ⊥〉 satisfying (|0m+1〉〈0m+1|⊗1)|Φ⊥〉 = 0 and some ϑ ∈ [0, 2π).

Although the segment in Figure 2 makes m queries, it is possible to approximate
this segment within precision ε using only O(log(1/ε)/ log log(1/ε)) queries. To
get some intuition for why this is possible, note that the state on the control
registers decides how many queries are performed. For example, if all the control
registers were set to |0〉when the controlled-Q gates act, then no queries would be
performed, even though the circuit contains m query gates. In general, the number
of queries performed when the control registers are set to |b1, b2, . . . , bm〉 is the
Hamming weight of b. In Figure 2, the state of the control registers has very little
overlap with high-weight states, so we can approximate that state with one that
has no overlap with high-weight states. We then show how to rearrange such a
circuit to obtain a new circuit that uses very few query gates.

This lemma follows the same proof structure as [23, Section II.C], but is more
general since we do not restrict all the fractional queries to have the same value of
α. This change requires us to use a version of the Chernoff bound for independent
(but not necessarily identically distributed) random variables instead of the one
used in [23]. The lemma is proved in Appendix A.2.

Lemma 4.5 (Approximate Segment Lemma). Let V be a unitary implementable
by a fractional-query algorithm with query complexity at most 1/5. Then for
any ε > 0, there exists a unitary quantum circuit that makes O(log(1/ε)/
log log(1/ε)) discrete queries and, within error ε, performs a unitary U acting
as

U |0m+1〉|ψ〉 = 1
2
|0m+1〉eiϑV |ψ〉 +

√
3

2
|Φ⊥〉 (5)

for some state |Φ⊥〉 satisfying (|0m+1〉〈0m+1|⊗1)|Φ⊥〉 = 0 and some ϑ ∈ [0, 2π).

Up to this point our proof is similar to previous approaches [13, 23]. In those
previous approaches, the map of Lemma 4.5 was used to probabilistically create
the desired state by measuring the first m+1 qubits. With constant probability we
obtain the desired state, but in the other case we have a fault and have to recover
the original input state. This recovery stage required a fault-correction procedure
that is difficult to analyze and considerably harder to make time efficient.

https://doi.org/10.1017/fms.2017.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.2


D. W. Berry et al. 14

We avoid these difficulties by introducing oblivious amplitude amplification.
Given a unitary U that implements another unitary V with some amplitude
(in a certain precise sense), this idea allows one to use a version of amplitude
amplification to give a better implementation of V . In particular, as in amplitude
amplification, if the amplitude for implementing V is known, we can exactly
perform V .

In standard amplitude amplification, to amplify the ‘good’ part of a state, we
need to be able to reflect about the state itself and the projector onto the good
subspace. While the latter is easy in our application, we cannot reflect about the
unknown input state. Nevertheless, we show the following.

Lemma 4.6 (Oblivious amplitude amplification). Let U and V be unitary
matrices on µ+n qubits and n qubits, respectively, and let θ ∈ (0, π/2). Suppose
that for any n-qubit state |ψ〉,

U |0µ〉|ψ〉 = sin(θ)|0µ〉V |ψ〉 + cos(θ)|Φ⊥〉, (6)

where |Φ⊥〉 is an (µ+n)-qubit state that depends on |ψ〉 and satisfiesΠ |Φ⊥〉 = 0,
where Π := |0µ〉〈0µ| ⊗ 1. Let R := 2Π − 1 and S := −U RU † R. Then for any
` ∈ Z,

S`U |0µ〉|ψ〉 = sin
(
(2`+ 1)θ

)|0µ〉V |ψ〉 + cos
(
(2`+ 1)θ

)|Φ⊥〉. (7)

Note that R is not the reflection about the initial state, so Lemma 4.6 does not
follow from amplitude amplification alone. However, in the context described in
the lemma, it suffices to use a different reflection.

The motivation for oblivious amplitude amplification comes from work of
Marriott and Watrous on in-place amplification of QMA [33] (see also related
work on quantum rewinding for zero-knowledge proofs [41] and on using
amplitude amplification to obtain a quadratic improvement [36]). Specifically,
the following technical lemma shows that amplitude amplification remains in a
certain 2-dimensional subspace in which it is possible to perform the appropriate
reflections.

Lemma 4.7 (2D Subspace Lemma). Let U and V be unitary matrices on µ + n
qubits and n qubits, respectively, and let p ∈ (0, 1). Suppose that for any n-qubit
state |ψ〉,

U |0µ〉|ψ〉 =√p|0µ〉V |ψ〉 +√1− p|Φ⊥〉, (8)

where |Φ⊥〉 is an (µ+n)-qubit state that depends on |ψ〉 and satisfiesΠ |Φ⊥〉 = 0,
where Π := |0µ〉〈0µ| ⊗ 1. Then the state |Ψ ⊥〉 defined by the equation

U |Ψ ⊥〉 :=√1− p|0µ〉V |ψ〉 −√p|Φ⊥〉 (9)

is orthogonal to |Ψ 〉 := |0µ〉|ψ〉 and satisfies Π |Ψ ⊥〉 = 0.
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Proof. For any |ψ〉, let |Φ〉 := |0µ〉V |ψ〉. Then for all |ψ〉, we have

U |Ψ 〉 =√p|Φ〉 +√1− p|Φ⊥〉 (10)

U |Ψ ⊥〉 =√1− p|Φ〉 −√p|Φ⊥〉, (11)

where Π |Φ⊥〉 = 0. By taking the inner product of these two equations, we get
〈Ψ |Ψ ⊥〉 = 0. The lemma asserts that not only is |Ψ ⊥〉 orthogonal to |Ψ 〉, but also
Π |Ψ ⊥〉 = 0.

To show this, consider the operator

Q := (〈0µ| ⊗ 1)U †ΠU (|0µ〉 ⊗ 1). (12)

For any state |ψ〉,

〈ψ |Q|ψ〉 = ‖ΠU |0µ〉|ψ〉‖2 = ‖Π(√p|Φ〉 +√1− p|Φ⊥〉)‖2 = ‖√p|Φ〉‖2 = p.
(13)

In particular, this holds for a basis of eigenvectors of Q, so Q = p1.
Thus for any |ψ〉, we have

p|ψ〉 = Q|ψ〉 = (〈0µ| ⊗ 1)U †ΠU (|0µ〉 ⊗ 1)|ψ〉 = (〈0µ| ⊗ 1)U †ΠU |Ψ 〉
=√p(〈0µ| ⊗ 1)U †|Φ〉. (14)

From (10) and (11) we get U †|Φ〉 =√p|Ψ 〉 +√1− p|Ψ ⊥〉. Plugging this into
the previous equation, we get

p|ψ〉 =√p(〈0µ| ⊗ 1)(
√

p|Ψ 〉 +√1− p|Ψ ⊥〉)
= p|ψ〉 +

√
p(1− p)(〈0µ| ⊗ 1)|Ψ ⊥〉. (15)

This gives us
√

p(1− p)(〈0µ| ⊗ 1)|Ψ ⊥〉 = 0. Since p ∈ (0, 1), this implies
Π |Ψ ⊥〉 = 0.

Note that this fact can also be viewed as a consequence of Jordan’s Lemma [30],
which decomposes the space into a direct sum of 1- and 2-dimensional subspaces
that are invariant under the projectors Π and U †ΠU . In this decomposition, Π
and U †ΠU are rank-1 projectors within each 2-dimensional subspace. Let |0〉|ψi 〉
denote the eigenvalue-1 eigenvector of Π within the i th 2-dimensional subspace
Si . Since Si is invariant under U †ΠU , the state U †ΠU |0〉|ψi 〉 =√pU †|0〉V |ψi 〉
belongs to Si . Let |Φ⊥i 〉 be such that |0〉|ψi 〉 = U †(

√
p|0〉V |ψi 〉 +√1− p|Φ⊥i 〉).

Then |Ψ ⊥i 〉 := U †(
√

1− p|0〉V |ψi 〉 − √p|Φ⊥i 〉) is in Si , since it is a linear
combination of |0〉|ψi 〉 and U †ΠU |0〉|ψi 〉. However, |Ψ ⊥i 〉 is orthogonal to
|0〉|ψi 〉 and is therefore an eigenvalue-0 eigenvector of Π , since Π is a rank-1
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projector in Si . Thus for each i , |ψi 〉 and |Ψ ⊥i 〉 satisfy the conditions of the lemma.
We claim that the number of 2-dimensional subspaces (and hence the number of
states |ψi 〉) is 2n . There are at most 2n such subspaces since Π has rank 2n and is
rank-1 in each subspace. There also must be at least 2n 2-dimensional subspaces,
since otherwise there would be a state |0〉|ψ〉 that is in a 1-dimensional subspace,
that is, is invariant under bothΠ and U †ΠU . This is not possible because U †ΠU
acting on |0〉|ψ〉 yields

√
pU †|0〉V |ψ〉, which is a subnormalized state since

p < 1. Finally, since there are 2n linearly independent |ψi 〉, an arbitrary state
|ψ〉 can be written as a linear combination of |ψi 〉, and the result follows.

With the help of Lemma 4.7 we can prove Lemma 4.6.

Proof of Lemma 4.6. Since Lemma 4.7 shows that the evolution occurs within a
2-dimensional subspace (or its image under U ), the remaining analysis is
essentially the same as in standard amplitude amplification. For any |ψ〉, we
define |Ψ 〉 := |0µ〉|ψ〉 and |Φ〉 := |0µ〉V |ψ〉, so that

U |Ψ 〉 = sin(θ)|Φ〉 + cos(θ)|Φ⊥〉, (16)

where θ ∈ (0, π/2) is such that
√

p = sin(θ). We also define |Ψ ⊥〉 through the
equation

U |Ψ ⊥〉 := cos(θ)|Φ〉 − sin(θ)|Φ⊥〉. (17)

By Lemma 4.7, we know that Π |Ψ ⊥〉 = 0. Using these two equations, we have

U †|Φ〉 = sin(θ)|Ψ 〉 + cos(θ)|Ψ ⊥〉 (18)

U †|Φ⊥〉 = cos(θ)|Ψ 〉 − sin(θ)|Ψ ⊥〉. (19)

Then a straightforward calculation gives

S|Φ〉 = −U RU †|Φ〉
= −U R(sin(θ)|Ψ 〉 + cos(θ)|Ψ ⊥〉)
= −U (sin(θ)|Ψ 〉 − cos(θ)|Ψ ⊥〉)
= (cos2(θ)− sin2(θ)

)|Φ〉 − 2 cos(θ) sin(θ)|Φ⊥〉
= cos(2θ)|Φ〉 − sin(2θ)|Φ⊥〉. (20)

Similarly,

S|Φ⊥〉 = U RU †|Φ⊥〉
= U R(cos(θ)|Ψ 〉 − sin(θ)|Ψ ⊥〉)
= U (cos(θ)|Ψ 〉 + sin(θ)|Ψ ⊥〉)
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= 2 cos(θ) sin(θ)|Φ〉 + (cos2(θ)− sin2(θ)
)|Φ⊥〉

= sin(2θ)|Φ〉 + cos(2θ)|Φ⊥〉. (21)

Thus we see that S acts as a rotation by 2θ in the subspace span{|Φ〉, |Φ⊥〉}, and
the result follows.

We are now ready to complete the proof of Lemma 4.2 using Lemmas 4.5
and 4.6.

Proof of Lemma 4.2. We are given a fractional-query algorithm that makes at
most one query. This can be split into 5 steps that make at most 1/5 queries each
in the fractional-query model. We perform the analysis for these steps of size 1/5;
the difference is only a constant factor that does not affect the asymptotics. We
convert this fractional-query algorithm into a discrete-query algorithm with some
error.

From Lemma 4.5, we know that for any such fractional-query algorithm V ,
there is an algorithm that makes O(log(1/ε)/ log log(1/ε)) discrete queries and
maps the state |0m+1〉|ψ〉 to a state that is at most ε far from 1

2 |0m+1〉eiϑV |ψ〉 +√
3

2 |Φ〉, for some state |Φ〉 that satisfies (|0m+1〉〈0m+1| ⊗ 1)|Φ〉 = 0 and some ϑ ∈
[0, 2π). We wish to perform the unitary V on the input state |ψ〉 approximately.

The unitary operation U defined in Lemma 4.5 maps |0m+1〉|ψ〉 7→
1
2 |0m+1〉eiϑV |ψ〉 +

√
3

2 |Φ〉. The operation U satisfies the conditions of Lemma 4.6
with µ = m + 1 and sin2(θ) = 1/4. Thus a single application of S (using three
applications of U ) would produce the state V |ψ〉 exactly.

While we cannot necessarily perform U , using Lemma 4.5 we can perform
another unitary operation Ũ that is within error ε/3 of U . Since we only perform
the unitary three times, we obtain a state ε-close to V |ψ〉 when we use Ũ instead
of U .

By straightforwardly concatenating such simulations with sufficiently small
error, we obtain simulations for longer times. This establishes the following
lemma, which is the query-complexity part of Theorem 2.3.

Lemma 4.8. An algorithm with continuous- or fractional-query complexity
T > 1 can be simulated with error at most ε with O(T (log(T/ε)/ log log(T/ε)))
queries.

Proof. Given an algorithm that runs for time T in the continuous-query model,
we can convert it to an algorithm with fractional-query complexity T with
error at most ε/2 using Theorem 4.1. Given a fractional-query algorithm that
makes T queries, we can divide it into dT e pieces that make at most one query
each and invoke Lemma 4.2 with error ε/2dT e to obtain dT e discrete-query
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algorithms, each of which makes O(log(dT e/ε)/ log log(dT e/ε)) queries. When
run sequentially on the input state, they yield an output that is ε/2-close to
the correct output (by subadditivity of error). Thus the final state has error at
most ε.

5. Hamiltonian simulation

We now apply the results of the previous section to give improved algorithms
for simulating sparse Hamiltonians. The main result of this section is the
reduction from an instance of the sparse Hamiltonian simulation problem to a
fractional-query algorithm, which establishes Lemma 5.5, the query-complexity
part of Theorem 2.1. The time-complexity part of Theorem 2.1 is established in
Section 6.

To see the connection between the fractional-query model and Hamiltonian
simulation, consider the example of a Hamiltonian H = H1 + H2, where H1

and H2 have eigenvalues 0 and π , so that e−i H1 and e−i H2 have eigenvalues ±1.
From the Lie product formula, we have e−i(H1+H2)T ≈ (e−i H1T/r e−i H2T/r )r for large
r . If we think of H1 and H2 as query Hamiltonians, this is a fractional-query
algorithm that makes T queries to each Hamiltonian. We might therefore expect
that O(T (log(T/ε)/ log log(T/ε))) discrete queries to e−i H1 and e−i H2 suffice to
implement e−i(H1+H2)T to precision ε. Here we do this by generalizing the results
of the previous section to allow multiple fractional-query oracles.

For a set Q = {Q1, . . . , Qη} of unitary matrices with eigenvalues ±1, we say
U is a fractional-query algorithm over Q with cost T if U can be written as
UλQαλ

iλ Uλ−1 · · ·U1 Qα1
i1

U0, where 0 < αi 6 1,
∑λ

i=1 αi = T , and i j ∈ [η] for all
j ∈ [λ].

THEOREM 5.1 (Multiple-query model). Let Q = {Q1, . . . , Qη} be a set of
unitaries with eigenvalues ±1. Let U be a fractional-query algorithm over Q
with cost T . Let Q :=∑η

j=1 | j〉〈 j |⊗Q j . Then U can be implemented by a circuit
that makes O(T (log(T/ε)/ log log(T/ε))) queries to Q with error at most ε.

Proof. We prove this by reduction to Theorem 2.3. We know that U can be written
in the form U = UλQαλ

iλ Uλ−1 · · ·U1 Qα1
i1

U0, where 0 < αi 6 1,
∑λ

i=1 αi = T , and
i j ∈ [η] for all j ∈ [λ].

We first express U as a fractional-query algorithm over Q with cost T . To do
this, we add an extra control register to the original circuit for U . This register
holds the index i j of the next query to be performed. We start with this register
initialized to |0〉. Let V0 be any unitary that maps |0〉 to |i1〉. The action of Qα1

i1
U0

on any state |ψ〉 is the same as the action of Qα1(V0 ⊗U0) on the second register
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of |0〉|ψ〉. Similarly, for all j ∈ [λ], let V j be any unitary that maps |i j 〉 to |i j+1〉,
where iλ+1 := 0. Thus the circuit (Vλ ⊗ Uλ)Qαλ(Vλ−1 ⊗ Uλ−1) · · · (V1 ⊗ U1)Qα1

(V0 ⊗U0) maps |0〉|ψ〉 to |0〉U |ψ〉.
This construction gives a fractional-query algorithm with fractional-query

complexity T given oracle access to Q. Since Q has eigenvalues ±1, we
can invoke Theorem 2.3 to give a discrete-query algorithm that makes
O(T (log(T/ε)/ log log(T/ε))) queries to Q and performs U up to error ε.
Theorem 2.3 assumes the queries are diagonal in the computational basis,
whereas here we assume only that Q has eigenvalues ±1. However, these two
scenarios are equivalent since the target system can be considered in a basis
where Q is diagonal. Therefore, Theorem 2.3 applies to the slightly more general
scenario considered here.

This theorem allows us to simulate a Hamiltonian H = H1+· · ·+Hη for time t
using resources that scale only slightly superlinearly in ηt , provided each H j has
eigenvalues 0 and π (or more generally, by rescaling, provided each H j has the
same two eigenvalues). For any ε > 0, there is a sufficiently large r so that e−i Ht is
ε-close to (e−i H1t/r · · · e−i Hη t/r )r , which is of the form required by Theorem 5.1 if
e−i H j has eigenvalues±1. Since ‖e−i Ht − (e−i H1t/r · · · e−i Hη t/r )r‖ = O((ηh̄t)2/r),
where h̄ := max j ‖H j‖ [8], choosing r = Ω((ηh̄t)2/ε) is sufficient to achieve
an ε-approximation. Since our Hamiltonians H j have constant norm, we have
h̄ = O(1) and get the following corollary.

Corollary 5.2. For a Hamiltonian H = ∑η

j=1 H j , where H j has eigenvalues 0
and π for all j ∈ [η], define Q := ∑

j | j〉〈 j | ⊗ e−i H j . The unitary e−i Ht can
be implemented by a fractional-query algorithm over Q, up to error ε, with
query complexity τ = ηt and O(η3t2/ε) fractional-query gates. Thus e−i Ht can
be implemented up to error ε by a circuit with O(τ (log(τ/ε)/ log log(τ/ε)))
invocations of Q.

To simulate arbitrary sparse Hamiltonians, we decompose them into
Hamiltonians with this property. To do this we first decompose the Hamiltonian
into a sum of 1-sparse Hamiltonians (with at most 1 nonzero entry in any row or
column). Second, we decompose 1-sparse Hamiltonians into Hamiltonians of the
required form.

Lemma 5.3. For any 1-sparse Hamiltonian G and precision γ > 0,
there exist O(‖G‖max/γ ) Hamiltonians G j with eigenvalues ±1 such that
‖G − γ ∑ j G j‖max 6

√
2γ .

Proof. First we decompose the Hamiltonian G as G = G X + iGY + G Z , where
G X contains the off-diagonal real terms, iGY contains the off-diagonal imaginary

https://doi.org/10.1017/fms.2017.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.2


D. W. Berry et al. 20

terms, and G Z contains the on-diagonal real terms. Next, for each of Gξ for
ξ ∈ {X, Y, Z}, we construct an approximation G̃ξ with each entry rounded
off to the closest multiple of 2γ . Since each entry of G̃ξ is at most γ away
from the corresponding entry in Gξ , we have ‖Gξ − G̃ξ‖max 6 γ . Denoting
G̃ = G̃ X + i G̃Y + G̃ Z , this implies ‖G − G̃‖max 6

√
2γ .

Next, we take C ξ := G̃ξ/γ , so ‖C ξ‖max 6 2d‖Gξ‖max/2γ e 6 2 d‖G‖max/2γ e.
We can then decompose each 1-sparse matrix C ξ into ‖C ξ‖max matrices, each of
which is 1-sparse and has entries from {−2, 0, 2}. If C ξ

jk is 2p, then the first |p|
matrices in the decomposition have a 2 for p > 0 (or −2 if p < 0) at the ( j, k)
entry, and the rest have 0. More explicitly, we define

C ξ,`

jk :=


2 if C ξ

jk > 2` > 0

−2 if C ξ

jk 6 −2` < 0

0 otherwise

(22)

for ξ ∈ {X, Y, Z} and ` ∈ [‖C ξ‖max/2]. This gives a decomposition into at most
3d‖G‖max/2γ e terms with eigenvalues in {−2, 0, 2}.

To obtain matrices with eigenvalues ±1, we perform one more step to remove
the 0 eigenvalues. We divide each C ξ,` into two copies, C ξ,`,+ and C ξ,`,−. For any
column where C ξ,` is all zero, the corresponding diagonal element of C ξ,`,+ is
+1 (if ξ ∈ {X, Z}) or +i (if ξ = Y ) and the diagonal element of C ξ,`,− is −1 (if
ξ ∈ {X, Z}) or −i (if ξ = Y ). Otherwise, we let C ξ,`,+

jk = C ξ,`,−
jk = C ξ,`

jk /2. Thus
C ξ,` = C ξ,`,+ +C ξ,`,−. Moreover, each column of C ξ,`,± has exactly one nonzero
entry, which is ±1 (or ±i on the diagonal of CY,`,±).

This gives a decomposition G̃/γ = ∑
`,±(C

X,`,± + iCY,`,± + C Z ,`,±) in
which each term has eigenvalues ±1. The decomposition contains at most
6d‖G‖max/2γ e = O(‖G‖max/γ ) terms.

Lemma 5.3 gives a decomposition of the required form as the eigenvalues can
be adjusted to 0 and π by adding the identity matrix and multiplying by π/2.

It remains to decompose a sparse Hamiltonian into 1-sparse Hamiltonians.
Known results decompose a d-sparse Hamiltonian H into a sum of O(d2)

1-sparse Hamiltonians [8], but simulating one query to a 1-sparse Hamiltonian
requires O(log∗ n) queries to the oracle for H . We present a simplified
decomposition theorem that decomposes a d-sparse Hamiltonian into d2

1-sparse Hamiltonians. A query to the individual 1-sparse Hamiltonians can
be performed using O(1) queries to the original Hamiltonian, removing the
log∗ n factor.
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Lemma 5.4. If H is a d-sparse Hamiltonian, there exists a decomposition
H =∑d2

j=1 H j where each H j is 1-sparse and a query to any H j can be simulated
with O(1) queries to H.

Proof. The new ingredient in our proof is to assume that the graph of H is
bipartite. (Here the graph of H has a vertex for each basis state and an edge
between two vertices if the corresponding entry of H is nonzero.) This is without
loss of generality because we can simulate the Hamiltonian σx ⊗ H instead,
which is indeed bipartite and has the same sparsity as H . From a simulation of
σx ⊗ H , we can recover a simulation of H using the identity e−i(σx⊗H)t |+〉|ψ〉 =
|+〉e−i Ht |ψ〉.

Now we decompose a bipartite d-sparse Hamiltonian into a sum of d2 terms.
To do this, we give an edge coloring of the graph of H (that is, an assignment
of colors to the edges so that no two edges incident on the same vertex have the
same color). Given such a coloring with d2 colors, the Hamiltonian H j formed by
only considering edges with color j is 1-sparse.

We use the following simple coloring. For any pair of adjacent vertices u and v,
let r(u, v) denote the rank of v in u’s neighbor list, that is, the position occupied
by v in a sorted list of u’s neighbors. This is a number between 1 and d . Let
the color of the edge (u, v), where u comes from the left part of the bipartition
and v comes from the right, be the ordered pair (r(u, v), r(v, u)). This is a valid
coloring since if (u, v) and (u, w) have the same color, then in particular the first
component of the ordered pair is the same, so r(u, v) = r(u, w) implies v = w.
A similar argument handles the case where the common vertex is on the right.

Given a color (a, b), it is easy to simulate queries to the Hamiltonian
corresponding to that color. To compute the nonzero entries of the j th row
for this color, if j is in the left partition, then we find the neighbor of j that has
rank a; let us call this `. Then we find the neighbor of ` that has rank b. If this
neighbor is j , then ` is the position of the nonzero entry in row j ; otherwise there
is no nonzero entry. If j is in the right partition, the procedure is the same, except
with the roles of a and b reversed. This procedure uses two queries.

Observe that the simple trick of making the Hamiltonian bipartite suffices
to remove the O(log∗ n) term present in previous decompositions of this form.
This trick is quite general and can be applied to remove a factor of O(log∗ n)
wherever such a factor appears in a known Hamiltonian simulation algorithm (for
example, [8, 19, 43]).

Lemma 5.5. A d-sparse Hamiltonian H can be simulated for time t with error at
most ε using O(τ (log(τ/ε)/ log log(τ/ε))) queries, where τ := d2‖H‖maxt > 1.
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Proof. Lemma 5.4 decomposes our Hamiltonian H into d2 1-sparse
Hamiltonians. We further decompose H using Lemma 5.3 into a sum of
η = O(d2‖H‖max/γ )Hamiltonians G j such that ‖H − γ ∑η

j=1 G j‖max 6
√

2γ d2,
since each 1-sparse Hamiltonian is approximated with precision

√
2γ and there

are d2 approximations in this sum. To upper bound the simulation error, we have
‖e−i Ht − e−iγ

∑
j G j t‖ 6 ‖(H − γ ∑η

j=1 G j)t‖ 6
√

2γ d3t , where we used the
fact that ‖ei A − ei B‖ 6 ‖A − B‖ (as explained in the proof of Theorem 4.1)
and ‖A‖ 6 d‖A‖max for a d-sparse matrix A. Choosing γ = ε/√2d3t gives the
required precision. We now invoke Corollary 5.2 with number of Hamiltonians
η = O(d2‖H‖max/γ ) and simulation time γ t to get τ = d2‖H‖maxt . Plugging
this value of τ into Corollary 5.2 gives the result in Lemma 5.5, which is the
query-complexity part of Theorem 2.1.

Note that above we have determined the values of r and γ to use, but these
values do not affect the query complexity (although they do affect the time
complexity). This is because r and γ affect the value of m in Section 4, but the
analysis in Section 4 is independent of m. This enables a simple generalization
to time-dependent Hamiltonians. We can approximate the true evolution by a
product of evolutions under time-independent Hamiltonians for each of the r time
intervals of length t/r . Provided the derivative of the Hamiltonian is bounded, this
approximation can be made arbitrarily accurate by choosing r large enough. As
the query complexity does not depend on r , it is independent of h′ (defined as
maxs∈[0,t] ‖(d/ds)H(s)‖ in Section 2), similar to [38].

Finally, consider simulating a k-local Hamiltonian. A term acting nontrivially
on at most k qubits is 2k-sparse: two states x, y ∈ {0, 1}n are adjacent if the only
bits on which x and y differ are among the k bits involved in the local term.
Using this structure, we can give an explicit 2k-coloring, improving over the 4k-
coloring provided by Lemma 5.4: we simply color an edge between states x and
y by indicating which of the k bits are flipped. Thus we can decompose a k-local
Hamiltonian with M terms as a sum of 2k M 1-sparse Hamiltonians. Using this
decomposition in place of Lemma 5.4, we find a simulation as in Theorem 2.1 but
with τ replaced by τ̃ := 2k M‖H‖maxt .

6. Time complexity

We now consider the time complexities of the algorithms described in
Theorems 2.3 and 2.1 (recall that time complexity refers to the sum of the
number of queries and additional 2-qubit gates used in the algorithm). Our
approach considerably simplifies this analysis over previous work and gives
improved upper bounds.
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The basic algorithm as described in Section 4 is inefficient as it relies on
creating a state of m = poly(h, T, 1/ε) qubits. Instead, as in previous work [13],
we create a compressed version of this state that allows us to perform the
necessary controlled operations and to reflect about the zero state. Our simplified
approach does not require measuring the control qubits, an operation that accounts
for much of the technical complexity of [13].

We now prove Theorem 2.3 from Section 1, which we restate for convenience.

THEOREM 2.3 (Continuous-query simulation). An algorithm with continuous- or
fractional-query complexity T > 1 can be simulated with error at most ε with
O(T (log(T/ε)/ log log(T/ε))) queries. For continuous-query simulation, if there
is a circuit using at most g gates that implements the time evolution due to HD(t)
with precision ε/T between any two times t1 and t2 satisfying |t2− t1| 6 T , given
t1 and t2 encoded in quantum states, then the number of additional 2-qubit gates
for the simulation is O(T (log(T/ε)/ log log(T/ε))[g+ log(h̄T/ε)]), where h̄ :=
(1/T )

∫ T
0 ‖HD(t)‖ dt.

Proof. The query complexity of this theorem was established in Lemma 4.8. As in
the analysis of query complexity, it suffices to simulate a segment implementing
evolution for time 1/5 with precision ε/5T . To simulate the continuous-query
model, we can assume without loss of generality that query evolutions are
approximated (as in Theorem 4.1) by m fractional evolutions of equal length
1/5m. Thus we can assume that in each segment, as defined in Lemma 4.4,
α := αi = 1/5m for all i ∈ [m]. Let c := cos(π/10m) and s := sin(π/10m).

The idealized initial state of the ancilla qubits (that is, the state in the dotted
box of Figure 2) is(√

c|0〉 +√s|1〉√
c + s

)⊗m

=
∑

b∈{0,1}m
κm−|b|σ |b||b〉, (23)

where κ := √c/
√

c + s and σ := √s/
√

c + s. We truncate this state to the
subspace of those b with Hamming weight |b| 6 k. Specifically, we prepare the
encoded state ∑

`∈L

κm−|`|σ |`||`〉 + δ|⊥〉, (24)

where L := {(`1, . . . , `h) : 1 6 h 6 k, `1 + · · · + `h 6 m − h}, |⊥〉 is a special
state orthogonal to all terms in the first sum, and the coefficient δ was shown to
be small in Lemma 4.5. Observe that there is a natural bijection between L and
the set of strings b with |b| 6 k, given by b↔ 0`1 10`2 10`3 . . . 0`h 10m−h−`1−···−`h .

It is straightforward to perform the operation (A.13) from the proof of
Lemma 4.5, conditioning on b as represented by `. Recall that Wi(b) represents
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the evolution under the driving Hamiltonian from time
∑i

j=1 ` j/5m to time∑i+1
j=1 ` j/5m (where we define `k+1 := m). By assumption, any such evolution

can be performed with precision O(ε/T ) using g gates. Also, recall that Qi(b) is
simply Q if i 6 |b| or 1 otherwise, so it can be applied in time O(log k). Thus
the operation (A.13) can be applied in time O(k(g + log k)).

At the end of the segment we must effectively apply the final P and R gates
to the encoded state before reflecting about the encoding of |0m〉. (That is, we
jointly reflect about this state and |0〉 for the additional ancilla in Figure 2.) The
P gates are straightforward to apply in the given encoding. Rather than apply the
encoded R gates directly, reflect about the encoding of |0m〉, and then apply the
encoded R gates for the next segment, it suffices to reflect about the encoding
of R⊗m

α |0m〉 (note that R†
α = Rα). This can be done by applying the inverse of

the procedure for preparing (24), reflecting about the initial state, and applying
the preparation procedure. Overall, we see that the segment can be applied to the
encoded initial state with suitable accuracy using O(k(g+ log m)) gates, plus the
cost of preparing the encoded ancillas.

The encoded initial state (24) can be prepared in time O(k(log m +
log log(1/ε))) = O(k log m), as described in [13, Sections 4.2–4.4] (see in
particular equation (22)). Since k = O(log(T/ε)/ log log(T/ε)) (from the
proof of Lemma 4.5 with error at most ε/5T ) and m = poly(T, h̄, 1/ε) (from
Theorem 4.1), the overall complexity of making the encoded ancilla state
is O(log(T/ε) log(h̄T/ε)/ log log(T/ε)). Thus the cost of implementing a
constant-query algorithm to precision ε/5T is

O(k(g + log m)) = O
(

log(T/ε)
log log(T/ε)

[g + log(h̄T/ε)]
)
. (25)

Implementing O(T ) segments, each with this complexity, gives the stated time
complexity. With error bounded by ε/5T for each segment, the overall error is at
most ε.

Using this approach we can similarly prove Theorem 2.1 from Section 1, which
we restate for convenience.

THEOREM 2.1 (Sparse Hamiltonian simulation). A d-sparse Hamiltonian H
acting on n qubits can be simulated for time t within error ε with O(τ (log(τ/ε)/
log log(τ/ε))) queries and O(τ (log2(τ/ε)/ log log(τ/ε))n) additional 2-qubit
gates, where τ := d2‖H‖maxt (provided that τ > 1).

Proof. The query complexity of this theorem was established in Lemma 5.5, so
we only need to determine the time complexity (number of additional 2-qubit
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gates) for this proof. The query complexity given in Lemma 5.5 is proved by
encoding Hamiltonian simulation as a fractional-query algorithm, then using
Theorem 2.3 for the complexity of discrete simulations of continuous-query
algorithms. In this approach, τ plays the role of T . We adopt the same approach
to obtain the time complexity, except we cannot directly use the result as stated
in Theorem 2.3, where the time complexity is for the continuous-query case.
Nevertheless, we can obtain a similar result if g is taken to represent the cost
of performing any sequence of consecutive nonquery operations in the fractional-
query algorithm. The term log(h̄T/ε) in Theorem 2.3 results from discretizing a
continuous-query algorithm with a driving Hamiltonian and does not arise here.

The nonquery operations V j for j ∈ [m] described in the proof of Theorem 5.1
are straightforward to implement. In the application to Hamiltonian simulation,
we simply cycle through all η terms in order, so all the V j s can simply add 1
modulo η, and a sequence V j ′ · · · V j adds j ′− j mod η. Without loss of generality,
we can assume η is a power of 2, so addition modulo η can be performed by
standard binary addition, keeping only the log2 η least significant bits. Thus any
operation to be performed between queries can be applied using g = O(log η) =
O(log(d‖H‖maxt/ε)) operations (where the value of η is discussed following the
proof of Lemma 5.4). Next, observe that it suffices to decompose the evolution
into m = η3t2/ε = poly(t, ‖H‖max, d, 1/ε) terms (as stated in Corollary 5.2). In
the proof of Theorem 2.3, the time complexity for a constant-query algorithm is
O(k(g + log m)). This upper bounds the number of additional gates required to
perform the nonquery operations. Using g = O(log(d‖H‖maxt/ε)) and log m =
O(log(d‖H‖maxt/ε)), we see that this is O(τ (log2(τ/ε)/ log log(τ/ε))).

This only accounts for the operations performed between applications of the
unitary Q defined in Corollary 5.2. It remains to implement Q :=∑η

j=1 | j〉〈 j | ⊗
e−i H j using the oracle, where H = ∑η

j=1 H j and H j are Hamiltonians with
eigenvalues 0 and π . To implement Q we need to read the first register to learn
which 1-sparse Hamiltonian is to be simulated and then simulate the 1-sparse
Hamiltonian H j .

To achieve this task, given j we need to be able to determine the position and
value of the nonzero entry in any row of H j . The method to perform that task is
determined by the decomposition technique. The index j includes a value from
1 to d2 from the decomposition in Lemma 5.4 into 1-sparse Hamiltonians, and
the values ξ ∈ {X, Y, Z}, ` ∈ [‖C ξ‖max/2], and ± for C ξ,`,± in the decomposition
in Lemma 5.3. The procedure to simulate queries to the 1-sparse Hamiltonian is
detailed in the proof of Lemma 5.4, and involves inputting part of the index of size
log d into the oracle for the positions of nonzero entries of the Hamiltonian and
obtaining results of size n. The complexity of this part is therefore O(log d + n).
The value of ` is compared to the value of the corresponding entry in the
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Hamiltonian. The complexity of this step is only linear in the number of qubits
encoding `, which is O(log η). There are only three values of ξ and two of
±, so they do not contribute to the complexity. The procedure in Lemma 5.3
also involves setting the diagonal of C ξ,`,+ to be nonzero if C ξ,` = 0 for an
entire column. This involves setting values in n qubits for the position of the
nonzero element, which has complexity O(n). Overall the complexity of this part
is O(log η + n).

Now we need to implement the 1-sparse Hamiltonian on an n-qubit register.
This can be done with O(n) gates using the constructions in [1, 16]. For example,
consider a basis state |v〉 and a Hamiltonian C X,`,± in the decomposition (such that
the neighbor of v is not v). In the subspace formed by v and its neighbor, evolution
under C X,`,± just acts as a Pauli X operator (or −X ). Via the decomposition
procedure we can calculate the index of v’s neighbor in another register, then
swap the two registers, and uncompute the second register. In the case where the
operator is −X , we can simply apply a phase shift of −1 as well. Thus we can
implement Q using O(log η + n) gates. Since the number of uses of Q is the
query complexity, the total number of gates used for all invocations of Q and
the nonquery operations is O(τ (log(τ/ε)/ log log(τ/ε))[log(τ/ε)+ n]), which is
O(τ (log2(τ/ε)/ log log(τ/ε))n).

The same techniques can be straightforwardly applied to simulate time-
dependent sparse Hamiltonians. We divide the evolution into intervals of length
t/r , so the Hamiltonian can change by no more than h′t/r over such an
interval, where h′ := maxs∈[0,t] ‖(d/ds)H(s)‖. Thus the error for each interval
is O(h′t2/r 2), and the error in the overall simulation is O(h′t2/r). Therefore,
it suffices to take r = Ω(h′t2/ε). Then m = poly(t, h, h′, d, 1/ε), and the
complexity is O(τ (log(τ/ε) log((τ + τ ′)/ε)/ log log(τ/ε))n) as stated.

7. Lower bounds

We now show that in general, any sparse Hamiltonian simulation method
must use Ω(log(1/ε)/ log log(1/ε)) discrete queries to obtain error at most
ε, so dependence of the query complexity in Theorem 2.1 on ε is tight up
to constant factors. To show this, we use ideas from the proof of the no-
fast-forwarding theorem [8, Theorem 3], which says that generic Hamiltonians
cannot be simulated in time sublinear in the evolution time. The Hamiltonian
used in the proof of that theorem has the property that simulating it for time
t = πn/2 determines the parity of n bits exactly. We observe that simulating
this Hamiltonian (with sufficiently high precision) for any time t > 0 gives an
unbounded-error algorithm for the parity of n bits, which also requires Ω(n)
queries [6, 25].
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We now prove Theorem 2.2 from Section 1, which we restate for convenience.

THEOREM 2.2 (ε-dependent lower bound for Hamiltonian simulation). For any
ε > 0, there exists a 2-sparse Hamiltonian H with ‖H‖max< 1 such that simulating
H with precision ε for constant time requires Ω(log(1/ε)/ log log(1/ε)) queries.

Proof. To construct the Hamiltonian, we begin with a simpler Hamiltonian H ′

that acts on vectors |i〉 with i ∈ {0, 1, . . . , N } [21]. The nonzero matrix entries
of H ′ are 〈i |H ′|i + 1〉 = 〈i + 1|H ′|i〉 =√(N − i)(i + 1)/N for i ∈ {0, 1, . . . ,
N − 1}. We have ‖H ′‖max < 1, and simulating H ′ for t = πN/2 starting with
the state |0〉 gives the state |N 〉 (that is, e−i H ′πN/2|0〉 = |N 〉). More generally, for
t ∈ [0, πN/2], we claim that |〈N |e−i H ′t |0〉| = |sin(t/N )|N .

To see this, consider the Hamiltonian X̄ := ∑N
j=1 X ( j), where X := (0 1

1 0

)
and

the superscript ( j) indicates that the operator acts nontrivially on the j th qubit.
Since e−i Xt = cos(t)1− i sin(t)X , we have |〈11 . . . 1|e−i X̄ t |00 . . . 0〉| = |sin(t)|N .
Defining |wtk〉 :=

(N
k

)−1/2 ∑
|x |=k |x〉, we have

X̄ |wtk〉 =
√
(N − k + 1)k|wtk−1〉 +

√
(N − k)(k + 1)|wtk+1〉. (26)

This is precisely the behavior of N H ′ with |k〉 playing the role of |wtk〉, so the
claim follows.

Now, as in [8], consider a Hamiltonian H generated from an N -bit string
x1x2 . . . xN . H acts on vertices |i, j〉 with i ∈ {0, . . . , N } and j ∈ {0, 1}. The
nonzero matrix entries of this Hamiltonian are

〈i, j |H |i − 1, j ⊕ xi 〉 = 〈i − 1, j ⊕ xi |H |i, j〉 =
√
(N − i + 1)i/N (27)

for all i and j . By construction, |0, 0〉 is connected to either |i, 0〉 or |i, 1〉 (but not
both) for any i ; it is connected to |i, j〉 if and only if j = x1⊕ x2⊕ · · ·⊕ xi . Thus
|0, 0〉 is connected to either |N , 0〉 or |N , 1〉, and determining which is the case
determines the parity of x . The graph of this Hamiltonian contains two disjoint
paths, one containing |0, 0〉 and |N , PARITY(x)〉 and the other containing |0, 1〉
and |N , 1 ⊕ PARITY(x)〉. Restricted to the connected component of |0, 0〉, this
Hamiltonian is the same as H ′. Thus, starting with the state |0, 0〉 and simulating
H for time t gives |〈N , PARITY(x)|e−i Ht |0, 0〉| = |sin(t/N )|N . Furthermore, for
any t , we have 〈N , 1 ⊕ PARITY(x)|e−i Ht |0, 0〉 = 0 since the two states lie in
disconnected components.

Simulating this Hamiltonian exactly for any time t > 0 starting with |0, 0〉
yields an unbounded-error algorithm for computing the parity of x , as follows.
First we measure e−i Ht |0, 0〉 in the computational basis. We know that for any
t > 0, the state e−i Ht |0, 0〉 has some nonzero overlap on |N , PARITY(x)〉 and
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zero overlap on |N , 1 ⊕ PARITY(x)〉. If the first register is not N , we output 0
or 1 with equal probability. If the first register is N , we output the value of the
second register. This is an unbounded-error algorithm for the parity of x , and thus
requires Ω(N ) queries.

Since the unbounded-error query complexity of parity is Ω(N ) [6, 25], this
shows that exactly simulating H for any time t > 0 needs Ω(N ) queries.
However, even if we only have an approximate simulation, the previous algorithm
still works as long as the error in the output state is smaller than the overlap
|〈N , PARITY(x)|e−i Ht |0, 0〉|. If we ensure that the overlap is larger than ε by a
constant factor, then even with error ε, the overlap on that state will be larger than
ε. On the other hand, the overlap on |N , 1 ⊕ PARITY(x)〉 is at most ε, since the
output state is ε close to the ideal output state which has no overlap.

To achieve an overlap larger than ε by at least a constant factor, we need
|sin(t/N )|N to be larger than ε by a constant factor. There is some value of N
in Θ(log(1/ε)/ log log(1/ε)) that achieves this.

A similar construction shows that any ε-error simulation of the continuous-
query model must use Ω(log(1/ε)/ log log(1/ε)) discrete queries, so Lemma 4.2
is tight up to constant factors. Again we show that a sufficiently high-precision
simulation of a certain Hamiltonian could be used to compute parity with
unbounded error. However, in the fractional-query model, the form of the
Hamiltonian is restricted and it is unclear how to implement the weights that
simplify the analysis of the dynamics in Theorem 2.2. Instead, we consider
a quantum walk on an infinite unweighted path that also solves parity with
unbounded error, and we show that this still holds if the path is long but finite.

THEOREM 7.1 (ε-dependent lower bound for continuous-query simulation). For
any ε > 0, given a query Hamiltonian Hx for a string of N = Θ((log(1/ε)/
log log(1/ε))) bits, simulating Hx + HD(t) for constant time with precision ε
requires Ω(N ) queries.

Proof. We prove a lower bound for simulating a Hamiltonian of the form H ′ =∑η

a=1 caU †
a HxUa with coefficients c1, . . . , cη ∈ R. The Hamiltonian Hx can be

used to simulate H ′ to any given accuracy with overhead
∑

a |ca|, so this implies
a lower bound for simulating Hx . In particular, by taking r sufficiently large, the
evolution under H ′ can be approximated arbitrarily closely as

e−i H ′t ≈
( η∏

a=1

U †
a e−i Hx ca t/rUa

)r

. (28)
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This corresponds to a fractional-query algorithm with cost t
∑η

a=1 |ca|. By
Theorem 4.1, this fractional-query algorithm can be simulated with arbitrarily
small error by a continuous-query algorithm with the same cost. This continuous-
query algorithm uses the query Hamiltonian Hx , and its driving Hamiltonian
HD(t) implements the unitaries {Ua,U †

a }ηa=1 at appropriate times.
Viewing the Hamiltonian in terms of the graph of its nonzero entries, the oracle

Hamiltonian Hx provides input-dependent self-loops. First we modify it to give
input-dependent edges. Observe that

Had
(

1 0
0 0

)
Had = 1

2

(
1 1
1 1

)
(29)

where Had := 1/
√

2(1 1
1 −1) is the Hadamard gate. Thus we can include a term in

the Hamiltonian that has an edge between two vertices associated with the input
index i (and self-loops on those vertices) if xi = 1, and is zero otherwise.

Now consider a space with basis states |i, j, k〉 where i ∈ Z and j, k ∈ {0, 1}.
The label j plays the same role as in Theorem 2.2, whereas the new label k indexes
two positions for each value of i . These new positions are needed because the pairs
of vertices associated with each input index must be disjoint.

To specify the Hamiltonian, we define unitaries U1,U2,U3,U4 so that the
nonzero matrix elements of U †

a HxUa for a ∈ {1, 2, 3, 4} are

〈i, 0, k|U †
1 HxU1|i, 0, k̄〉 = 〈i, 0, k|U †

1 HxU1|i, 0, k〉 = xi/2 (30)

〈i, 1, k|U †
2 HxU2|i, 1, k̄〉 = 〈i, 1, k|U †

2 HxU2|i, 1, k〉 = xi/2 (31)

〈i, k, k|U †
3 HxU3|i, k̄, k̄〉 = 〈i, k, k|U †

3 HxU3|i, k, k〉 = xi/2 (32)

〈i, k, k̄|U †
4 HxU4|i, k̄, k〉 = 〈i, k̄, k|U †

4 HxU4|i, k̄, k〉 = xi/2 (33)

for all i ∈ [N ] and k ∈ {0, 1}. Combining these four contributions to obtain a
Hamiltonian −U †

1 HxU1−U †
2 HxU2+U †

3 HxU3+U †
4 HxU4 and observing that the

self-loops cancel, these matrix elements can be summarized in terms of the gadget
shown in Figure 3.

We add a driving Hamiltonian to connect these gadgets to form two paths
encoding the parity similarly as in Theorem 2.2, and we extend the paths infinitely
in both directions. Specifically, the driving Hamiltonian HD has nonzero matrix
elements

〈i, j, k|HD|i, j, k̄〉 = 1/2 (34)

for all i ∈ Z and j, k ∈ {0, 1} (corresponding to the dashed edges in Figure 3, but
with positive weight), and

〈i + 1, j, 0|HD|i, j, 1〉 = 〈i, j, 1|HD|i + 1, j, 0〉 = 1/2 (35)
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Figure 3. The gadget for querying xi . If xi = 0, no edges are present. If xi = 1,
the solid edges have weight 1/2 and the dashed edges have weight −1/2.

for all i ∈ Z and j ∈ {0, 1} (corresponding to edges that join sectors with adjacent
values of i). Then the total Hamiltonian

H = −U †
1 HxU1 −U †

2 HxU2 +U †
3 HxU3 +U †

4 HxU4 + HD (36)

is 1/2 times the adjacency matrix of the disjoint union of two infinite paths, one
with vertices

. . . , (0, 0, 0), (0, 0, 1), (1, 0, 0), (1, x1, 1), (2, x1, 0), (2, x1 ⊕ x2, 1), . . . ,
(N , x1 ⊕ · · · ⊕ xN , 1), (N + 1, x1 ⊕ · · · ⊕ xN , 0),

(N + 1, x1 ⊕ · · · ⊕ xN , 1), . . . (37)

and the other with vertices

. . . ,(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1⊕ x1, 1), (2, 1⊕ x1, 0),
(2, 1⊕ x1 ⊕ x2, 1), . . . , (N , 1⊕ x1 ⊕ · · · ⊕ xN , 1),
(N + 1, 1⊕ x1 ⊕ · · · ⊕ xN , 0), (N + 1, 1⊕ x1 ⊕ · · · ⊕ xN , 1), . . . . (38)

Analogous to the Hamiltonian H in the proof of Theorem 2.2, (0, 0, 1) is in the
same component as (N , b, 1) if and only if b = PARITY(x).

To compute the probability of reaching (n, PARITY(x), 1) starting from
(0, 0, 1) after evolving with the Hamiltonian (36) for time t , we can use the
expression for the propagator on an infinite path in terms of a Bessel function
(see for example [16]). Specifically, we have

|〈N , PARITY(x), 1|e−i Ht |0, 0, 1〉| = |J2N (t)|. (39)

For large N and for any fixed t 6= 0, we have |JN (t)| = e−Θ(N log N ) [42, Section
8.1]. Thus, as in the proof of Theorem 2.2, even a simulation with error ε gives
the result with nonzero probability provided N = Θ(log(1/ε)/ log log(1/ε)).
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The preceding argument uses a Hamiltonian acting on an infinite-dimensional
space. However, we can truncate it to act on a finite space with essentially the
same effect. Specifically, we apply the Truncation Lemma of [18], which we
repeat here.

Lemma 7.2 (Truncation Lemma [18]). Let H be a Hamiltonian acting on a
Hilbert space H and let |Φ〉 ∈ H be a normalized state. Let K be a subspace
of H, let P be the projector onto K, and let H̃ = PHP be the Hamiltonian within
this subspace. Suppose that, for some T > 0, W ∈ {H, H̃}, N0 ∈ N, and δ > 0,
we have, for all 0 6 t 6 T ,

e−iW t |Φ〉 = |γ (t)〉 + |ε(t)〉 with ‖|ε(t)〉‖ 6 δ

and

(1− P)H r |γ (t)〉 = 0 for all r ∈ {0, 1, . . . , N0 − 1}.
Then, for all 0 6 t 6 T ,

‖(e−i Ht − e−i H̃ t)|Φ〉‖ 6
(

4e‖H‖t
N0

+ 2
)
(δ + 2−N0(1+ δ)).

We use this lemma with K = span{|i, j, k〉 : − N 3 − N 2 6 i 6 N 3 + N 2,

j, k ∈ {0, 1}} and W = H . Let P project onto K and let P ′ project onto
span{|i, j, k〉 : −N 2 6 i 6 N 2, j, k ∈ {0, 1}}. Finally, let |γ (t)〉= P ′e−i Ht |0, 0, 1〉.
Then δ2 := ‖e−i Ht |0, 0, 1〉 − |γ (t)〉‖2 = |J2N 2+1(t)|2 + 2

∑∞
j=2 |J2N 2+ j(t)|2 6

e−Ω(N
2 log N ). Furthermore, (1 − P)H r |γ (t)〉 = 0 for all r ∈ {0, 1, . . . , N 3}. Also

observe that ‖H‖ = 1. Thus the Truncation Lemma shows that

‖(e−i Ht − e−iPHPt)|0, 0, 1〉‖ 6
(

4et
N 3
+2

)
(δ+2−N 3

(1+δ)) 6 e−Ω(N
2 log N ), (40)

so the error incurred by truncating H to the Hamiltonian PHP acting on the finite-
dimensional space K is asymptotically negligible compared to ε.

8. Open questions

While our algorithm for continuous-query simulation is optimal as a function of
ε alone, it is suboptimal as a function of T , and it is unclear what tradeoffs might
exist between these two parameters. The best known lower bound as a function
of both ε and T is Ω(T + log(1/ε)/ log log(1/ε)). It would be surprising if this
bound were achievable, but it remains open to find such an algorithm or to prove
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a better lower bound. In general, any improvement to the tradeoff between ε and
T could be of interest.

In the context of time-independent sparse Hamiltonian simulation, the quantum
walk-based simulation of [9, 15] achieves linear dependence on d , but polynomial
dependence on ε. In contrast, our algorithm here obtains polylogarithmic
dependence on ε, but scales as d2. In more recent work, it has been shown that
quantum walks can yield scaling close to linear in d, as well as polylogarithmic
in ε, but only for the time-independent case [12]. It is still an open question how
to obtain such scaling for time-dependent Hamiltonians.
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Appendix A. Proofs of known results

In this appendix, for the sake of completeness we provide proofs of claims that
are known or essentially follow from known results.

A.1. Equivalence of continuous- and fractional-query models.

THEOREM 4.1 (Equivalence of continuous- and fractional-query models). For
any ε > 0, any algorithm with continuous-query complexity T can be implemented
with fractional-query complexity T with error at most ε and m = O(h̄T 2/ε)

fractional-query gates, where h̄ := (1/T )
∫ T

0 ‖HD(t)‖ dt is the average norm
of the driving Hamiltonian. Conversely, any algorithm with fractional-query
complexity T can be implemented with continuous-query complexity T with error
at most ε.

Proof. A simulation of the continuous-query model by the fractional-query model
with the stated properties appears in [23, Section II.A]. We present their proof for
completeness.

We wish to implement the unitary U (T ) satisfying the Schrödinger equation
(2) with U (0) = 1. To refer to the solutions of this equation for arbitrary
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Hamiltonians and time intervals, we define UH (t2, t1) to be the solution of the
Schrödinger equation with Hamiltonian H from time t1 to time t2 where U (t1) =
1. In this notation, U (T ) = UHx+HD (T, 0).

Let m be an integer and θ = T/m. We have

UHx+HD (T, 0) = UHx+HD (mθ, (m − 1)θ) · · ·UHx+HD (2θ, θ)UHx+HD (θ, 0). (A.1)

If we can approximate each of these m terms, we can use the subadditivity of
error in implementing unitaries (that is, ‖U V − Ũ Ṽ ‖ 6 ‖U − Ũ‖ + ‖V − Ṽ ‖
for unitaries U, Ũ , V, Ṽ ) to obtain an approximation of U (T ).

Reference [29] shows that for small θ , the evolution according to Hamiltonians
A and B over an interval of length θ approximates the evolution according to
A + B over the same interval. Specifically, from [29, equation (A8b)] we have

‖UA+B(( j + 1)θ, jθ)−UA(( j + 1)θ, jθ)UB(( j + 1)θ, jθ)‖

6
∫ ( j+1)θ

jθ
dv
∫ v

jθ
du ‖[A(u), B(v)]‖. (A.2)

In our application, A(t) = HD(t) and B = Hx . Since ‖Hx‖ = 1, the right-hand
side is at most

2
∫ ( j+1)θ

jθ
dv
∫ v

jθ
du ‖HD(u)‖ 6 2

∫ ( j+1)θ

jθ
dv
∫ ( j+1)θ

jθ
du ‖HD(u)‖

= 2θ
∫ ( j+1)θ

jθ
‖HD(u)‖ du. (A.3)

By subadditivity, the error in implementing U (T ) is at most

2θ
m−1∑
j=0

∫ ( j+1)θ

jθ
‖HD(u)‖ du = 2θ

∫ T

0
‖HD(u)‖ du = 2θ h̄T = 2h̄T 2

m
. (A.4)

This error is smaller than ε when m > 2h̄T 2/ε, which proves this direction of the
equivalence.

For the other direction, consider a fractional-query algorithm

Ufq := Um Qαm Um−1 · · · Qα2U1 Qα1U0 (A.5)

(recall that Q depends on x), where αi ∈ (0, 1] for all i ∈ [m], with complexity
T = ∑m

i=1 αi . Let Ai :=
∑i

j=1 α j for all i ∈ [m] and let U j =: e−i H ( j)
D for all

j ∈ {0, 1, . . . ,m}. Consider the piecewise constant Hamiltonian

H(t) = Hx + 1
ε1

(
δt∈[0,ε1]H

(0)
D +

m∑
i=1

δt∈[Ai−ε1,Ai ]H
(i)
D

)
, (A.6)
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where δB is 0 if B is false and 1 if B is true. Provided ε1 6 min{α1/2, α2, . . . , αm},
evolving with H(t) from t = 0 to T implements a unitary close to our fractional-
query algorithm. More precisely, it implements

U (T ) = e−i(H (m)
D +ε1 Hx )e−i(αm−ε1)Hx e−i(H (m−1)

D +ε1 Hx ) · · ·
e−i(α2−ε1)Hx e−i(H (1)

D +ε1 Hx )e−i(α1−2ε1)Hx e−i(H0
D+ε1 Hx ), (A.7)

which satisfies ‖U (T )−Ufq‖ = O(mε1). This follows from the fact
that each exponential in (A.7) approximates the corresponding unitary of
(A.5) within error ε1 (for example, ‖e−i(H (m)

D +ε1 Hx ) −Um‖ = O(ε1) and
‖e−i(αm−ε1)Hx − Qαm‖ = O(ε1)) and the subadditivity of error when implementing
unitaries. The fact that each exponential has error O(ε1) follows from the
inequality ‖ei A − ei B‖ 6 ‖A − B‖. This can be proved by observing that
‖ei A − ei B‖ = ‖(ei A/n)n − (ei B/n)n‖ 6 n‖ei A/n − ei B/n‖ 6 ‖A − B‖ + O(1/n),
where the first inequality uses subadditivity of error and the second inequality
follows by Taylor expansion. Since the statement is true for all n, the claim
follows.

This simulation has continuous-query complexity T . Its error can be made less
than ε by choosing ε1 sufficiently small (in particular, it suffices to take some
ε1 = Θ(ε/m)).

A.2. The Approximate Segment Lemma. In this section, we establish the
Approximate Segment Lemma (Lemma 4.5). This lemma essentially follows
from [23] with minor modification. We start by proving the following Gadget
Lemma, which follows from [23, Section II.B].

Lemma 4.3 (Gadget Lemma [23]). Let Q be a unitary matrix with eigenvalues
±1; let α ∈ [0, 1]. The circuit in Figure 1, with Rα := (1/

√
c + s)

(√
c
√

s√
s −√c

)
and

P := (1 0
0 i

)
, performs the map

|0〉|ψ〉 7→√qα|0〉eiπα/2 Qα|ψ〉 +√1− qα|1〉|φ〉 (3)

for some state |φ〉, where c := cos(πα/2), s := sin(πα/2), qα := 1/(c + s)2 =
1/(1+ sin(πα)), and Qα = 1

2 (1+ Q)+ e−iπα 1
2 (1− Q) = e−iπα/2(c1+ is Q).

Proof. The input state evolves as follows:

|0〉|ψ〉 7→
√

c|0〉 +√s|1〉√
c + s

|ψ〉

7→ 1√
c + s

(
√

c|0〉|ψ〉 +√s|1〉Q|ψ〉)
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7→ 1
c + s

[|0〉(c|ψ〉 + is Q|ψ〉)+√cs|1〉(|ψ〉 − i Q|ψ〉)]
=√qα(|0〉eiπα/2 Qα|ψ〉 +

√
sin(πα)|1〉e−iπ/4 Q−1/2|ψ〉)

=√qα|0〉eiπα/2 Qα|ψ〉 +√1− qα|1〉e−iπ/4 Q−1/2|ψ〉. (A.8)

Thus the output has the stated form.

We can now collect these gadgets into a segment, which implements a
fractional-query algorithm with constant query complexity with amplitude 1/2.

Lemma 4.4 (Segment Lemma). Let V be a unitary implementable by a fractional-
query algorithm with query complexity at most 1/5, that is, there exists an m such
that V = Um Qαm Um−1 · · ·U1 Qα1U0 with αi > 0 for all i and

∑m
i=1 αi 6 1/5. Let

P and Rα be as in Lemma 4.3. Then there exists a unitary Υ on the additional
ancilla such that the circuit in Figure 2 performs the map

|0m+1〉|ψ〉 7→ 1
2
|0m+1〉eiϑV |ψ〉 +

√
3

2
|Φ⊥〉 (4)

for some state |Φ⊥〉 satisfying (|0m+1〉〈0m+1|⊗1)|Φ⊥〉 = 0 and some ϑ ∈ [0, 2π).

Proof. We first analyze the subcircuit in the dashed box in Figure 2, which is the
entire circuit without the first qubit. The first qubit does not interact with the rest
of the qubits and is only used at the end of the proof.

This subcircuit is built by composing several fractional-query gadgets (as in
Figure 1) with a new control qubit for each gadget but with a common target. The
m gadgets correspond to making the fractional queries Qαi . The first register of a
gadget indicates whether it has applied the fractional query successfully, in which
case the register is |0〉, or not, in which case it is |1〉. For the i th gadget, the output
state has amplitude qαi on the state |0〉 corresponding to the successful outcome,
as shown in Lemma 4.3.

The state of the control qubits on the output is |0m〉 only when all the
gadgets have successfully applied the fractional query. In this case, the target has
been successfully transformed to V |ψ〉. Thus the dashed subcircuit in Figure 2
performs the map

|0m〉|ψ〉 7→√p|0m〉eiϑV |ψ〉 +√1− p|Φ⊥〉 (A.9)

for some |Φ⊥〉 satisfying (|0m〉〈0m | ⊗ 1)|Φ⊥〉 = 0, where p = ∏m
i=1 qαi and ϑ =

−∑m
i=1 παi/2 mod 2π .

This is similar to the desired statement, except that we want the amplitude in
front of |0m〉 to be 1/2 instead of

√
p. We show that p > 1/4 and then use the first

qubit to decrease its value to exactly 1/4.
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Since
∑m

i=1 αi 6 1/5 by assumption, we can lower bound the value of p as
follows. Since αi > 0 for all i , using the inequalities sin x 6 x (for x > 0) and
1/(1+ x) > 1− x (for x > −1) gives

p =
m∏

i=1

qαi =
m∏

i=1

1
1+ sin(παi)

>
m∏

i=1

1
1+ παi

>
m∏

i=1

(1− παi) > 1− π
m∑

i=1

αi

> 1− π
5
>

1
4
, (A.10)

where the third inequality uses the fact that for xi ∈ [0, 1],∏i(1−xi) > 1−∑i xi .
Thus we have

√
p > 1/2. Now let Υ be any unitary that maps |0〉 to

(1/2
√

p)|0〉+(1−1/4p)1/2|1〉. Since
√

p > 1/2, we have 1/2
√

p < 1, so a unitary
Υ exists. Then for the full circuit in Figure 2, the amplitude corresponding to the
state |0m〉 is

√
p · 1/2√p = 1/2.

Finally, we show that the map in the previous lemma can be performed to error
ε using only O(log(1/ε)/ log log(1/ε)) queries.
Lemma 4.5 (Approximate Segment Lemma). Let V be a unitary implementable
by a fractional-query algorithm with query complexity at most 1/5. Then for
any ε > 0, there exists a unitary quantum circuit that makes O(log(1/ε)/
log log(1/ε)) discrete queries and, within error ε, performs a unitary U acting
as

U |0m+1〉|ψ〉 = 1
2
|0m+1〉eiϑV |ψ〉 +

√
3

2
|Φ⊥〉 (5)

for some state |Φ⊥〉 satisfying (|0m+1〉〈0m+1|⊗1)|Φ⊥〉 = 0 and some ϑ ∈ [0, 2π).

Proof. From Lemma 4.4 we know that the circuit in Figure 2 performs the
claimed map with no error. However, the circuit makes m discrete queries, which
can be arbitrarily large. We wish to construct a circuit with error at most ε that
makes only O(log(1/ε)/ log log(1/ε)) queries, independent of m.

We first analyze the subcircuit in the dotted box in Figure 2. The output of this
subcircuit is |ζ 〉 = ⊗m

i=1 Rαi |0〉 =
⊗m

i=1 (1/
√

ci + si)(
√

ci |0〉 +√si |1〉), where
ci := cos(παi/2) and si := sin(παi/2). We also define qi := qαi = 1/(ci + si)

2 =
1/(1+ sin(παi)). We can write |ζ 〉 =∑x∈{0,1}m wx |x〉 with

∑
x |wx |2 = 1.

Now consider the subnormalized state |ζk〉 := ∑
|x |6k wx |x〉, where |x |

denotes the Hamming weight of x and k 6 m is a positive integer. In the
circuit, we approximate the state |ζ 〉 with some |ζk〉. Clearly |ζm〉 = |ζ 〉, and
the approximation becomes worse as k decreases. To achieve a 1 − ε2/2
approximation, we claim it suffices to take k = Ω(log(1/ε)/ log log(1/ε)). Since
1− 〈ζ |ζk〉 =

∑
|x |>k |wx |2, we must upper bound

∑
|x |>k |wx |2 in terms of k.
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Consider m independent random variables X i with Pr(X i = 0) = ci/(ci + si)

and Pr(X i = 1) = si/(ci + si). The probability that
∑

i X i > k is
∑
|x |>k |wx |2,

since |wx |2 is the probability of the event X i = xi for all i . For such events, the
Chernoff bound (see for example [35, Theorem 4.1]) says that for any δ > 0,

Pr
(∑

i

X i > (1+ δ)µ
)
<

eδµ

(1+ δ)(1+δ)µ , (A.11)

where µ := ∑
i Pr(X i = 1) = ∑

i (si/(ci + si)). Since αi > 0 and
∑

i αi 6
1/5, we have µ > 0 and µ = ∑

i (si/(ci + si)) 6
∑

i si =
∑

i sin(παi/2) 6∑
i παi/2 6 π/10 6 1, where we used the facts that sin x 6 x for all x > 0 and

sin θ + cos θ > 1 for all θ ∈ [0, π/2].
Setting k = (1+δ)µ, we get

∑
|x |>k |wx |2 = Pr(

∑
i X i > k) < ek−µ/(1+ δ)k =

ek−µµk/kk < ek/kk . This is less than ε2/2 for an appropriately chosen k =
Ω(log(1/ε)/ log log(1/ε)). For such a value of k, the state |ζk〉 has inner product
at least 1 − ε2/2 with |ζ 〉. Let |ζ̃ 〉 denote the normalized |ζk〉 for some choice
of k = Ω(log(1/ε)/ log log(1/ε)). The state |ζ̃ 〉 also has inner product at least
1 − ε2/2 with |ζ 〉. We replace the dotted box in Figure 2 with |ζ̃ 〉, a fixed state
that requires no queries to create.

With this modification, the control qubits are in a superposition over states with
Hamming weight at most k, suggesting that this circuit can be performed with at
most k queries. We now show that this is possible.

The control qubits are in a superposition over states |b〉 where b ∈ {0, 1}m . The
value of bi decides whether the i th query occurs or not. The string b therefore
completely determines the product of unitary matrices that is applied to |ψ〉 when
the control qubits are in the state |b〉. This product contains at most k query gates,
and thus may be written as

W|b|(b) Q W|b|−1(b) · · · Q W1(b) Q W0(b). (A.12)

Note that the Wi operators are functions of b. We may also write this unitary as

Wk(b) Qk(b)Wk−1(b) · · · Q2(b)W1(b) Q1(b)W0(b), (A.13)

where for i 6 |b| the Wi operators are as before and for i > |b|, we have Wi = 1.
Here Qi(b) is defined to be Q when i 6 |b| and 1 when i > |b|. We can now
construct a circuit that performs the unitary in (A.13) controlled on the value of b.
This circuit has at most k query gates and performs the same unitary as the circuit
in Figure 2 with |ζ 〉 replaced with |ζ̃ 〉.

Finally, we show that the actual operation performed, denoted Ũ , is within error
ε of the ideal unitary U . The only difference between these operations is that Ũ
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prepares |ζ̃ 〉 rather than |ζ 〉 in the initial step. Therefore, the error between Ũ and
U is at most the error between an operation that prepares |ζ̃ 〉 and an operation
that prepares |ζ 〉. If we required U to prepare |ζ 〉 using

⊗m
i=1 Rαi , it would be

difficult to design a nearby unitary that prepares |ζ̃ 〉. However, the lemma does
not specify the action of U on states not of the form |0m+1〉|ψ〉, so we can make
any convenient choice of the operation preparing |ζ 〉 that is close to the operation
preparing |ζ̃ 〉.

Let R := ⊗m
i=1 Rαi and denote the unitary that prepares |ζ̃ 〉 by R̃. In the

computational basis, R has first column ζ and R̃ has first column ζ̃ . We claim
there is a unitary R′ that is within ε of R̃ but that has the same first column as R.

To see this, let θ satisfy 〈ζ̃ |ζ 〉 = cos θ . Consider the 2-dimensional subspace
spanned by |ζ 〉 and |ζ̃ 〉, and let E be the unitary that rotates by angle θ in this
subspace, but acts as the identity outside the subspace. In particular, E |ζ̃ 〉 = |ζ 〉.
Taking R′ := E R̃, we see that R′ has the first column ζ as required. The error is
‖R′ − R̃‖ = ‖E R̃ − R̃‖ = ‖E − 1‖ =√2− 2 cos θ .

Since 〈ζ̃ |ζ 〉 > 1 − ε2/2, we find ‖R′ − R̃‖ 6 ε. Because the remainder of the
circuit is identical, the overall error between Ũ and U is at most ε as claimed.
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